
OUTER AND INNER MEDIANS IN SOME SMALL LATTICES

GERGŐ GYENIZSE

Abstract. By median we mean a scheme that inputs three element of a lat-

tice, and inputs an element that is an average of the three inputs in a certain

sense. The medians of a given finite lattice form a new lattice that is usually
larger than the original, but generates a (not necessarily strictly) smaller vari-

ety. A median is called inner if it is a term function. The inner median lattice

is closely related to the symmetric part of the equational basis of the lattice.
We examine the outer and inner median lattices of all lattices of six elements,

and all subdirectly irreducible lattices of seven elements.

1. Preliminaries and general observations

Definition 1. Let L be a lattice. A mapping f : L3 → L that is a symmetric
monotone majority operation is called a median of L. A median is inner if it is also

a term function, and outer otherwise. The medians of L form a sublattice of LL3

,
this will be called the outer median lattice of L, and denoted by OutMedL. In this,
the inner medians form a sublattice, this inner median lattice will be denoted by
InnMedL.

Definition 2. Let V1,V2 be lattice varieties. Then the class of lattices V1 ◦ V2 is
defined by

L ∈ V1 ◦ V2 ⇔ ∃ θ ∈ ConL : L/θ ∈ V2, all the θ-classes are in V1

In the case when V1 is the variety of distributive lattices, we use the notation Vd
2

instead of V1 ◦ V2.

The following if an easy and well-known property of varietial products.

Proposition 3. For all lattice varieties V1,V2, V1 ◦V2 is also a lattice variety. □

Definition 4. Define the lattice terms

m(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z),

and
M(x, y, z) := (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z),

the lower and upper lattice medians, respectively.

By Lemmas 4.4 and 4.5 of [1], m and M are the smallest and largest elements
of OutMedL (and therefore also InnMedL), respectively. It is well known that a
lattice is distributive iff the lower and upper medians induce the same term functions
on it.
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Figure 1. The lattices M3 and N5

Definition 5. For any lattice L, define the congruence θd ∈ ConL as the congru-
ence generated by all the pairs (m(a, b, c),M(a, b, c)), where a, b, c ∈ L.

Proposition 6. For any lattice variety V and lattice L,

L ∈ Vd ⇔ all the θd-clases of L are in V.

Proof. Suppose that L ∈ Vd, then there is a congruence θ of L so that L/θ is
distributive and the θ-classes are in V. As the lower and upper medians of L/θ
coincide:

m(a, b, c)/θ = m(a/θ, b/θ, c/θ) = M(a/θ, b/θ, c/θ) = M(a, b, c)/θ

for all a, b, c ∈ L, and hence θd ≤ θ. Therefore the θd-classes are sublattices of
θ-classes, and thus are in V.

The other direction is trivial. □

Theorem 7. Suppose that V is a lattice variety, and L ∈ Vd. Then OutMedL ∈ V.

Proof. Suppose that f ∈ OutMedL, and a, b, c ∈ L. As f is monotone and a
majority operation, f(a, b, c) ≥ f(a∧b, a∧b, c) = a∧b, f(a, b, c) ≥ f(a∧c, b, a∧c) =
a ∧ c, and f(a, b, c) ≥ f(a, b ∧ c, b ∧ c) = b ∧ c. Thus f(a, b, c) ≥ m(a, b, c), and
similarly, f(a, b, c) ≤ M(a, b, c). So any median of L maps the triple (a, b, c) into
the interval [m(a, b, c),M(a, b, c)]. So

OutMedL ≤ Π(a,b,c)∈L3 [m(a, b, c),M(a, b, c)].

By Proposition 6, the lattice [m(a, b, c),M(a, b, c)] is in V, and therefore OutMedL
is also in V. □

2. Calculating outer and inner median lattices

Definition 8. Let L be a lattice. For each triple (l1, l2, l3) ∈ L3, we call
[m(l1, l2, l3),M(l1, l2, l3)] the permitted interval of this triple.

The poset TL is defined the following way: its underlying set is the set of three-
element subsets of L having nontrivial permitted interval. The order on TL is
defined by

(l1, l2, l3) ≤ (k1, k2, k3) ⇔ ∃σ ∈ S{1,2,3} : ∀ 1 ≤ i ≤ 3 : li ≤ kσ(i).

An order homomorphism TL → L is called permitted if it maps each triple to an
element of its permitted interval.
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There is a natural bijection the medians of L and the permitted homomorphisms.
(If L is distributive, then TL is empty. In this case, the empty set is such a homo-
morphism, and indeed, OutMedL is trivial.)

When calculating TL → L, it is helpful to remember that all triples in it contain
either three pairwise incomparable elements, or two comparable elements and a
third that is incomparable to the other two.

Proposition 9. If L is either the linear sum of the lattices L1 and L2, or is
obtained by gluing L2 to L1, then

OutMedL ∼= OutMedL1 ×OutMedL2

Proof. If (k1, k2, k3) ∈ (L1 ∪ L2)
3\(L3

1 ∪ L3
2), then there is either a smallest or a

largest element in the set {k1, k2, k3}, which means {k1, k2, k3} ̸∈ TL. Therefore,

TL = TL1
∪ TL2

.

Any element of the permitted interval of some triple in TL1 is smaller or equal than
any element of the permitted interval of some triple in TL2

. Thus the set-theoretic
join of a permitted homomorphism of L1 and a permitted homomorphism of L2 is
a permitted homomorphism of L, and we are ready. □

Proposition 10. If the lattices L1 and L2 generate the same lattice variety, then
InnMedL1

∼= InnMedL2.

Proof. We define two congruences of SFL(3): for i = 1, 2 and h1, h2 ∈ SFL(3)

(h1, h2) ∈ θi ⇔ ∀, (a, b, c) ∈ L3
i : h1(a, b, c) = h2(a, b, c).

Obiously, InnMedLi
∼= SFL(3)/θi. As (h1, h2) ∈ θi if and only if the identity

h1 ≈ h2 holds in Li, and L1 and L2 satisfy the same identities, θ1 = θ2, and the
result follows. □

Theorem 11. For a finite lattice L, the following are equivalent.

(1) |OutMedL| ≤ 2,
(2) OutMedL = InnMedL,
(3) of the 3-generated sublattices of L, at most one is nondistributive, and if

there is a nondistributive 3-generated sublattice, then it is isomorphic to
N5.

Proof. a

• (1) ⇒ (2): As the smallest and largest elements of OutMedL are inner
medians, this is obvious.

• (2) ⇒ (3): Suppose first M3 is in the variety generated by L. As L is
finite, this implies by Jónsson’s Lemma that L has a sublattice L′ that has
a congruence µ so that L′/µ ∼= M3. Choose l1, l2, l3 ∈ L′ so that

[l1/µ, l2/µ, l3/µ] = L′/µ,

and define

l∗1 := (m(l1, l2, l3) ∨ l1) ∧M(l1, l2, l3).
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Now l∗1 is in the µ-class of l1, and it is in the permitted interval of {l1, l2, l3}.
We define the mapping

TL → L : {k1, k2, k3} 7→


M(k1, k2, k3), if {k1, k2, k3} > {l1, l2, l3}
l∗1, if {k1, k2, k3} = {l1, l2, l3},
m(k1, k2, k3), if {k1, k2, k3} ̸≥ {l1, l2, l3}

,

this is a permitted homomorphism, and it corresponds to an outer median,
as an inner median must map (l1, l2, l3) to the class of either m(l1, l2, l3) or
M(l1, l2, l3).

Now suppose that (l1, l2, l3) and (l4, l5, l6) both generate sublattices iso-
morphic to N5. We can assume that (l1, l2, l3) ̸≤ (l4, l5, l6), and define the
mapping

TL → L : {k1, k2, k3} 7→

{
M(k1, k2, k3), if {k1, k2, k3} ≥ {l1, l2, l3}
m(k1, k2, k3), if {k1, k2, k3} ̸≥ {l1, l2, l3}

,

again, this is a permitted homomorphism. The corresponding median maps
{l1, l2, l3} to M(l1, l2, l3) and {l4, l5, l6} to m(l4, l5, l6), and so must be an
outer median.

By Proposition 10, the above argument also works if we only assume
both (l1, l2, l3) and (l4, l5, l6) to generate a lattice that generates the same
variety as N5.

There is one outstanding case: when there are elements l1, l2, l3 generat-
ing a sublattice S that is nondistributive, but generates a different variety
than N5. That variety is contained in the one generated by L, so it can-
not contain M3. By [6], it must cover one of fifteen subdirectly irreducible
lattices (L1, . . . ,L15). By Jónsson’s Lemma, this means that there is a
1 ≤ i ≤ 15 so that Li is isomorphic to T/ν for a sublattice T of S and a
congruence ν of T.

It is easy to check that all the Li contain at least two sublattices iso-
morphic to N5. Notice that if t1/ν, t2/ν and t3/ν generate a sublattice
of T/ν isomorphic to N5, then there are elements t′1, t

′
2, t

′
3 ∈ T such that

t′j/ν = tj/ν for all j = 1, 2, 3, and t1, t2 and t3 generate a sublattice of T
isomorphic to N5. (If t1/ν < t3/ν in T/ν, then let t′3 be the smallest ele-
ment if the ν-class of t3, t

′
1 the largest element of t1/ν smaller than t′3, and

t′2 = t2.) Thus, T, and so L, contains at least two sublattices isomorphic
to N5. As we have seen, this means that there is an outer median of L.

• (3) ⇒ (1): If L is distributive, then OutMedL is trivial. Otherwise, TL has
only one element, denote it by {a, b, c} with a < c. Notice that if a < c′ < c,
then {a, b, c′} also generates a sublattice isomorphic to n5, contradicting the
assumption. Therefore a ≺ c, so the premitted interval of the only element
of TL is a two-element interval. Hence, |OutMedL| = 2.

□

3. The outer and inner medians of 6 element lattices

In this case, TM4
is a four-element antichain, containing abc, abd, acd, bcd. The

permittes interval of each of these triples is M4 itself. Hence, OutMedM4
∼= M4

4.
Each of the 3-generated sublattices of M4 is either distributive or isomorphic to

M3. Thus, InnMedM4
∼= InnMedM3

∼= 2.
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Figure 2. The lattice M4
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Figure 3. The lattice A1

The elements of TA1 are abd, cbd, acb and acd. Only the first two of these are
comparable. The permitted interval for abd and cbd is {a, c}, and for acb and acd
the whole A1. Thus, OutMedA1

∼= 3×A2
1.

The 3-generated sublattices of A1 generate the same variety as {M3,N5}. As
the inner medians of M3 and N5 are independent, InnMedA1

∼= InnMedM3 ×
InnMedN5

∼= 22.

a b

c d

Figure 4. The lattice A2

The elements of TA2
are abc, acd, abd and bcd. Only the first two and the last

two of these are comparable. The permitted interval for abc and acd is {a, c}, and
for abd and bcd it is {b, d}. Thus, OutMedA1

∼= 32.
As A2 generates the same variety as N5, InnMedA2

∼= InnMedN5
∼= 2.

TA2
is a chain containing the triples abd < acd < bcd, and the permitted intervals

of these triples are {a, b}, {a, b, c} and {b, c} in this order. This enables us to
calculate its outer median lattice, which will be an 8 element lattice.

As A3 generates the same variety as N5, InnMedA3
∼= InnMedN5

∼= 2.
TL4 is a three-element poset: it has smallest element abc with permitted interval

{0, a, b, d}, and two incomparable elements, acd and bcd with permitted intervals
{a, d} and {b, d}, respectively. The outer median lattice of L4 turns out to be
isomorphic to 32.
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Figure 5. The lattice A3 and its outer median lattice
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Figure 6. The lattices L4 and L5, and the poset TL4

The smallest and largest elements of L4, 0ab and ddd are necessarily inner me-
dians. Consider the term

t(x, y, z) :=
∧
π

(x ∨ (y ∧ (x ∨ z))),

As t(a, b, c) = 0 and t(a, c, d) = t(b, c, d) = d hold, t ensures that 0dd is an inner
median.

In L4, both {a, c, d} and {b, c, d} generate sublattices isomorphic to N5. An
inner median must act the same on both of these, so if must map either both or
neither to d. Hence, 0db, 0ad, bdb and aad are outer medians.

Finally, as L4 has an automorphism swapping a and b, and {a, b, c} is invari-
ant under this, any inner median must map {a, b, c} to an element fixed by this
automorphism. Therefore, bdd and add are outer medians, and InnMedL4

∼= 3.
As L5 is the dual of L5, OutMedL5

∼= 32 and InnMedL5
∼= 3.

a b c

a b c

Figure 7. The lattices B1 and B2
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By Proposition 9, OutMedB1
∼= OutMedB2

∼= OutMedM3
∼= M3, and by

Proposition 10, InnMedB1
∼= InnMedB2

∼= InnMedM3
∼= 2.

a
b

c
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b

c

Figure 8. The lattices B3 and B4

By Proposition 9, OutMedB3
∼= OutMedB4

∼= OutMedN5
∼= 2, and by Propo-

sition 10, InnMedB3
∼= InnMedB4

∼= InnMedN5
∼= 2.

Figure 9. The 6 element distributive lattices

These latices have trivial outer and inner median lattices.
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