
Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep
DOI: 10.1556/2062.yyyy.—–

GENERATING BOOLEAN LATTICES BY FEW ELEMENTS AND
A RELATED CRYPTOGRAPHIC PROTOCOL FOR

AUTHENTICATION

Gábor Czédli1

1 University of Szeged, Hungary, www.math.u-szeged.hu/~czedli/

Communicated by Handling Editor

Original Research Paper
Received: Month Day, Year • Accepted: Month Day, Year
© 2021 The Author(s)

ABSTRACT
Let Sp(𝑘) denote the number of the ⌊𝑘/2⌋-element subsets of a finite 𝑘-element set. We prove that the least size of a generating
subset of the Boolean lattice with 𝑛 atoms (or, equivalently, the powerset lattice of an 𝑛-element set) is the least number 𝑘
such that 𝑛 ≤ Sp(𝑘). Based on this fact and our 2021 protocol, which was based on equivalence lattices, we present a secret
key cryptographic protocol for authentication. We prove that the underlying mathematical problem of this protocol is hard
in the sense that if it belongs to the complexity class PPP then PPP equals NPNPNP.

KEYWORDS
Boolean lattice, generating set, cryptography, secret key, smallest generating set,NPNPNP-complete, averageNPNPNP-complete, authentication, Vernam cipher.

MATHEMATICS SUBJECT CLASSIFICATION (2020)
Primary 06D99; Secondary 94A62, 94A60, 68Q25 July 25, 2023

1. INTRODUCTION
1.1. Targeted readership
This paper targets a large readership. Indeed, those familiar with the concept of a Boolean lattice
and that of NPNPNP-completeness should have no difficulty in reading the results 1 and even most other
parts of the paper. Most of the exceptions, which need a little familiarity with lattices or universal
algebra, occur in Subsection 1.3. This short subsection surveys how a series of lattice theoretic
investigations lead to the present paper, which could be interesting outside lattice theory and even
outside mathematics.

1.2. Our goal
As usual, ℕ+ = {1, 2,… } stands for the set of positive integers. For 𝑛 ∈ ℕ+, let B𝑛 = (B𝑛; ∨, ∧)
be the Boolean lattice with 𝑛 atoms. Note that B𝑛 is isomorphic to (and so it can be defined as)

1 Technical Editor: My system has several problems with fonts. I could not use italic under the documentclass MathPannX;
dark magenta texts should be italic or slanted. Similarly, AAA andMMM should be in \mathcal font while PPP and NPNPNP in \textbf.

http://www.math.u-szeged.hu/~czedli/

2 Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep

the powerset lattice (𝑃({1,… , 𝑛}); ∪, ∩), whence |B𝑛| = 2𝑛. A subset 𝑋 of B𝑛 is a generating set of
B𝑛 if no proper subset of B𝑛 is closed with respect to join (∨) and meet (∧). In Theorem 2.1, we
are going to determine the smallest 𝑘 ∈ ℕ+ such that B𝑛 has a 𝑘-element generating set. Section
3, which is a computer-assisted, indicates that if 𝑘′ > 𝑘 but 𝑘′ is still small, then B𝑛 has many
𝑘′-element generating sets. Based on the plenty of these generating sets, Section 4 outlines a secret
key cryptographic protocol for authentication. Section 5 shows that the underlying problem of this
protocol is hard in the sense that if it belongs to the complexity class PPP then PPP equals NPNPNP. Finally,
Section 6 warns the reader that this connection with NPNPNP does not guarantee security in itself and,
on the positive side, Section 6 shows some perspectives.

1.3. A historical mini-survey
From the author’s perspective, the story started with Zádori [26], who gave a new proof of a result
of Strietz [22]–[23] asserting that the equivalence lattice Equ(𝐴) (consisting of all equivalences of
𝐴) has a 4-element generating set provided that 𝐴 is a finite set and |𝐴| ≥ 3. For short, we say that
Equ(𝐴) is 4-generated for these finite sets 𝐴. In the next step, based on Zádori’s method, Chajda
and Czédli [3] proved that the lattices Quo(𝐴) of all quasiorders (AKA preorders) of these finite sets
𝐴 and even some infinite sets 𝐴 are 6-generated; in fact, they are 3-generated if we add the unary
operation 𝜌 ↦ 𝜌−1 = {(𝑦, 𝑥) ∶ (𝑥, 𝑦) ∈ 𝜌} of forming inverses to the set {⋁,⋀} of infinitary lattice
operations. Next, Czédli [5] extended Zádori’s result to Equ(𝐴) with |𝐴| = ℵ0. Furthermore, Czédli
[4, 6] and Takách [24] proved that Equ(𝐴) and Quo(𝐴) are 4-generated and 6-generated, respectively,
provided that 𝐴 is an infinite set and there is no inaccessible cardinal 𝜆 such that 𝜆 ≤ |𝐴|. Moreover,
the 1999 paper Czédli [6] proved that Equ(𝐴) has a 4-element non-antichain generating set for these
sets 𝐴. Note that Kuratowski [17] gave a model of ZFC in which there is no inaccessible cardinal at
all.

Around 1999, Vilmos Totik proved that our methods are insufficient to deal with inaccessible
cardinals. Hence, the topic was put aside after the 1999 paper Czédli [6], and it is still an open
problem whether Equ(𝐴) and Quo(𝐴) are finitely generated (as complete lattices) if there exists an
inaccessible cardinal ≤ |𝐴|.

The research started again in 2015, when Dolgos [13], one of Miklós Maróti’s students, proved
that Quo(𝐴) is 5-generated for |𝐴| ≤ ℵ0, and Kulin [16] extended this result to all sets |𝐴| such
that there is no inaccessible cardinal 𝜆 ≤ |𝐴|. Not much later, Czédli [7] and Czédli and Kulin [10]
reduced the number of generators by proving that for all sets 𝐴 such that |𝐴| ≠ 4 and there is no
inaccessible cardinal 𝜆 ≤ |𝐴|, the complete lattice Quo(𝐴) is 4-generated. The case |𝐴| = 4 is still
open but the result was optimal for many other sets, as [7] proved that Quo(𝐴) is not 3-generated if
|𝐴| ≥ 3. Finding 4-element generating sets that are not antichains is more difficult but, after Strietz
[22]–[22] and Zádori [26], some sporadic cases have recently been settled in Ahmed and Czédli [1]
and Czédli and Oluoch [11].

In 2020, it appeared that the technique developed for infinite sets is appropriate to show that
even some direct powers and products of some finite equivalence lattices are 4-generated and
(consequently) Equ(𝐴) and Quo(𝐴) have very many 4-element generating sets if |𝐴| is a large finite
number; see Czédli [8] and Czédli and Oluoch [11]. Based on the abundance of the generating sets
found in the just mentioned two papers, Czédli [8] in 2021 suggested a protocol (the 2021 protocol
for short) for authentication and cryptography based on lattices. Quite recently, while looking for
small generating sets of some filters of quasiorder lattices, a proof in Czédli [9] required to know
the smallest size of a generating set of a finite Boolean lattice; this was the immediate motivation
for the present paper.

2. SMALL GENERATING SETS OF FINITE BOOLEAN LATTICES
For 𝑛 ∈ ℕ+, we introduce the notation

Sp(𝑛) ∶= (
𝑛

⌊𝑛/2⌋)
(2.1)

Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep 3

where ⌊𝑛/2⌋ is the (lower) integer part of 𝑛/2. For example,

Sp(32) = 601 080 390 and Sp(33) = 1 166 803 110. (2.2)

The notation Sp comes from “Sperner”; see later. For 𝑛 ∈ ℕ+, let LASp(𝑛) be the smallest 𝑘 ∈ ℕ+

such that 𝑛 ≤ Sp(𝑘). Note the rule: 𝑛 ≤ Sp(𝑘) ⟺ LASp(𝑛) ≤ 𝑘; this explains the acronym, which
comes from “Left Adjoint of Sp".
THEOREM 2.1. For 𝑛, 𝑘 ∈ ℕ+, B𝑛 has an at most 𝑘-element generating set if and only if 𝑛 ≤ Sp(𝑘) or,
equivalently, if and only if LASp(𝑛) ≤ 𝑘. In particular, LASp(𝑛) is the smallest possible size of a
generating set of B𝑛.

For example, this theorem together with (2.2) give that B1 000 000 000 is 33-generated but not 32-
generated.
Proof. Let At(B𝑛) be the set of atoms of B𝑛. As usual, for an element 𝑢 of a lattice 𝐿, ↓𝑢 and ↑𝑢 will
stand for {𝑥 ∈ 𝐿 ∶ 𝑥 ≤ 𝑢} and {𝑥 ∈ 𝐿 ∶ 𝑥 ≥ 𝑢}, respectively. First, we show that for any subset 𝑌 of
B𝑛

if 𝑌 generates B𝑛 and 𝑎 ∈ At(B𝑛), then 𝑎 = ⋀(𝑌 ∩ ↑𝑎). (2.3)

As 𝑌 , say 𝑌 = {𝑏1,… , 𝑏𝑚}, generates B𝑛 and B𝑛 is distributive, 𝑎 = 𝑡(𝑏1,… , 𝑏𝑚) for an𝑚-ary disjunctive
normal form, that is, 𝑎 is the join of meets of elements of 𝑌 . But 𝑎 is join-irreducible, whereby it is
the meet of some elements of 𝑌 . This shows the “≥” part of (2.3). The “≤” is trivial, and we have
proved (2.3).

Next, we claim that for any subset 𝐺 of B𝑛,

if 𝐺 generates B𝑛 and 𝑘 = |𝐺|, then 𝑛 ≤ Sp(𝑘). (2.4)

To show this, assume that 𝐺 is a 𝑘-element generating set of B𝑛. Let 𝑋 be a 𝑘-element set and denote
by FS∧(𝑋) the meet-semilattice freely generated by 𝑋 . Denote by 𝑀 the meet-subsemilattice of
(B𝑛; ∧) generated by 𝐺. Pick a bijective map 𝑓0 ∶ 𝑋 → 𝐺. The freeness of FS∧(𝑋) allows us to extend
𝑓0 to a meet-homomorphism 𝑓 ∶ FS∧(𝑋) → 𝑀 , which is surjective since 𝑓 (𝑋) = 𝐺 generates 𝑀 .
By (2.3), At(B𝑛) ⊆ 𝑀 . This together with the surjectivity of 𝑓 allow us to take an injective map
𝑔 ∶ At(B𝑛) → FS∧(𝑋) such that, for all 𝑎 ∈ At(B𝑛), 𝑓 (𝑔(𝑎)) = 𝑎. If we had that 𝑔(𝑎) ≤ 𝑔(𝑎′) for
distinct 𝑎, 𝑎′ ∈ At(B𝑛), then 𝑔(𝑎) = 𝑔(𝑎) ∧ 𝑔(𝑎′) would lead to 𝑎 = 𝑓 (𝑔(𝑎)) = 𝑓 (𝑔(𝑎) ∧ 𝑔(𝑎′)) =
𝑓 (𝑔(𝑎)) ∧ 𝑓 (𝑔(𝑎′)) = 𝑎 ∧ 𝑎′, yielding that 𝑎 ≤ 𝑎′ and contradicting that 𝑎 and 𝑎′ are distinct atoms
of B𝑛. Therefore 𝑔(𝑎) ∥ 𝑔(𝑎′), that is, 𝑔(At(B𝑛)) is an 𝑛-element antichain in FS∧(𝑋). Adding a top
element to FS∧(𝑋), we obtain another semilattice, {1} ∪ FS∧(𝑋). We know from the folklore or from
McKenzie, McNulty, and Taylor [19, Page 240, §4] that {1} ∪ FS∧(𝑋) is order isomorphic to B|𝑋 | = B𝑘 .
So B𝑘 has an 𝑛-element antichain. By Sperner’s theorem [21], see also Grätzer [15, page 354], any
antichain in B𝑘 has at most Sp(𝑘) elements. This implies (2.4) and the “only if” part of the theorem.

Next, observe that

for any 𝑚 ≤ 𝑛 ∈ ℕ+, B𝑚 is a homomorphic image of B𝑛. Therefore, if B𝑛 has
an at most 𝑘-element generating set, then so does B𝑚.

}
(2.5)

It suffices to show the first part for 𝑚 = 𝑛 − 1. Let 𝑐 be a coatom (that is, a lower cover of 1) in B𝑛.
Then ↓𝑐 ≅ B𝑚. The function 𝑓 ∶ B𝑛 → ↓𝑐 defined by 𝑥 ↦ 𝑐 ∧ 𝑥 is a homomorphism by distributivity.
As 𝑥 = 𝑓 (𝑥) for each 𝑥 ∈ ↓𝑐, we conclude (2.5).

Next, to show the “if” part of the theorem, assume that 𝑛 ≤ Sp(𝑘); we are going to show that
B𝑛 has an at most 𝑘-element generating set. Based on (2.5), we can assume that 𝑛 = Sp(𝑘). As B𝑘
is isomorphic to the powerset lattice (𝑃({1,… , 𝑘}); ∪, ∩) and the ⌊𝑘/2⌋-element subsets of {1,… , 𝑘}
form an 𝑛 = Sp(𝑘)-element antichain in (𝑃({1,… , 𝑘}); ∪, ∩), it follows that B𝑘 has an 𝑛-element
antichain 𝐻 . As (𝑃(𝐻); ∪, ∩) ≅ B𝑛, it suffices to find a 𝑘-element generating set of the powerset
lattice 𝑃(𝐻) = (𝑃(𝐻); ∪, ∩). For each 𝑎 ∈ At(B𝑘), we let 𝑋𝑎 ∶= 𝐻 ∩ ↑𝑎. Then 𝑋𝑎 ∈ 𝑃(𝐻) and
𝐺 ∶= {𝑋𝑎 ∶ 𝑎 ∈ At(B𝑘)} is an at most 𝑘-element subset of 𝑃(𝐻). To show that 𝐺 generates 𝑃(𝐻), it
suffices to show that for every ℎ ∈ 𝐻 ,

{ℎ} = ⋂{𝑋𝑎 ∶ 𝑎 ∈ At(B𝑘) ∩ ↓ℎ}. (2.6)

4 Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep

For every 𝑎 ∈ At(B𝑘) ∩ ↓ℎ, we have that ℎ ∈ 𝐻 ∩ ↑𝑎 = 𝑋𝑎, showing the “⊆” part of (2.6). Now assume
that ℎ′ ∈ 𝐻 belongs to the intersection in (2.6). Then ℎ′ ∈ 𝑋𝑎 for every 𝑎 ∈ At(B𝑘) such that 𝑎 ≤ ℎ.
Writing this in a more useful way,

(∀𝑎 ∈ At(B𝑘)) (𝑎 ≤ ℎ ⇒ 𝑎 ≤ ℎ′), that is, At(B𝑘) ∩ ↓ℎ ⊆ At(B𝑘) ∩ ↓ℎ′.

Hence, using that each element of B𝑘 is the join of all atoms below it, ℎ = ⋁(At(B𝑘) ∩ ↓ℎ) ≤
⋁(At(B𝑘) ∩ ↓ℎ′) = ℎ′. But ℎ, ℎ′ ∈ 𝐻 and 𝐻 is an antichain, whereby ℎ ≤ ℎ′ gives that ℎ′ = ℎ ∈ {ℎ},
showing the “⊇” part of (2.6). Therefore, (2.6) and the “if” part of the theorem hold. □
COROLLARY 2.2. If 2 ≤ 𝑘 ∈ ℕ+ and 𝑛 ≤ Sp(𝑘), then the free distributive lattice FD(𝑘) has a sublattice
isomorphic to B𝑛.
Proof. As B𝑚 is a sublattice of B𝑛 for any 𝑚 ≤ 𝑛, we can assume that 𝑛 = Sp(𝑘). Theorem 2.1 yields a
surjective homomorphism 𝑓 ∶ FD(𝑘) → B𝑛. Let ℎ∶ B𝑛 → B𝑛 be the identity map (defined by 𝑥 ↦ 𝑥
for 𝑥 ∈ B𝑛). Since B𝑛 is projective in the class of all distributive lattices by Balbes [2, Theorem
7.1(i),(iii’)], there is a homomorphism 𝑔 ∶ B𝑛 → FD(𝑘) such that 𝑓 𝑔 = ℎ. As the product ℎ is injective,
so is 𝑔 . Thus, 𝑔(B𝑛) ≅ B𝑛 and 𝑔(B𝑛) is a required sublattice of FD(𝑘). □

3. THE ABUNDANCE OF SMALL GENERATING SETS OF FINITE BOOLEAN LATTICES
We call a 𝑘-dimensional vector ℎ⃗ = (ℎ1,… , ℎ𝑘) a generating vector of B𝑛 if the set {ℎ1,… , ℎ𝑘} of its
components is a generating set of B𝑛. Here |{ℎ1,… , ℎ𝑘}| ≤ 𝑘 and no equality is required. If 𝑘 < 𝑛, then
𝑘 is much smaller than |B𝑛| = 2𝑛, whereby the components of a randomly chosen 𝑘-dimensional
vector from B𝑘

𝑛 are pairwise distinct with high probability. Therefore, the ratio of the 𝑘-element
generating sets to all 𝑘-element subsets of B𝑛 is close to the ratio of the 𝑘-dimensional generating
vectors to all 𝑘-dimensional vectors belonging to B𝑘

𝑛.
A computer program,written by the author and available from his website, counted the generating

vectors of B1000 among one hundred thousand randomly selected 𝑘-dimensional vectors for some 𝑘.
Some of the results are given below while some others in arXiv:2303.10790, the extended version of
the present paper.
n=1000 k=40 Tested:100000 Generating: 42; 506.867 seconds.
n=1000 k=50 Tested:100000 Generating: 59003; 1305.780 seconds.
n=1000 k=80 Tested:100000 Generating: 99990; 2647.147 seconds.
n=1000 k=90 Tested:100000 Generating: 99999; 2974.364 seconds.
n=1000 k=100 Tested:100000 Generating:100000; 3265.869 seconds.

Thus, we conjecture that a random member of B50
1000 is a 50-dimensional generating vector of B1000

with probability at least 1/2. Note that LASp(1000) = 13.

4. A CRYPTOGRAPHIC PROTOCOL FOR AUTHENTICATION
In this section, we outline how to tailor the 2021 protocol, see Czédli [8], from equivalence lattices
to Boolean lattices. We only present the main ideas here; the extended version of the paper contains
further (mostly straightforward) details.

In our model, Kati2 communicates with her Bank online. They agree upon a secret key, which
only Kati and her Bank know. Let, say, 𝑘 = 50, 𝑛 = 1000, and 𝑏 = 100. The secret key is a randomly
selected 𝑘-dimensional generating vector ℎ⃗ = (ℎ1,… , ℎ𝑘) of B𝑛. It follows from Section 3 that a
computer program can find such an ℎ⃗ in less than a second. In case of authentication, which means
that Kati wants to prove her identity to the Bank, Kati requests a random vector 𝑝 = (𝑝1,… , 𝑝𝑏) of
𝑘-ary lattice terms from the Bank. Then

the Bank generates such a random vector 𝑝,
sends 𝑝 to Kati, Kati computes �⃗� ∶= 𝑝(ℎ⃗) =
(𝑝1(ℎ⃗),… , 𝑝𝑏(ℎ⃗)) and sends it to the Bank, and
the Bank checks whether �⃗� equals 𝑝(ℎ⃗).

(4.1)

2 The Hungarian variant of “Cathy” and “Kate”.

http://arxiv.org/abs/2303.10790

Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep 5

Changing their roles, the Bank can also prove its identity upon Kati’s request. Note that 𝑝(ℎ⃗) can be
used as a secret key in various cryptographic protocols including Vernam’s cipher, see the extended
version of the paper, but here we focus only on authentication. There is an Adversary who not
only eavesdrops on the communication channel and intercepts messages but he can also modify
messages and send his own messages pretending as if he was Kati or the Bank.

In (4.1), �⃗� can take |B𝑛|𝑏 = 2𝑛𝑏 many values. If 𝑛𝑏 is small, then a random �⃗� equals 𝑝(ℎ⃗) with
probability 2−𝑛𝑏, which cannot be neglected. So if 𝑛𝑏 is small, then the Adversary can experiment
with a random �⃗� and he succeeds in breaking the protocol too often. In particular, we note for later
reference that

if 𝑛 = 1 and 𝑏 = 2, then, on average, the Adversary can
break the protocol in every fourth step. (4.2)

5. THE UNDERLYING PROBLEM IS HARD
For 𝑛 = 1000 and 𝑏 = 100, the Adversary has no chance to find �⃗� for (4.1) by random choices
in his lifetime. Solving the underlying problem seems to be the only way for him. That is, from
and intercepted pair (𝑝, �⃗� = 𝑝(ℎ⃗)), he should find (at least one) ℎ⃗. (Intercepting several such pairs
corresponds to enlarging 𝑏 and does not help.)

As in Section 4, we will assume that 𝑛, 𝑘, 𝑏 ∈ ℕ+, 𝑝 is a 𝑏-dimensional vector of 𝑘-ary lattice
terms, and �⃗� ∈ B𝑏

𝑛. Writing 𝑥 = (𝑥1,… , 𝑥𝑘) instead of ℎ⃗ ∈ B𝑘
𝑛, the underlying problem of protocol

(4.1) is this:

CPr(𝑛, 𝑏) ∶
given an input 𝑝(𝑥) = �⃗� with �⃗� ∈ B𝑏

𝑛, find a solution of the
equation 𝑝(𝑥) = �⃗� for the unknown 𝑥 ∈ B𝑘

𝑛 in those cases where
there exists a solution.

(5.1)

With the same meaning of 𝑛, 𝑘, 𝑏, 𝑝, and �⃗�, we also define a related decision problem:

DPr(𝑛, 𝑏) ∶ given an input𝑝(𝑥) = �⃗�with �⃗� ∈ B𝑏
𝑛, decide whether the equation

𝑝(𝑥) = �⃗� has a solution in B𝑘
𝑛 for the unknown 𝑥 . (5.2)

The acronyms CPr and DPr come from “Construction Problem” and “Decision Problem”, respectively.
Let size(𝑝(𝑥) = �⃗�) and size(ℎ⃗) denote the size of 𝑝(𝑥) = �⃗� and that of ℎ⃗, respectively; these sizes are
the numbers of bits in (the usual) binary representations of 𝑝(𝑥) = �⃗� and ℎ⃗.

There are many books and papers dealing with the widely known concept of the complexity
classes PPP and NPNPNP; some of them will be cited later but even Wikipedia is sufficient for us. However,
PPP, NPNPNP, and NPNPNP-completeness are usually about decision problems while CPr(𝑛, 𝑏) in (5.1) is not such.
There is another difference: while we require an answer for each input string in case of a decision
problem, this is not so in case of CPr(𝑛, 𝑏). These circumstances constitute our excuse that we neither
define what the NPNPNP-completeness of CPr(𝑛, 𝑏) could mean nor we know whether CPr(𝑛, 𝑏) would
have such a property (as we would experience difficulty with a suitable replacement of AAA1(𝑑) later
in the proof). However, we can safely agree to the following terminology:

CPr(𝑛, 𝑏), given in (5.1), belongs to PPP def⟺ there are an algorithmAAA(𝑛, 𝑏)
and a polynomial 𝑓 (𝑛,𝑏) such that for every input equation 𝑝(𝑥) = �⃗� of
CPr(𝑛, 𝑏), if 𝑝(𝑥) = �⃗� has a solution, then AAA(𝑛, 𝑏) finds one of its solutions in
(at most) 𝑓 (𝑛,𝑏)(size(𝑝(𝑥) = �⃗�)) steps.

(5.3)

The algorithm and the polynomial depend on the parameters 𝑛 and 𝑏. We could have written “time”
instead of “steps”. Later, we will always omit “(at most)”.

We have the following statement, in which 𝑏 denotes the dimension of 𝑝.
PROPOSITION 5.1. For 2 ≤ 𝑏 ∈ ℕ+ and 𝑛 ∈ ℕ+, if CPr(𝑛, 𝑏), defined in (5.1), belongs to the complexity
class PPP in the sense of (5.3), then PPP is equal to NPNPNP.

Even if the famous “is PPP equal toNPNPNP?” problem is, unexpectedly, solved affirmatively in the future,
the proof below will still say something on the difficulty of CPr(𝑛, 𝑏).

https://en.wikipedia.org/wiki/NP-completeness

6 Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep

Proof. In the whole proof, we assume that 2 ≤ 𝑏 ∈ ℕ+, 𝑛 ∈ ℕ+, and CPr(𝑛, 𝑏) belongs to PPP.
In principle, we should have written “Turing machine” in (5.3) rather than “algorithm”3. Fortu-

nately, the algorithms in the proof (which are clearly equivalent to usual computer programs) can
be simulated by Turing machines and this simulation preserves the property “being in PPP”; see, for
example, Theorem 17.4 in Rich [20]. By the same theorem, for 𝑛′ computer steps4 (and for 𝑛′ steps
in our mind), the simulating Turing machine needs (𝑂(𝑛′))6 steps. Therefore, we will mostly speak
of polynomials without specifying their degrees even when a sub-algorithm is clearly linear (or
even better) in our mind, that is, for our computers. For example,

for each fixed 𝑑 ∈ ℕ+, there are a polynomial 𝑓 (𝑑)
1 and an algorithm AAA1(𝑑) such

that, for each 𝜉 ∈ ℕ+, AAA1(𝑑) computes and stores 𝜉𝑑 in 𝑓 (𝑑)
1 (𝜉) steps.

(5.4)

Clearly, there are polynomials 𝑓 (𝑛,𝑏)
2 and 𝑓3 and algorithms AAA2(𝑛, 𝑏) and AAA3 such that for all inputs

𝑝(𝑥) = �⃗�, as in (5.1), and ℎ⃗ ∈ B𝑘
𝑛,

AAA2(𝑛, 𝑏) decides in 𝑓 (𝑛,𝑏)
2 (size(𝑝(𝑥) = �⃗�) + size(ℎ⃗)) steps

whether ℎ⃗ is a solution of 𝑝(𝑥) = �⃗�, and
(5.5)

AAA3 computes and stores the number size(𝑝(𝑥) = �⃗�) in
𝑓3(size(𝑝(𝑥) = �⃗�)) steps.

(5.6)

LetAAA(𝑛, 𝑏) and 𝑓 (𝑛,𝑏) be chosen according to (5.3). We can assume that 𝑓 (𝑛,𝑏) is of the form 𝑓 (𝑛,𝑏)(𝜉) =
𝜉𝑑(𝑛,𝑏) for some 𝑑(𝑛, 𝑏) ∈ ℕ+. Then AAA(𝑛, 𝑏) halts in (size(𝑝(𝑥) = �⃗�))𝑑(𝑛,𝑏) steps for any solvable
input 𝑝(𝑥) = �⃗� but we do not know what AAA(𝑛, 𝑏) does and whether it ever halts at other inputs.
Using (5.4)–(5.6), we define another algorithm BBB(𝑛, 𝑏) as follows. The input of BBB(𝑛, 𝑏) is an equation
𝑝(𝑥) = �⃗� from (5.2); let 𝑠 ∶= size(𝑝(𝑥) = �⃗�). The first task of BBB(𝑛, 𝑏) is to save a copy of 𝑝(𝑥) = �⃗�;
this needs 𝑓0(𝑠) steps where 𝑓0 is a polynomial not depending on the parameters 𝑛 and 𝑏 and the
input 𝑝(𝑥) = �⃗�. The second part of BBB(𝑛, 𝑏) is AAA3, which borrows the input 𝑝(𝑥) = �⃗� from BBB(𝑛, 𝑏) and
puts 𝑠 to the output stream in 𝑓3(𝑠) steps. The next part of BBB(𝑛, 𝑏) is AAA1(𝑑(𝑛, 𝑏)), which considers
the output of AAA3 as an input and puts 𝑓 (𝑛,𝑏)(𝑠) = 𝑠𝑑(𝑛,𝑏) into a (counter) variable 𝑐 in 𝑓 (𝑑(𝑛,𝑏))

1 (𝑠) steps.
Then BBB(𝑛, 𝑏) performs the steps of AAA(𝑛, 𝑏) and the “(𝛼)–(𝛿)-strides” given below alternately. (Here a
“stride” means a finite sequence of steps, possibly just one step.) After the first AAA(𝑛, 𝑏)-step, BBB(𝑛, 𝑏)
performs the following strides.

(𝛼) BBB(𝑛, 𝑏) decreases 𝑐 by 1.
(𝛽) BBB(𝑛, 𝑏) verifies whether 𝑐 = 0.
(𝛾) BBB(𝑛, 𝑏) checks whether AAA(𝑛, 𝑏) has halted.
(𝛿) If 𝑐 = 0 orAAA(𝑛, 𝑏) has halted then, using the saved copy of 𝑝(𝑥) = �⃗�,BBB(𝑛, 𝑏) executesAAA2(𝑛, 𝑏)

to verify whether the output of AAA is a solution of 𝑝(𝑥) = �⃗�. If AAA2(𝑛, 𝑏) terminates with
“yes”, then BBB(𝑛, 𝑏) outputs “yes, the equation is solvable” and halts. Otherwise, if AAA2(𝑛, 𝑏)
terminates with “no”, then BBB(𝑛, 𝑏) outputs “no, the equation is not solvable” and halts.

After these (𝛼)–(𝛿)-strides, the next AAA(𝑛, 𝑏)-step is performed, then the (𝛼)–(𝛿)-strides again, etc.
The kernel of the (𝛿)-stride is its part following the premise “if 𝑐 = 0 or AAA(𝑛, 𝑏) has halted”; this
kernel is performed only once. As 𝑐 ≤ 𝑠𝑑(𝑛,𝑏), there is a polynomial 𝑓 (𝑛,𝑏)

4 , not depending on the input
of BBB(𝑛, 𝑏), such that each of the (𝛼)–(𝛾)-strides can be done in 𝑓 (𝑛,𝑏)

4 (𝑠) many steps and, furthermore,
the same holds for every AAA-step (since it is only a one-step stride) and for the condition part of
(𝛿). The AAA-step, (𝛼), (𝛽), (𝛾), and the premise of (𝛿) are performed 𝑓 (𝑛,𝑏)(𝑠) = 𝑠𝑑(𝑛,𝑏) times, each. The
kernel of the (𝛿)-part, which is performed only once, is the same as AAA2(𝑛, 𝑏). The input ofAAA2(𝑛, 𝑏) in
this case is (the saved copy of) 𝑝(𝑥) = �⃗� (of size 𝑠) together with ℎ⃗, taken from the output stream of
AAA(𝑛, 𝑏). (Even if AAA(𝑛, 𝑏) does not halt, there is a memory space — or, in case of a Turing machine,
there is an output tape — where ℎ⃗ is expected when it exists.) As an element of B𝑛 can be stored in 𝑛

3 and “input string” rather than “input equation”, but this distinction would not make an essential difference as the syntax
of the input string can be checked in polynomial time.

4 We can think of the commands in low-level computer programming languages but not of compound commands like
“NextPrimeAbove(n)” of “InvertMatrix(A)” in high-level programming languages.

Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep 7

bits, size(ℎ⃗) = 𝑛𝑘. Here 𝑛 is a constant and 𝑘 ≤ 𝑠 since 𝑥 has 𝑘 components that occur in 𝑝 = (𝑥) = �⃗�.
Hence, size(ℎ⃗) ≤ 𝑛𝑠, whereby AAA2(𝑛, 𝑏) decides in 𝑓 (𝑛,𝑏)

2 (𝑠 + 𝑛𝑠) = 𝑓 (𝑛,𝑏)
2 ((𝑛 + 1)𝑠) steps whether the

output of AAA(𝑛, 𝑏) is a solution of our equation. Therefore, BBB(𝑛, 𝑏) halts after

𝑔 (𝑛,𝑏)(𝑠) ∶= 𝑓0(𝑠) + 𝑓3(𝑠) + 𝑓 (𝑑(𝑛,𝑏))
1 (𝑠) + 𝑓 (𝑛,𝑏)(𝑠) ⋅ 𝑓 (𝑛,𝑏)

4 (𝑠) + 𝑓 (𝑛,𝑏)
2 ((𝑛 + 1)𝑠) (5.7)

steps. As we treat the parameters 𝑛 and 𝑏 as constants, 𝑔 (𝑛,𝑏) is a univariate polynomial. Since the
simulatedAAA finds any solution before the counter 𝑐 becomes 0,BBB correctly decides whether 𝑝(𝑥) = �⃗�
has a solution or not. That is, BBB solves DPr(𝑛, 𝑏). We have seen that 𝑔 (𝑛,𝑏) in (5.7) is a polynomial,
whereby

DPr(𝑛, 𝑏), defined in (5.2), is in PPP, and BBB(𝑛, 𝑏) solves it in 𝑔 (𝑛,𝑏)(input size) steps. (5.8)

As the next step of the proof, we focus on another problem. An input of the 3-colorability problem
is a finite graph 𝐺 = ({1,… , 𝑡}, 𝐸), where 𝑡 ∈ ℕ+ and the edge set 𝐸 consists of some two-element
subsets of {1,… , 𝑡}. By a 3-coloring we mean a sequence 𝐶1, 𝐶2, . . . , 𝐶𝑡 of nonempty subsets of
{𝑟 , 𝑤, 𝑔} ∶= {red, white, green} such that whenever {𝑖, 𝑗} ∈ 𝐸, then 𝐶𝑖 ∩ 𝐶𝑗 = ∅. (This is equivalent to
the original definition, where each vertex has exactly one color since we can change a color 𝜉 to {𝜉}
and, in the converse direction, we can take the lexicographically first element of each nonempty
subset of {𝑟 , 𝑤, 𝑔}.)

To reduce the 3-colorability problem to problem DPr(𝑛, 𝑏), let 𝐺 be the graph from the previous
paragraph, and let 𝑠𝐺 ∶= size(𝐺). Let 𝑟1, 𝑤1, 𝑔1, . . . , 𝑟𝑡 , 𝑤𝑡 , 𝑔𝑡 be variables; their task is to determine a
3-coloring. These 𝑘 ∶= 3𝑡 variables form the components of a vector denoted by 𝑥 . For each vertex
𝑣 ∈ {1,… , 𝑡} and each edge {𝑖, 𝑗} ∈ 𝐸, consider the 𝑘-ary lattice terms

𝑎𝑣(𝑥) ∶= 𝑟𝑣 ∨ 𝑤𝑣 ∨ 𝑔𝑣 and 𝑏𝑖𝑗 (𝑥) ∶= (𝑟𝑖 ∧ 𝑟𝑗) ∨ (𝑤𝑖 ∧ 𝑤𝑗) ∨ (𝑔𝑖 ∧ 𝑔𝑗). (5.9)

For 𝑚 ∈ {2,… , 𝑡}, let

𝑝1 ∶= ⋀{𝑎𝑣(𝑥) ∶ 𝑣 ∈ {1,… , 𝑡}} and 𝑝𝑚 ∶= ⋁{𝑏𝑖𝑗 (𝑥) ∶ {𝑖, 𝑗} ∈ 𝐸}, (5.10)

𝑝 ∶= (𝑝1,… , 𝑝𝑡), and �⃗� = (𝑢1,… , 𝑢𝑡) ∶= (1, 0,… , 0), where5 0 = 0B𝑛 and 1 = 1B𝑛 . We claim that

𝑝(𝑥) = �⃗� has a solution in B𝑘
𝑛 if and only if 𝐺 is 3-colorable. (5.11)

To see this, assume that 𝐶1, . . . , 𝐶𝑡 are color sets witnessing that 𝐺 is 3-colorable. For 𝑣 ∈ {1,… , 𝑡},
let 𝑟𝑣 ∶= 1 ⟺ 𝑟 ∈ 𝐶𝑣 , 𝑤𝑣 ∶= 1 ⟺ 𝑤 ∈ 𝐶𝑣 , and 𝑔𝑣 ∶= 1 ⟺ 𝑔 ∈ 𝐶𝑣 . If a variable is
not 1, then let it be 0. Clearly, these assignments yield a solution in B𝑘

𝑛 of 𝑝(𝑥) = �⃗�. Conversely,
assume that 𝑝(𝑥) = �⃗� has a solution 𝑥′ = (𝑟 ′1, 𝑤′

1, 𝑔 ′1,… , 𝑟 ′𝑡 , 𝑤′
𝑡 , 𝑔 ′𝑡) ∈ B𝑘

𝑛 for the unknown 𝑥 , and
fix an atom 𝑒 in B𝑛. For each 𝑣 ∈ {1,… , 𝑡}, define 𝐶𝑣 ⊆ {𝑟 , 𝑤, 𝑔} by the rules 𝑟 ∈ 𝐶𝑣 ⟺ 𝑒 ≤ 𝑟 ′𝑣 ,
𝑤 ∈ 𝐶𝑣 ⟺ 𝑒 ≤ 𝑤′

𝑣 , and 𝑔 ∈ 𝐶𝑣 ⟺ 𝑒 ≤ 𝑔 ′𝑣 . For any 𝑣 ∈ {1,… , 𝑡}, 𝑝1(𝑥′) = 𝑢1 = 1 and (5.10)
give that 𝑒 ≤ 1 = 𝑝1(𝑥′) ≤ 𝑎𝑣(𝑥′) = 𝑟 ′𝑣 ∨ 𝑤′

𝑣 ∨ 𝑔 ′𝑣 . Using the well-known fact that every atoms
(and, in fact, any join-irreducible element) in a finite distributive lattice is join-prime, we obtain
that at least one of the inequalities 𝑒 ≤ 𝑟 ′𝑣 , 𝑒 ≤ 𝑤′

𝑣 , and 𝑒 ≤ 𝑔 ′𝑣 holds, whereby 𝐶𝑣 is nonempty.
For {𝑖, 𝑗} ∈ 𝐸, 𝑝2(𝑥′) = 𝑢2 = 0 and (5.10) give that (𝑟 ′𝑖 ∧ 𝑟 ′𝑗) ∨ (𝑤′

𝑖 ∧ 𝑤′
𝑗) ∨ (𝑔 ′𝑖 ∧ 𝑔 ′𝑗) = 0. Hence,

𝑟 ′𝑖 ∧ 𝑟 ′𝑗 = 𝑤′
𝑖 ∧ 𝑤′

𝑗 = 𝑔 ′𝑖 ∧ 𝑔 ′𝑗 = 0. If, say, we had that 𝑟 ∈ 𝐶𝑖 ∩ 𝐶𝑗 , then 𝑒 ≤ 𝑟 ′𝑖 and 𝑒 ≤ 𝑟 ′𝑗 would lead to
𝑒 ≤ 𝑟 ′𝑖 ∧ 𝑟 ′𝑗 = 0, a contradiction. Hence, 𝑟 ∉ 𝐶𝑖 ∩ 𝐶𝑗 , and similarly for the colors 𝑤 and 𝑔 , showing
that 𝐶𝑖 ∩ 𝐶𝑗 = ∅. So 𝐶1,… , 𝐶𝑡 witness that 𝐺 is 3-colorable, and we have shown (5.11).

Let 𝑠𝐺 ∶= size(𝐺) and 𝑠 stand for the size of 𝐺 and, complying with the earlier notation, the size
of the equation in (5.11), respectively. It is not hard to see that there are polynomials 𝜇 and 𝜂 not
depending on 𝐺 such that 𝑝(𝑥) = �⃗� can be constructed from 𝐺 in 𝜂(𝑠𝐺) steps and 𝑠 ≤ 𝜇(𝑠𝐺). We
define an algorithmMMM as follows. For a graph 𝐺 as an input,MMM constructs 𝑝(𝑥) = �⃗�, then it calls
BBB(𝑛, 𝑏) and, finally, it outputs the same answer that BBB(𝑛, 𝑏) has given. By (5.8) and (5.11),MMM solves
the 3-colorability problem. As 𝑠 = size(𝑝(𝑥) = �⃗�) ≤ 𝜇(𝑠𝐺),MMM does so in 𝜈(𝑠𝐺) ∶= 𝜂(𝑠𝐺) + 𝑔 (𝑛,𝑏)(𝜇(𝑠𝐺))
steps. As 𝜈 is a polynomial, we obtain that the 3-colorability problem is in 𝑃𝑃𝑃 . On the other hand,
we know from Garey, Johnson, and Stockmeyer [14], see also Dailey [12, Theorems 3 and 4], that

5 Note that, to reduce the size of 𝑝, we could have let 𝑝3 = ⋯ = 𝑝𝑡 ∶= 𝑟1 ∨ 𝑤1 ∨ 𝑔1 together with 𝑢3 = ⋯ = 𝑢𝑡 = 1.

8 Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep

3-colorability is an NPNPNP-complete problem. Now that an NPNPNP-complete problem turned out to be in PPP,
it follows that NPNPNP = PPP, completing the proof. □
REMARK 5.2. The proof above has reduced the NPNPNP-complete 3-colorability problem to problem
DPr(𝑛, 𝑏), defined in (5.2). Therefore, DPr(𝑛, 𝑏) is also an NPNPNP-complete problem for any 2 ≤ 𝑏 ∈ ℕ+

and any 𝑛 ∈ ℕ+.

6. WARNING AND PERSPECTIVES
Sometimes, cryptography goes after conjectures and experience if no rigorous mathematical proof
is available. For example, we only believe that the RSA crypto-system is safe and PPP ≠NPNPNP. This can
justify that no proof occurs in Sections 4 and 6. However, we have two remarks.
REMARK 6.1. An authentication or cryptographic protocol with a hard underlying problem need not
be safe. Thus, Proposition 5.1 in itself does not guarantee the safety of protocol (4.1).

In part, this is so because the Adversary might break a protocol without solving the underlying
problem. For example, the Adversary can break (4.1) with parameters given in (4.2) even though the
underlying problem is hard by Proposition 5.1.

The second explanation of Remark 6.1 is that even a hard problem can have many easy instances
(i.e., inputs) for which the computation is fast. For example, there are fast algorithms that work on
the “average cases” of some NPNPNP-complete problems even though these algorithms cannot deal with
the hard cases; see the Introduction in Wang [25] for details. It is needless to say how much harm
the Adversary can cause if he can apply a fast algorithm for, say, every tenth case.
REMARK 6.2. We would need an algorithm that chooses 𝑝 for protocol (4.1) so that, modulo this
algorithm, the average case of the underlying problem CPr(𝑛, 𝑏), defined in (5.1), is hard.

Even though Czédli [8] and the extended version of the present paper give some ideas how we
could choose a random 𝑝 and these heuristic ideas are likely to satisfy the requirement of Remark
6.2, these ideas are not supported by proofs. This is why we mention the tiling problem from Levin
[18]; see also Wang [25] as a secondary source. This problem, which we do not define here, includes
a probabilistic distribution. Levin [18] proved that, with respect to this distribution, the average
case of the tiling problem is hard in some (sophisticated) sense.

Similarly to the proof of Proposition 5.1, see also Remark 5.2, we can reduce the tiling problem
to DPr(𝑛, 𝑏) defined in (5.2). (The NPNPNP-completeness of DPr(𝑛, 𝑏) implies the existence of such a
reduction but we need a concrete one that is sufficiently economic.) Then we can pick a random 𝑝
for (4.1) so that first we take a random instance 𝑦 of the tiling problem and then we let 𝑝 be the
polynomial vector in the “DPr(𝑛, 𝑏)-representative” of 𝑦. As 𝑦 and, thus, the corresponding equation
in DPr(𝑛, 𝑏) are hard on average, we can hope that this 𝑝 turns CPr(𝑛, 𝑏), the underlying problem of
(4.1), hard. However, the details of this plan have not been elaborated yet. In particular, we have
not proved that the above-suggested method of choosing 𝑝 (which is only a part of the DPr(𝑛, 𝑏)-
representative of 𝑦) turns CPr(𝑛, 𝑏) (which is another problem) hard on average. Furthermore, it is
not clear whether the parameters suggested in Section 4 are large enough for the plan suggested
above. Hence, the heuristic ideas of [8] and the extended version of the present paper and would
also deserve further investigations.

Finally, we note that protocol (4.1) becomes more economic if we decrease 𝑘 so that ℎ⃗ remains a
generating vector of B𝑛; this is the point where Sections 2 and 3 are connected to the Section 4.

ACKNOWLEDGMENT
This research was supported by the National Research, Development and Innovation Fund of
Hungary, under funding scheme K 138892. 6

6 Editor and Reviewer: The most up-to-date preprints of my papers are available from my website (if you click on this
link). Most of the links in the References section will be removed from the final version.

http://www.math.u-szeged.hu/~czedli/

Mathematica Pannonica New Series xx /NS xx-26/ (yyyy) i, bp-ep 9

REFERENCES
[1] Ahmed, D., and Czédli, G. (1+1+2)-generated lattices of quasiorders. Acta Sci. Math. (Szeged)

87 (2021), 415–427.
[2] Balbes, R. Projective and injective distributive lattices. Pacific J. Math. 21 (1967), 405–420.
[3] Chajda, I., and Czédli, G. How to generate the involution lattice of quasiorders? Studia Sci.

Math. Hungar. 32 (1996), 415–427.
[4] Czédli, G. Four-generated large equivalence lattices. Acta Sci. Math. (Szeged) 62 (1996), 47–69.
[5] Czédli, G. Lattice generation of small equivalences of a countable set. Order 13 (1996), 11–16.
[6] Czédli, G. (1+1+2)-generated equivalence lattices. J. Algebra 221 (1999), 439–462.
[7] Czédli, G. Four-generated quasiorder lattices and their atoms in a four generated sublattice.

Communications in Algebra 45, 9 (2017), 4037–4049.
[8] Czédli, G. Four-generated direct powers of partition lattices and authentication. Publicationes

Mathematicae (Debrecen) 99 (2021), 447–472.
[9] Czédli, G. Generating some large filters of quasiorder lattices. arXiv:2302.13911 (2023).
[10] Czédli, G., and Kulin, J. A concise approach to small generating sets of lattices of quasiorders

and transitive relations. Acta Sci. Math. (Szeged) 83 (2017), 3–12.
[11] Czédli, G., and Oluoch, L. Four-element generating sets of partition lattices and their direct

products. Acta Sci. Math. (Szeged) 86 (2020), 405–448.
[12] Dailey, D. P. Uniqueness of colorability and colorability of planar 4-regular graphs are np-

complete. Discrete Mathematics 30, 3 (1980), 289–293.
[13] Dolgos, T. Generating equivalence and quasiorder lattices over finite sets. BSc Theses, Univer-

sity of Szeged (2015).
[14] Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some simplified np-complete problems. In

Sixth Annual ACM Symposium on Theory of Computing (Seattle, Washington). Association
for Computing Machinery, New York, 1974, pp. 47–63 (available here).

[15] Grätzer, G. Lattice Theory: Foundation. Birkhäuser, Basel, 2011.
[16] Kulin, J. Quasiorder lattices are five-generated. Discuss. Math. Gen. Algebra Appl. 36 (2016),

59–70.
[17] Kuratowski, K. Sur l’état actuel de l’axiomatique de la théorie des ensembles. Ann. Soc. Polon.

Math. 3 (1925), 146–147.
[18] Levin, L. A. Average case complete problems. SIAM J. Comput. 15, 1 (February 1986), 285–286

(available here).
[19] McKenzie, R. N.,McNulty,G. F., and Taylor,W. F. Algebras, Lattices, Varieties. Vol. 1. Wadsworth

& Brooks/Cole, Monterey, California, 1987.
[20] Rich, E. Computability, and Complexity – Theory and Applications. Pearson Prentice Hall,

Upper Saddle River, NJ, 2008.
[21] Sperner, E. Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, (available here)

(1928), 544–548.
[22] Strietz, H. Finite partition lattices are four-generated. In Proceedings of the Lattice Theory

Conference (Ulm,1975), G. Kalmbach and E. T. Schmidt, Eds. Universität Ulm, Ulm, 1975,
pp. 257–259.

[23] Strietz, H. Über Erzeugendenmengen endlicher Partitionverbände. Studia Sci. Math. Hungarica
12 (1977), 1–17.

[24] Takách, G. Three-generated quasiorder lattices. Discuss. Math. Algebra Stochastic Methods 16
(1996), 81–98.

[25] Wang, J. Average-case computational complexity theory. In Complexity Theory Retrospective
II, Hemaspaandra and Selmen, Eds. Springer, (available here) , 1977, pp. 295–328.

[26] Zádori, L. Generation of finite partition lattices. In Lectures in universal algebra (Proc. Colloq.
Szeged, 1983), S. L. and S. Á., Eds. North-Holland, Amsterdam, 1986, pp. 573–586.

http://arxiv.org/abs/2302.13911
https://doi.org/10.1145/800119.803884
https://gwern.net/doc/cs/algorithm/1986--levin.pdf
https://doi.org/10.1007/BF01171114
https://www.cs.uml.edu/~wang/acc-forum/avgcomp.pdf

	Introduction
	Targeted readership
	Our goal
	A historical mini-survey

	Small generating sets of finite Boolean lattices
	The abundance of small generating sets of finite Boolean lattices
	A cryptographic protocol for authentication
	The underlying problem is hard
	Warning and perspectives

