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Abstract. Let F be a union-closed family of subsets of an m-element set A. Let n =
|F| ≥ 2 and for a ∈ A let s(a) denote the number of sets in F that contain a. Frankl’s

conjecture from 1979, also known as the union-closed sets conjecture, states that there
exists an element a ∈ A with n − 2s(a) ≤ 0. Strengthening a result of Gao and Yu [7] we

verify the conjecture for the particular case when m ≥ 3 and n ≥ 2m − 2m/2 . Moreover,

for these “large” families F we prove an even stronger version via averaging. Namely, the
sum of the n − 2s(a), for all a ∈ A, is shown to be non-positive. Notice that this stronger

version does not hold for all union-closed families; however we conjecture that it holds for a
much wider class of families than considered here. Although the proof of the result is based

on elementary lattice theory, the paper is self-contained and the reader is not assumed to
be familiar with lattices.

1. Introduction and the main theorem

Given an m-element finite set A = {a1, . . . , am}, a family (or, in other words, a
set) F of subsets of A, i.e. F ⊆ P (A), is called a union-closed family (over A) if
X, Y ∈ F implies X ∪ Y ∈ F for all X, Y ∈ F . We always assume that A is finite
with 3 ≤ m := |A| and n := |F| ≥ 2. It was Peter Frankl in 1979 who formulated
the following conjecture, now called as Frankl’s conjecture or the union-closed sets
conjecture: if F is as above then there exists an element of A which is contained
in at least half of the members of F . In spite of a great number of papers by
outstanding authors (only some of them are listed at the end of the present paper
but the reader can consult with their bibliographies, too) this conjecture is still
open. The known achievements of this field belong to two categories.

The majority of results belong to pure combinatorics, with respect to both the
statements and their proofs. They establish the conjecture under some extra stip-
ulations like upper bounds on m = |A| or F or the presence of certain set(s) in F .
For example, Morris [10] resp. Faro [5] settles the case m ≤ 9 resp. n ≤ 37, and
Roberts [14] improves this for n ≤ 40. Roberts [14] also verifies the conjecture for
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“small families”, i.e. for n < 4m − 1, while for “large families”, i.e. for those with

n ≥ 2m − 12
(3

2

)[m/3]

− 1
2

(
m

3

)
− 5

3
m + 44.5 , (1)

this was done by Gao and Yu [7]. For other achievements of combinatorial nature
cf., e.g., Norton and Sarvate [11] and Vaughan [16]. One can read more about the
problem at http://www.math.uiuc.edu/ west/openp/unionclos.html and, of course,
in Frankl [6].

On the other hand, some results together with their proofs belongs to lattice
theory. For example, Reinhold [13] proves the lattice theoretic version of the con-
jecture (to be mentioned later) for lower semimodular lattices; cf. Abe [1] and [2],
Abe and Nakano [3] and Herrmann [9] for similar results.

However, there are no real links between the combinatorial and the lattice theo-
retical approaches, except of course for the statement of their equivalence, cf. Abe
and Nakano [3], who gives the credit to Poonen [12] and Stanley [15]. In particu-
lar, results that look “combinatorial” are proved by combinatorial methods. One
of the novelties of the present work is that although the main result looks com-
binatorial without mentioning lattices, it is achieved via a purely lattice theoretic
method. At this point it is worth assuring the reader from combinatorics that only
a very elementary part of lattice theory will be used and the paper is intended to
be self-contained.

Let F be a union-closed family over A and let the notations n = |F| ≥ 2, m =
|A| = |{a1, . . . , am}| be fixed throughout. For a ∈ A let s(a) = |{B ∈ F : a ∈ B}|.
Then Frankl’s conjecture claims the existence of an a ∈ A with n − 2s(a) ≤ 0. Let
us say that F satisfies the averaged Frankl’s property if

∑

a∈A

(
n − 2s(a)

)
≤ 0 .

Although this property clearly implies that Frankl’s conjecture holds for the given
F , there are many union-closed families for which the averaged Frankl’s property
fails; examples will be given later, in the lattice environment.

For a given m = |A|, the maximum value of n is of course 2m. If n is close to
2m then we say that the family F is large. Our main result on large families is the
following.

Theorem 1. If F is a union-closed family over a nonempty m-element set A,
m ≥ 3, and F is large in the sense

n := |F| ≥ 2m − 2m/2 = 2m −
√

2m (2)

then F satisfies the averaged Frankl’s property
∑

a∈A

(
n − 2s(a)

)
≤ 0.

This theorem strengthens the afore-mentioned result of Gao and Yu [7] in two
ways: it deals with the averaged Frankl’s property and (2) allows much more families
than formula (1). Some more discussion on this theorem will be given at the end
of the paper.
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2. Lattices and proofs

In order to fix our notations we recall some well known concepts from lattice
theory. By a lattice (L;≤) we mean a partially ordered set such that for any
x, y ∈ L the supremum and infimum of {x, y} exist; they are denoted by x ∨ y
and x ∧ y, respectively. We deal only with finite lattices; they necessarily have a
unique least element 0 and a unique largest element 1. An element z of L is said
to be join-irreducible if for all x, y ∈ L the equation z = x ∨ y implies z ∈ {x, y}.
The set of join-irreducible elements distinct from 0 will be denoted by J(L). For
a ≤ b ∈ L the subset {x ∈ L : a ≤ x ≤ b} is denoted by [a, b] and it is called an
interval of L. When a = 0 or b = 1 then a particular notation applies: ↑a = [a, 1]
and ↓b = [0, b]. The covering relation is defined via a ≺ b iff a ≤ b and |[a, b]| = 2.
The basic facts on lattices can be found practically in any textbook on algebra like
Burris and Sankappanavar [4]. (For the present status of lattice theory, which is
not needed here, cf. Grätzer [8].) We will see soon that a union-closed family F
corresponds to a lattice consisting of |F| elements. An advantage of lattices is that
while in case of, say, |F| = 12 usually it is hopeless to visualize F , it is fairly easy
and inspirational to depict a twelve element lattice.

It is well-known, cf. Abe and Nakano [3], Poonen [12] or Stanley [15], that
Frankl’s conjecture is equivalent to its lattice theoretical version, i.e., to the follow-
ing conjecture: “for each finite lattice L with at least two elements there exists an
a ∈ J(L) with |↑a| ≤ |L|/2”. In particular, the lattice theoretic Frankl’s conjecture
implies the original one. Since we are interested in the averaged property for large
families, we have to analyze the proof of this implication.

Let F ⊆ P (A) be a large union-closed family with 3 ≤ |A| = m; assuming
∅ ∈ F does not hurt the generality. Then the family D := {A \ X : X ∈ F} is
intersection-closed, in other words, it is a closure system. Therefore D is a lattice
with respect to the set inclusion; the set theoretic intersection serves as the meet
while the join is usually different from the set union. Now let us consider an
arbitrary X ∈ J(D), and let Z =

∨
{Y ∈ D : Y < X}. Then Z < X, i.e. Z ⊂ X,

for X is join-irreducible. Hence we can choose an element aX ∈ X \ Z. We claim
that, for any Y ∈ D, aX ∈ Y iff X ⊆ Y . Indeed, if aX ∈ Y but X 6⊆ Y then
X ∩ Y = X ∧ Y 6= X gives X ∩ Y ⊆ Z, contradicting aX /∈ Z. Notice that aX

is unique; indeed, otherwise we had another element b ∈ A such that each Y ∈ D
(and therefore each Y ∈ F) contained either both aX and b or none of them, which
easily led to |F| ≤ 2m−1, a contradiction. Hence the mapping J(D) → A, X 7→ aX

is injective. Clearly, 2m − 2m/2 ≤ |F| = |D| ≤ |P (J(D))| gives |J(D)| ≥ m = |A|.
Therefore, the aforementioned mapping is a bijection.

Now, for each a = aX ∈ A, |{Y ∈ F : a ∈ Y }| = |{Y ∈ D : aX /∈ Y }| = |{Y ∈ D :
X 6⊆ Y }| = |D\(↑X)|. This gives |{Y ∈ F : aX ∈ Y }| ≥ |F|/2 = n/2 iff |↑X| ≤ n/2,
and this makes it clear that Theorem 1 is a consequence of the following, purely
lattice theoretic theorem. Before formulating this theorem, we introduce some
notations for the rest of the paper. For a ∈ J(L) let r(a) = |L| − 2 · |↑a|, and let
r(L) =

∑
{r(a) : a ∈ J(L)}.



4 GÁBOR CZÉDLI

Theorem 2. Let L be a finite lattice consisting of at least two elements, and let
m = |J(L)| ≥ 3. If |L| ≥ 2m − 2m/2 then r(L) ≥ 0.

When proving this theorem, L is often treated as a {0,∨} semilattice. This
means that we forget about the meet operation ∧ and by a congruence we mean
an equivalence relation compatible with the join operation ∨ (but not necessarily
with ∧). Let X = {x1, . . . , xm} be a fixed m-element set and consider its power
set P (X) =

(
P (X),⊆

)
as a {0,∨}-semilattice; of course 0 is the empty set and ∨

stands for the set union ∪.

Lemma 1. There is a congruence Θ of the {0,∨}-semilattice
(
P (X),⊆

)
such that

L, as a {0,∨}-semilattice, is isomorphic to the factor semilattice P (X)/Θ.

Proof. The lemma is a trivial consequence of the description of free {0,∨}-semilattices,
which belongs to the folklore of lattice theory and universal algebra, cf. e.g. Exercise
4 of Section $11 (in page 85) in Burris and Sankappanavar [4]. �

Let X̃ stand for
{
{x} : x ∈ X

}
= J(P (X)). The Θ-class of an element u ∈

P (X) will be denoted by [u]Θ or simply by [u]. In virtue of Lemma 1 we will
assume that L equals P (X)/Θ and A = {a1, . . . , am} = J(L) such that ai = [{xi}]
for i ∈ {1, . . . , m}. For a Θ-class [u] ∈ P (X)/Θ = L let e([u]) = eΘ([u]) =
|[u]Θ \ {u}| = |[u]| − 1, the excess of [u] ∈ L. Sometimes we use the notation
eΨ([u]) = |[u]Ψ \ {u}| for another equivalence Ψ (not necessarily a congruence)
on P (X); then the subscript Ψ is never dropped. Since the isomorphism between
P (X)/Θ and L is considered fixed, we can use the notation e(b) for any b ∈ L.
Clearly, we have

2m/2 ≥ 2m − n = |P (X)| − |L| =
∑

b∈L

e(b). (3)

An element b ∈ L will be called an abundant element if e(b) > 0. In accordance
with the terminology of lattices, for u ∈ P (X) the height of u, denoted by h(u) is
defined as |u| = |↓u ∩ X̃ |.

Lemma 2. If [u] ∈ L is abundant then h(u) ≥ m/2 − 1.

Proof. It belongs to the folklore (or it can trivially be extracted from the proof of
Lemma I.3.7 in Grätzer [8]) that the Θ-classes of P (X) are convex subsemilattices.
This means that for every [u] ∈ P (X)/Θ, [u] is closed with respect to join and
v1 ≤ v2 ≤ v3 ∈ P (X) together with v1, v3 ∈ [u] imply v2 ∈ [u]. Hence, without loss
of generality, we may assume that u is a minimal element in its abundant Θ-class
[u] and there is an element v ∈ [u] such that u ≺ v. Since P (X) and therefore
any of its interval can also be considered as a Boolean algebra, we may take the
unique (relative) complement v′ of v in ↑u. We have v ∧ v′ = u and v ∨ v′ = 1,
h(v) = h(u) + 1 and h(v′) = m − 1.

Let Ψ denote the smallest equivalence (not a congruence!) including {(t, t∨ v) :
t ∈ [u, v′]}. Observe that for every t ∈ [u, v′], |[t]Ψ| = 2 and eΨ([t]Ψ) = 1. Indeed,
otherwise t1∨v = t2∨v would hold for some distinct t1, t2 ∈ [u, v′] and distributivity
would easily lead to a contradiction: t1 = (t1 ∧ v′) ∨ u = (t1 ∧ v′) ∨ (v ∧ v′) =
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(t1 ∨ v) ∧ v′ = (t2 ∨ v) ∧ v′ = . . . = t2. Since for each t ∈ [u, v′] we have (t, t ∨ v) =
(t ∨ u, t ∨ v) ∈ Θ, we obtain that Ψ ⊆ Θ. Now, for a Θ-class b ∈ L, assume that
b ∩ [u, v′] = {t1, . . . , t`} with ` ≥ 1 and ti 6= tj for i 6= j. Then Ψ ⊆ Θ yields that
the ti ∨v belong to b, whence e(b) ≥ 2`−1 ≥ l = eΨ([t1]Ψ)+ · · ·+ eΨ([t`]Ψ). Hence
we conclude

∑

b∈L

e(b) ≥
∑

t∈[u,v′]

eΨ([t]Ψ) ≥ |[u, v′]| = 2h(v′)−h(u) = 2m−1−h(u). (4)

Now (3) and (4) entail m/2 ≥ m − 1 − h(u), implying the lemma. �

Lemma 3. There is at most one u ∈ P (X) such that h(u) < m/2 and [u] is
abundant.

Proof. By way of contradiction we suppose that u1 and u2 are distinct abundant
elements of P (X) and h(ui) < m/2 for i = 1, 2. It follows from Lemma 2 that
h(u1) = h(u2) = b(m − 1)/2c and ui is a minimal element in [ui] for i ∈ {1, 2}.
Like in the previous proof, for i ∈ {1, 2} there is a vi ∈ P (X) such that vi ∈ [ui],
ui ≺ vi and vi has a unique (relative) complement v′i ∈ ↑ui. Let αi = {(t, t ∨ vi) :
t ∈ [ui, v

′
i]}, and let Ψ = α1∪α2. (In general, they are equivalences, not necessarily

semilattice congruences.) The proof of Lemma 2 shows that each of the αi classes
has at most two elements, |[t]αi| = 2 for all t ∈ [ui, v

′
i]}, and Ψ ⊆ Θ. Hence for

i = 1, 2, like in case of (4),
∑

[t]αi∈L/αi

eαi([t]αi) = |[ui, v
′
i]| = 2m−1−b(m−1)/2c = 2bm/2c. (5)

This may give the feeling that
∑

b∈L

e(b) ≥
∑

[t]Ψ∈L/Ψ

eΨ([t]Ψ) ≥∗ 2bm/2c + 2bm/2c = 2bm/2c+1 . (6)

However, the above estimation for the total excess
∑

b∈L e(b) is not correct at ≥∗

since the contribution of (5) for i = 1 and that for i = 2 are not necessarily
“disjoint”, so the “common contribution” has to be subtracted from 2bm/2c+1.

Now consider a Ψ-class H as a graph of Ψ|H . We disregard from loop edges.
Then this graph is a connected one, and each of its edges has a unique color from the
color set {α1, α2}. Two parallel edges with distinct colors are possible. Since the
αi-classes have at most two elements, the degree of each vertex of this graph is at
most two. If this graph contains no circle then, in connection with H, nothing has
to be subtracted from 2bm/2c+1. This is exemplified by, say, H = {w1, . . . , w6} with
(w1, w2), (w3, w4), (w5, w6) ∈ α1 and (w2, w3), (w4, w5) ∈ α2, then eΨ(H) = 5, and
this is the same as the sum eα1([w1]α1)+eα1 ([w3]α1)+eα1 ([w5]α1)+eα2 ([w2]α2)+
eα2([w4]α2).

So 2bm/2c+1 needs correction only for those H that contain a circle. Since H is
connected with vertex degrees ≤ 2, this means that H is a circle, and the colors
α1 and α2 alternate on this circle. Since both α1 and α2 are included in the <
relation of P (X), we can consider H as an oriented graph such that the start
point of each edge should be less then its endpoint. In fact, we imagine H as a
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regular |H|-gon in the plain. Since the relation < is irreflexive, it is impossible that
all edges are oriented clock-wise or they are all oriented anti-clockwise. Therefore
there are consecutive elements t1, t, t2 of H such that t1 > t < t2 and (t, t1) ∈ αi and
(t, t2) ∈ α1−i. (The possibility t1 = t2 is allowed.) From (t, t1) ∈ αi we conclude
that ui ≤ t ≤ v′i while (t, t2) ∈ α1−i entails u1−i ≤ t ≤ v′1−i. Hence t belongs to the
interval [u1 ∨ u2, v

′
1 ∧ v′2]. Since the “Ψ-excess” eΨ([t]Ψ) = e(H) is one less than

the sum of the “αi-excesses” (with alternating i) of its edges, we have to subtract
one from 2bm/2c+1 according to H. We can associate the above t ∈ [u1∨u2, v

′
1∧v′2]

with this subtraction; t is not necessarily unique but distinct circles H give rise to
distinct elements t. Hence the total subtraction is at most |[u1 ∨ u2, v

′
1 ∧ v′2]|.

Since u1 6= u2, h(u1 ∨ u2) ≥ h(u1) = h(u2), so h(u1 ∨ u2) ≥ h(u1) + 1 =
1 + b(m − 1)/2c = b(m + 1)/2c. We cannot say v′1 6= v′2, we have only h(v′1 ∧ v′2) ≤
h(v′1) = m − 1. So we obtain

|[u1 ∨ u2, v
′
1 ∧ v′2]| ≤ 2m−1−b(m+1)/2c = 2bm/2c−1 . (7)

Now subtracting (7) from the right hand side of (6) we obtain that the total excess
is at least ∑

b∈L

e(b) ≥ 2bm/2c+1 − 2bm/2c−1 = (3/2) · 2bm/2c. (8)

Finally, after inspecting even and odd values of m separately, we see that (3) con-
tradicts (8), completing the proof of Lemma 3. �

Now we are in the position of proving Theorem 2:

Proof of Theorem 2. Let H1, . . . , H` be a complete list of abundant (i.e., non-
singleton) Θ-classes. It has already been mentioned that the Hi are (convex) sub-
semilattices. Therefore each Hi has a unique largest element wi. Then Hi = [wi].
Denote Hi \ {wi} by Gi and let G = G1 ∪ · · · ∪ G`. Clearly, |G| =

∑
b∈L e(b), the

total excess of L. We claim that
∑

g∈G

|↓g ∩ X̃ | =
∑

g∈G

h(g) ≥ m

2
· |G|. (9)

The equality is trivial by definitions. The inequality is almost clear by Lemmas 2
and 3, for all but at most one summands satisfy h(g) ≥ m/2. Suppose there is a
g ∈ G with h(g) < m/2. Then this g is unique and h(g) = b(m−1)/2c by Lemmas 2
and 3. Since [g] is a convex subsemilattice and g is not its largest element, there is an
element v ∈ [g]\{g} such that g ≺ v. Let v′ be the complement of v in P (X). Then
h(g∨v′) = m−1. Joining (g, v) ∈ Θ and (v′, v′) ∈ Θ we have (g∨v′, 1) ∈ Θ, which
yields that g ∨ v′ ∈ G. Now, exploiting m ≥ 3 the first time, b(m − 1)/2c < m − 1
gives g 6= g ∨ v′ and h(g) + h(g ∨ v′) = b(m − 1)/2c + m − 1 ≥ 2 · m/2 proves (9).

Now, for ai = [{xi}] ∈ J(L), |↑ai|, computed in L, equals |↑{xi} \ G| = |↑{xi} \
(G∩↑{xi})| = 2m−1−|(G∩↑{xi})|. Notice also that |L| = n and for any y ∈ P (X),
h(y) = |{xi ∈ X : {xi} ≤ y}|. Hence

r(L) =
m∑

i=1

(
|L| − 2 · |↑ai|

)
= mn − 2

m∑

i=1

|↑ai| =
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mn − 2
m∑

i=1

(
2m−1 − |(G ∩ ↑{xi})|

)
= mn − m · 2m + 2

m∑

i=1

|(G∩ ↑{xi})| =

m(n − 2m) + 2 ·
∣∣{(g, x) : x ∈ X, g ∈ G, and {x} ≤ g}

∣∣ =

m(n − 2m) + 2
∑

g∈G

|↓g ∩ X̃ | ≥(9) m(n − 2m) + m · |G|

=m
(
n − (2m − |G|)

)
= m

(
n −

(
2m −

∑

e∈L

e(b)
))

=(3) m(n − n) = 0,

proving Theorem 2. �

The above proof reveals that condition (2) is far from being optimal for large
m. However, we do not see how far we could go with our method, and therefore
we have decided not to spoil the simplicity of condition (2) by making the proof
much more complicated without reaching the optimal condition. We conjecture that
Theorem 1 remains true if 2m − 2m/2 is replaced by something even smaller than
2m − 2m−2. We also conjecture that r(L) > 0 (equivalently,

∑
a∈A

(
n− 2s(a)

)
< 0)

when 2m > n > 2m − 2m−2 and m ≥ 3. These conjectures come from a great
number of examples examined by computer, and also from the following example.

Let L be the direct product of a Boolean algebra with m−2 atoms and the three
element chain. (For m = 4, L is given in Figure 1; J(L) consists of the black-filled
elements.) We omit the details of showing that this lattice L has the properties
J(L) = m, |L| = 2m − 2m−2 = 3 · 2m−2 and r(L) = 0.

0c 2c 3c1c

KL

2b 3b1b

Figure 1

We conclude the paper with another example which shows that the averaged
Frankl’s property does not hold for all lattices or, equivalently, for all union-closed
families. Take a Boolean algebra B with k atoms. (The case k = 3 is depicted in
Figure 1.) Let b1, . . . , bk be the atoms of B. Rename the 0 of B as c0, add a new 0
and for i = 1, . . . , k, add a new atom ci such that 0 ≺ ci ≺ bi. This way we obtain a
lattice K consisting of 2k +k+1 elements. Now r(c0) = 2k+k+1−2·2k = k+1−2k

and, for 1 ≤ i ≤ k, r(ci) = 2k + k + 1 − 2(1 + 2k−1) = k − 1. Hence

r(K) = r(c0) + r(c1) + · · ·+ r(ck) = k2 + 1 − 2k < 0

when k ≥ 5.
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