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Abstract. A congruence is called 2-uniform if all of its blocks have exactly two elements.
We prove that if A is a finite algebra that satisfies a nontrivial idempotent Mal’cev condition

then any two 2-uniform congruences of A permute.

1. Introduction and the main result

A congruence α of an algebra A is called a 2-uniform congruence if all the α-
blocks (in other words, α-classes) are two-element. If all of its blocks have the
same number of elements then α is called a uniform congruence. A finite algebra
is said to be a uniform algebra if all of its congruences are uniform. A finite lattice
is called isoform if all blocks of any of its congruences are isomorphic lattices.
Clearly, isoform lattices are uniform. Grätzer, Quackenbush and Schmidt [4] raised
the question if finite isoform lattices are congruence permutable. Recently Kaarli
[6] has shown even more: every finite uniform lattice is congruence permutable. It
is an open problem how far Kaarli’s result can be generalized. In particular, we do
not know if uniform algebras with a majority term are congruence permutable.

As a modest step towards the general problem, the following result was proved in
[1]: if a finite algebra has a majority term then any two of its 2-uniform congruences
permute. The assumption on finiteness is essential, for the lattice of integer numbers
(Z;≤) has exactly two 2-uniform congruences but they do not permute. There are
examples in [1] showing that the result of [1] and that of [6] are independent even
for lattices. The goal of the present paper is to replace the existence of a majority
term by a much weaker condition. This will not make [1] superfluous, for we use its
result in the present proof and the closure operator introduced in [1] is of separate
interest.

The notion of a Mal’cev (also spelled Mal’tsev) condition was introduced by
Grätzer [3]. Hence we extract the short definition we need directly from [3]: an
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idempotent Mal’cev condition for algebras is a condition of the form

“ (Pn): there exists a natural number n, and term symbols
p0, . . ., pmn−1 satisfying a set Σn of identities ”,

where (Pn+1) is weaker than (Pn), the form of Σn is independent of the type of
algebras considered, and Σn implies that all the p0, . . ., pmn−1 are idempotent. A
Mal’cev condition is called trivial if it is satisfied by sets, i.e., by algebras with no
operation. The condition to be tailored to our finite algebra A is that

(1) A should satisfy a nontrivial idempotent Mal’cev condition.
An equivalent condition is that

(2) A has a so-called Taylor term;
see Cor. 5.3 in Taylor [8] or Lemma 9.4 in Hobby and McKenzie [5] for more details
and more exact definition of Mal’cev conditions. Another equivalent condition is
that

(3) 1 is not in the type set of the variety V generated by A,
cf. Theorem 9.6 of [5]. Notice that if the class of congruence lattices of algebras in
V satisfies a nontrivial lattice identity (cf. Thm. 9.18 in [5]) or a nontrivial lattice
Horn sentence from [2], like meet or join semidistributivity, then (1) holds. Our
result is the following.

Theorem 1. Let A be a finite algebra satisfying a nontrivial idempotent Mal’cev
condition. Then any two 2-uniform congruences of A permute.

2. The proof of the theorem

Let A be a finite algebra satisfying an idempotent nontrivial Mal’cev condition
M . Up to Figure 1 we can follow the ideas of Kaarli [6] the same way as in [1].

First we can assume that A is an idempotent algebra, for otherwise we can
replace it by its full idempotent reduct. If α and β are 2-uniform congruences then
it suffices to show that for any block B of α ∨ β, the restriction of α and that of β
to B permute. Since A is idempotent, B is a subalgebra, and B also satisfies M .
Hence we can assume that A is this α ∨ β block itself, i.e., α ∨ β = 1A. Since any
two 2-uniform equivalences on an at most five element set permute, we can assume
that |A| ≥ 6. Then 2-uniformity and α ∨ β = 1A gives α ∧ β = 0A. This leads to a
subdirect decomposition

A ∼= S ≤sd A(0) × A(1)

where A(0) = A/α and A(1) = A/β. We can assume that A equals S. Hence A

is a subalgebra of the direct product A(0) × A(1), and as a relation between A(0)

and A(1), it is also a bipartite graph. Clearly, |A(0)| = |A(1)| = |A|/2 ≥ 3. Let
n = |A(0)|. Since each 2-regular bipartite finite graph has a Hamiltonian circle, we
can choose the notation so that

A(0) = {a(0)
0 , a

(0)
1 , . . . , a

(0)
n−1},

A(1) = {a(1)
0 , a

(1)
1 , . . . , a

(1)
n−1},

A = {(a(0)
j , a

(1)
j ) : j ∈ Zn} ∪ {(a(0)

j , a
(1)
j−1) : j ∈ Zn}.
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All subscript calculations were and will be done in Zn, i.e., modulo n. The situation
is depicted in Figure 1 for n = 3, the extremal case, and for n = 7, illustrating the
general case.
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Figure 1
Here A is the set of edges. The inner vertices of the “circular saw” form the algebra
A(0) while the outer vertices form A(1).

By an arc we mean a nonempty subset X = {a(i)
m , a

(i)
m+1, . . . , a

(i)
m+j−1} of A(i).

Here i ∈ {0, 1}, and j = |X| ≤ n is the length of the arc. If j < n then a
(i)
m and

a
(i)
m+j−1 are the endpoints of the arc, while the remaining points are said to be inner

points. When X = A(i) then all of its points are inner points and the arc has no
endpoints. For X ⊆ A(0) and Y ⊆ A(1) define

X′ = {y ∈ A(1) : there is an x ∈ X with (x, y) ∈ A},
Y ′ = {x ∈ A(0) : there is a y ∈ Y with (x, y) ∈ A},

X∗ := {y ∈ A(1) : {y}′ ⊆ X},
and

Y ∗ := {x ∈ A(0) : {x}′ ⊆ Y }.
For example, for n = 7, {a(0)

1 , a
(0)
2 , a

(0)
3 }∗ = {a(1)

1 , a
(1)
2 }. Clearly, if X is an arc with

2 ≤ |X| < n then X∗ is also an arc, |X∗| = |X| − 1 and (X∗)′ = X.

We claim that every arc X ⊆ A(i) is a subalgebra of A(i). This will be shown via
induction on |X|. Since A and therefore its homomorphic images, A(0) and A(1)

are idempotent algebras, one element arcs are subalgebras. Let f = f(x1 , . . . , xk)
be an arbitrary term of A, let X ⊆ A(0) be an arc with length 1 < |X| < n, and
let x1, . . . , xk ∈ X. For each xi we can choose an yi ∈ X∗ such that (xi, yi) ∈ A.
Since |X∗| < |X|, X∗ is a subalgebra of A(1). Now from

(
f(x1 , . . . , xk), f(y1, . . . , yk)

)
= f

(
(x1, y1), . . . , (xk, yk)

) ∈ A

and (X∗)′ = X we obtain that f(x1 , . . . , xk) ∈ X. The case X = A(0) is evident
and the case X ⊆ A(1) is similar. We have seen that each arc is a subalgebra.

Since each subset of A(i) is the intersection of all arcs including it, we obtain
that
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Fact 1. For i ∈ {0, 1}, every nonempty subset of A(i) is a subalgebra of A(i).

A k-ary term g is called a semiprojection if there is an i ∈ {1, . . . , k} such
that |{x1, . . . , xk}| < k always implies g(x1, . . . , xk) = xi. In this case g is said
to be a k-ary i-th semiprojection. The next step in the proof is to show that A
has a semiprojection term. Since A satisfies M , a nontrivial idempotent Mal’cev
condition, A has terms distinct from projections. Let f be a term of minimal arity
such that f is not a projection.

First assume that f is at least quaternary. By the minimality of its arity, every
term arising from f by identification of some variables is a projection. Hence the
well-known Świerczkowski Lemma, cf. [7], applies and we conclude that f is a
semiprojection.

Now we assume that f is at most ternary. Since we can always increase the
arity by adding redundant variables, we may treat f as a ternary term. (But
then f is not necessarily of minimal arity, so we cannot automatically say that
f(x, x, y) is a projection.) The arc {a(0)

0 , a
(0)
1 } is a subalgebra of A(0), so either

f(a(0)
0 , a

(0)
0 , a

(0)
1 ) = a

(0)
0 or f(a(0)

0 , a
(0)
0 , a

(0)
1 ) = a

(0)
1 .

Suppose first that f(a(0)
0 , a

(0)
0 , a

(0)
1 ) = a

(0)
0 . We claim that

f(a(i)
j , a

(i)
j , a

(i)
j+�) = a

(i)
j for all i ∈ {0, 1} and j, � ∈ Zn. (2)

From f(a(0)
0 , a

(0)
0 , a

(0)
1 ) = a

(0)
0 we obtain

(
a
(0)
0 , f(a(1)

0 , a
(1)
0 , a

(1)
1 )

)
= f

(
(a(0)

0 , a
(1)
0 ), (a(0)

0 , a
(1)
0 ), (a(0)

1 , a
(1)
1 )

) ∈ A.

This and Fact 1 yield

f(a(1)
0 , a

(1)
0 , a

(1)
1 ) ∈ {a(0)

0 }′ ∩ {a(1)
0 , a

(1)
1 } = {a(1)

0 },
so f(a(1)

0 , a
(1)
0 , a

(1)
1 ) = a

(1)
0 . Then similarly,

(
f(a(0)

1 , a
(0)
1 , a

(0)
2 ), a(1)

0

)
= f

(
(a(0)

1 , a
(1)
0 ), (a(0)

1 , a
(1)
0 ), (a(0)

2 , a
(1)
1 )

) ∈ A

together with Fact 1 yield f(a(0)
1 , a

(0)
1 , a

(0)
2 ) = a

(0)
1 . Continuing the calculation

around the “circular saw” anticlockwise we obtain that

f(a(i)
j , a

(i)
j , a

(i)
j+1) = a

(i)
j for every i ∈ {0, 1} and j ∈ Zn.

So (2) holds for � = 1. If it holds for 1 ≤ � < n − 1 then
(
f(a(0)

j , a
(0)
j , a

(0)
j+�+1), a

(1)
j

)
= f

(
(a(0)

j , a
(1)
j ), (a(0)

j , a
(1)
j ), (a(0)

j+�+1, a
(1)
j+�)

) ∈ A

together with Fact 1 gives f(a(0)
j , a

(0)
j , a

(0)
j+�+1) = a

(0)
j , and

(
a
(0)
j+1, f(a(1)

j , a
(1)
j , a

(1)
j+�+1)

)
= f

(
(a(0)

j+1, a
(1)
j ), (a(0)

j+1, a
(1)
j ), (a(0)

(j+1)+� , a
(1)
j+�+1)

) ∈ A

together with Fact 1 gives f(a(1)
j , a

(1)
j , a

(1)
j+�+1) = a

(1)
j . This shows (2) for � + 1.

Finally, when � = n, (2) is evident since f is idempotent.
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When f(a(0)
0 , a

(0)
0 , a

(0)
1 ) = a

(0)
1 , a similar calculation (but going clockwise around

the circular saw) shows that

f(a(i)
j , a

(i)
j , a

(i)
j+�) = a

(i)
j+� for all i ∈ {0, 1} and j, � ∈ Zn. (3)

Combining (2) and (3) we conclude

Fact 2. f(x, x, y) is a projection on A.

Clearly, the same argument shows that f(x, y, x) and f(y, x, x) are projections,
too. Depending on which of x or y the projections f(x, x, y), f(x, y, x) and f(y, x, x)
are, we have, up to permutation of variables, three possibilities.

The first possibility is when f(x, x, y) = f(x, y, x) = f(y, x, x) = x, i.e., f is a
majority term. This case has been excluded by [1]. The second possibility is that
f(x, x, y) = f(y, x, x) = y, i.e., f is a Mal’cev term. Then any two congruences must
permute, so this case is excluded either. So we are left with the third possibility
when f(x, x, y) = f(x, y, x) = x and f(y, x, x) = y, i.e., f is a semiprojection.

Now we know that A has a semiprojection term, say a first semiprojection f =
f(x1, . . . , xk), which is not a projection. To obtain a contradiction, we will show
that f is a projection. It suffices to show, via induction on |X|, that whenever
X ⊆ A(i) is an arc then

a
(i)
j1

, . . . , a
(i)
jk

∈ X implies f(a(i)
j1

, . . . , a
(i)
jk

) = a
(i)
j1

. (4)

This is clear when |X| < k. In the sequel we can assume that |{a(i)
j1

, . . . , a
(i)
jk
}| = k,

and we also assume that X is an arc of minimal length such that {a(i)
j1

, . . . , a
(i)
jk
} ⊆

X.
Now let � ∈ {k, k + 1, . . . , n − 1} and suppose (4) is valid for all arcs shorter

than �. Consider an arc X ⊆ A(0) with length �; the case X ⊆ A(1) would be
similar. If a

(0)
j1

is an inner point of X then our task is easy: there are elements

y2, . . . , yk in X∗ such that (a(0)
j2

, y2), . . . , (a
(0)
jk

, yk) ∈ A. Moreover, a
(1)
j1−1, a

(1)
j1

∈ X∗

and (a(0)
j1

, a
(1)
j1−1), (a

(0)
j1

, a
(1)
j1

) ∈ A. Since |X∗| = |X| − 1, the induction hypothesis
gives

(
f(a(0)

j1
, . . . , a

(0)
jk

), a(1)
j1

)
= f

(
(a(0)

j1
, a

(1)
j1

), (a(0)
j2

, y2), . . . , (a
(0)
jk

, yk)
) ∈ A (5)

and
(
f(a(0)

j1
, . . . , a

(0)
jk

), a(1)
j1−1

)
= f

(
(a(0)

j1
, a

(1)
j1−1), (a

(0)
j2

, y2), . . . , (a
(0)
jk

, yk)
) ∈ A. (6)

These two formulas easily imply f(a(0)
j1

, . . . , a
(0)
jk

) = a
(0)
j1

. The same argument works
when |X| = n but instead of X∗ we have to take an arbitrary arc Y ⊆ A(1) with
|Y | = n − 1 and a

(1)
j1−1, a

(1)
j1

∈ Y .

Now, again for � ∈ {k, k + 1, . . . , n− 1}, we consider the case when a
(0)
j1

is one of
the endpoints of X, so we assume that

X = {a(0)
j1

, a
(0)
j1+1, . . . , a

(0)
j1+�−1}.
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If a
(0)
j1

is a “lonely endpoint” in the sense that a
(0)
j1+1 /∈ {a(0)

j2
, . . . , a

(0)
jk

} then {a(1)
j1

}′∩
{a(0)

j1
, . . . , a

(0)
jk

} = {a(0)
j1

} and (5) yields f(a(0)
j1

, . . . , a
(0)
jk

) = a
(0)
j1

. Otherwise, when

a
(0)
j1

is not lonely, for u = 2, . . . , k we can choose a

yu ∈ {a(1)
j1+1, . . . , a

(1)
j1+�−2}

such that (aju , yu) ∈ A. Then a
(1)
j1−1 is a lonely endpoint of the arc

{a(1)
j1−1, a

(1)
j1

, a
(1)
j1+1, . . . , a

(1)
j1+�−2}.

Hence the previously considered case makes formula (6) valid, and f(a(0)
j1

, . . . , a
(0)
jk

) =

a
(0)
j1

follows easily.
We have seen that f is the first projection on A(0) and A(1), hence it is the first

projection on A. This contradiction proves the Theorem.
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