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Abstract: For a positive integer n, let SCL(n) = {|Con(L)| : L is an n-element lattice} stand for the set of
Sizes of the Congruence Lattices of n-element lattices. The k-th Largest Number of Congruences of n-element
lattices, denoted by lnc(n, k), is the k-th largest member of SCL(n). Let (n1, . . . , n6) := (1, 4, 5, 6, 6, 7), and
let nk := k for k ≥ 7. In 1997, R. Freese proved that for n ≥ n1 = 1, lnc(n, 1) = 2n−1. For n ≥ n2, the
present author gave lnc(n, 2). For k = 3, 4, 5 and n ≥ nk, C. Mureşan and J. Kulin determined lnc(n, k) in their
2020 paper. For k ≤ 5 and n ≥ nk, the above-mentioned authors described the n-element lattices witnessing
lnc(n, k), too. For all positive integers k and n ≥ nk, this paper determines lnc(n, k) and presents the lattices
that witness it. It turns out that, for each fixed k, the quotient lcd(k) := lnc(n, k)/lnc(n, 1) does not depend
on n ≥ nk. Furthermore, lcd(k) converges to 1/8 as k tends to infinity.
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1. Introduction and stating the results

If a finite lattice or a semilattice L has many congruences, then the number |Con(L)| of the
congruences of L together with the number |L| of the elements of L gives some insight into the
structure of L; this is exemplified by Czédli [3, 5, 6], and by Mureşan and Kulin [13]. There are
analogous results for lattices with many sublattices, too; we mention only Ahmed and Horváth [1]
and Czédli [4].

Our goal is to prove a new result, Theorem 2, on finite lattices with many congruences. We fix
the following notation. For n ∈ N+ := {1, 2, 3, . . . }, let Lat(n) denote the set of n-element lattices.
(We say “set” rather than “class”, since we do not differentiate between isomorphic lattices.)
For L ∈ Lat(n), Con(L) and |Con(L)| stand for the congruence lattice of L and the number of
congruences of L, respectively. We use the notation

SCL(n) := {|Con(L)| : L ∈ Lat(n)}

for the set of Sizes of Congruence Lattices of n-element lattices, where the capitalization explains
the acronym SCL. For k, n ∈ N+, the kth largest member of SCL(n) is the kth Largest Number
of Congruences of n-element lattices; we denote this number by lnc(n, k), which is defined only if
k ≤ |SCL(n)|. For n ∈ N+ and L ∈ Lat(n), we call the quotient |Con(L)|/2n−1 the Congruence
Density of L, and we denote it by

cd(L); so cd(L) := |Con(L)|/2|L|−1. (1.1)
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This terminology is motivated by the fact that the denominator is 2n−1 = lnc(n, 1) by Freese [8].
The kth largest member of {cd(L) : L ∈ Lat(n)} is the kth Largest Congruence Density of n-element
lattices; it will be denoted by lcdn(k). Clearly, for a finite lattice L,

if |L| = n, then |Con(L)| = 2n−1 · cd(L). (1.2)

Hence, the study of lnc(n, k) and that of lcdn(k) are equivalent. However, we will mostly work only
with the latter, since it has nice properties established by many forthcoming lemmas. Define

n1 := 1, n2 := 4, n3 := 5, n4 := 6, n5 := 6, n6 := 7, and nk := k, for k ≥ 7. (1.3)

For k = 1, k = 2, and k ∈ {3, 4, 5}, Freese [8], Czédli [3], and Mureşan and Kulin [13], respectively,
determined lnc(n, k) and the lattices witnessing it, provided that n ≥ nk. Equivalently by (1.2),
they determined lcdn(k) and their witnesses for k ≤ 5 and n ≥ nk; see Theorem 1 later for
details. Before presenting a new result, Theorem 2, we continue introducing some notations and
terminology.

Every lattice in this paper is assumed to be finite. (However, sometimes we repeat this conven-
tion.) The n-element chain will be denoted by Cn. For a lattice L and u ∈ L, u is join-irreducible if it
covers exactly one element, and it is join-reducible if it has at least two lower covers. Meet-irreducible
and meet-reducible elements are defined dually. Let Ji(L), Mi(L), Jr(L), and Mr(L) stand for the
set of join-irreducible elements, that of meet-irreducible elements, that of join-reducible elements,
and that of meet-reducible elements of L, respectively. Note that

|Ji(L)|+ |Jr(L)| = |L| − 1 = |Mi(L)|+ |Mr(L)|.

An element u ∈ L is said to be a narrows if it is comparable with every other element of L; the set
of all narrows of L will be denoted by Nar (L). A subset U of L is convex if for every u1, u2 ∈ U
and x ∈ L, u1 ≤ x ≤ u2 implies that x ∈ U . The maximal subsets of Nar (L) that are convex
subsets of L are called the narrow chain components of L.

To form the glued sum L1 ∔ L2 of finite lattices L1 and L2, we first put the (diagram) of L2

atop L1, and then identify 1L1
(the top element of L1) with 0L2

(the bottom element of L2). For
example, H5,3 in Fig. 5 is B4 ∔ B4; here and later, B4 denotes the 4-element Boolean lattice (see
Fig. 1). We can write

L1 ∔ L2 ∔ · · · ∔ Lt or
˙∑

1≤i≤t
Li

without parentheses since forming glued sums is an associative operation. Clearly, 0L1
, 1Lt

, and
1Li−1

= 0Li
for i ∈ {2, . . . , t} are in Nar (L1 ∔ · · · ∔ Lt).

Conversely, assume that L is a finite lattice but not a chain. Then there are uniquely determined
narrows 0L = u0 < u1 < · · · < ut = 1L such that for each i ∈ {1, . . . , t}, either the interval [ui−1, ui]
is a narrow chain component of L or this interval has at least four elements and

[ui−1, ui] ∩Nar (L) = {ui−1, ui}.

Then L decomposes to the glued sum of the just-mentioned intervals as follows:

L = [u0, u1] ∔ [u1, u2] ∔ · · · ∔ [ut−1, ut], (1.4)

which we call the canonical glued sum decomposition of L. We call the glued sum of the non-chain
summands in (1.4) the core of L; we denote it by Cor(L). In other words, denoting the set of at
least four-element intervals of L by Intv4(L),

Cor(L) =
˙∑

I is maximal in Intv4(L) such that I∩Nar (L)={0I ,1I}
I. (1.5)
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For a finite chain C = Ck, let Cor(C) be the singleton lattice C1. If L is not a chain, then its core is
an at least four-element lattice. As L = B4 ∔ C2 ∔ B4 exemplifies, Cor(L) need not be a sublattice
of L. To justify the notation used in (1.5), let us agree that Cor(L) is defined only up to the order
of its summands. For example, B4 ∔ N5 and N5 ∔ C7 ∔ B4 have the same cores; here and later, N5

is the five-element non-modular lattice (see Fig. 1). For our purposes,

cores describe some sets of finite lattices very conveniently. (1.6)

We can illustrate this by rewriting

{Ci ∔ B4 ∔ Cm ∔ B4 ∔ Cn−k−i−4 : i,m ∈ N+ and k + i ≤ n− 5},

taken from Mureşan and Kulin [13], into {L : Cor(L) = B4 ∔ B4}. The forthcoming Lemma 3
offers another motivation to use Cor(L).

For n ≥ 4, let Circ(n) be the set of lattices whose covering graphs are n-element circles. That
is,

Circ(n) := {L ∈ Lat(n) : the covering graph of L is a circle}. (1.7)

For example, Circ(4) = {B4}, Circ(5) = {N5}, and |Circ(6)| = 2.

Next, using (1.2), (1.6), and the notations, conventions, and concepts introduced so far, we
recall the previously known related results. To improve readability, we present these results both
in their original form and in our new terminology based on congruence density. Furthermore,
to facilitate faster comparisons among the fractions lcdn(k), we scale up most of them to have
denominators 64.

Theorem 1 (Proved in [3, 8, 13]). (A) (Freese [8]) For n ∈ N+, the largest number of con-
gruences of n-element lattices is 2n−1; equivalently, lcdn(1) = 64/64 = 1. Furthermore, an
n-element finite lattice L has exactly 2n−1 congruences (that is, cd(L) = 1) if and only if L
is a chain.

(B) (Czédli [3]) Let 4 ≤ n ∈ N+. Then the second largest number of congruences of n-element
lattices is 2n−2; equivalently, lcdn(2) = 32/64 = 1/2. Furthermore, an n-element lattice L
has exactly 2n−2 congruences (that is, cd(L) = 32/64) if and only if Cor(L) = B4.

(C) (Mureşan and Kulin [13]) Let 5 ≤ n ∈ N+. Then the third largest number of congruences
of n-element lattices is 5 · 2n−5; equivalently, lcdn(3) = 20/64 = 5/16. Furthermore, an
n-element lattice L has exactly 5 · 2n−5 congruences (that is, cd(L) = 20/64) if and only if
Cor(L) = N5.

(D) (Mureşan and Kulin [13]) Let 6 ≤ n ∈ N+. Then the fourth largest number of congruences of
n-element lattices is 2n−3; equivalently, lcdn(4) = 16/64 = 1/4. Furthermore, an n-element
lattice L has exactly 2n−3 congruences (that is, cd(L) = 16/64) if and only if Cor(L) = C2×C3

or Cor(L) = B4 ∔ B4.
(E) (Mureşan and Kulin [13]) Let 6 ≤ n ∈ N+. Then the fifth largest number of congruences

of n-element lattices is 7 · 2n−6; equivalently, lcdn(5) = 14/64 = 7/32. Furthermore, an
n-element lattice L has exactly 7 · 2n−6 congruences (that is, cd(L) = 14/64) if and only if
Cor(L) ∈ Circ(6).

There are two ways to obtain a Hall–Dilworth gluing3 L of a finite lattice K and B4. First, if
|K ∩B4| = 1, then L is the glued sum K ∔ B4 or B4 ∔ K. Second, if |K ∩B4| = 2, then L is called
an edge gluing of K and B4 (or B4 and K). For example, C3×C2 is an edge-gluing of two copies of
B4, and H5,7 in Fig. 6 is an edge-gluing of N5 and B4. We emphasize: A Hall–Dilworth gluing of B4

and another lattice K is either a glued sum or an edge-gluing, since we do not allow trivial gluings

3See, e.g., Grätzer [9, Lemma 298], where “Hall–Dilworth” is dropped.
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where one of B4 and K is a sublattice of the other one. Moreover, the term “a Hall–Dilworth
gluing of K and B4” (with an indefinite article) will express that K an B4 can be taken in either
arrangement: “K and B4” or “B4 and K”.

At this stage, based on the notations and concepts introduced in (1.1), (1.3), (1.5), (1.6),
and (1.7), we are in a position to state the sole result of the paper. While the theorem below
is formulated using the congruence density approach, the subsequent corollary presents the same
result in terms of the numbers of congruences.

Theorem 2 (Main Theorem). As in (1.3), let n6 := 7 and, for 7 ≤ k ∈ N+, let nk := k.

(i) Assume that n6 ≤ n ∈ N+. Then lcdn(6) = 11/64. Furthermore, for every n-element lattice
L, cd(L) = 11/64 if and only if Cor(L) ∈ Circ(7).

(ii) Assume that n7 ≤ n ∈ N+. Then lcdn(7) = 10/64 = 5/32. Furthermore, for every n-element
lattice L, cd(L) = 10/64 if and only if Cor(L) is a Hall–Dilworth gluing of N5 and B4 (that
is, if Cor(L) is N5 ∔ B4, B4 ∔ N5, or an edge-gluing of N5 and B4 in either arrangement).

(iii) Assume that 8 ≤ k ∈ N+ and nk ≤ n ∈ N+. Then

lcdn(k) =
8 + 3/2k−7

64
=

1

8
+

3

2k−1
.

Furthermore, for every n-element lattice L, cd(L) = (8 + 3/2k−7)/64 if and only if
Cor(L) ∈ Circ(k).

In part (ii) above, Cor(L) = N5 ∔ B4 can occur only when n ≥ 8 = n7 + 1. Below, we present
Corollary 1, which aligns with the title of the paper and follows directly from Theorem 2 and (1.2).

Corollary 1. (i) Assume that 7 ≤ n ∈ N+. Then the sixth largest number of congruences
of n-element lattices is lnc(n, 6) = 11 · 2n−7. Furthermore, an n-element lattice L has exactly
11 · 2n−7 congruences if and only if Cor(L) ∈ Circ(7).

(ii) Assume that 7 ≤ n ∈ N+. Then the seventh largest number of congruences of n-element
lattices is lnc(n, 7) = 10 · 2n−7 = 5 · 2n−6. Furthermore, an n-element lattice L has exactly
10 · 2n−7 congruences if and only if Cor(L) is a Hall–Dilworth gluing of N5 and B4 (in either
arrangement).

(iii) Assume that 8 ≤ k ≤ n ∈ N+. Then the kth largest number of congruences of n-element
lattices is lnc(n, k) = (8 + 3/2k−7) · 2n−7. Furthermore, an n-element lattice L has exactly
(8 + 3/2k−7) · 2n−7 congruences if and only if Cor(L) ∈ Circ(k).

The remainder of the paper proves Theorem 2 and, as a byproduct, presents a new proof of
Theorem 1.

2. Facts about lattice congruences

For a poset (= partially ordered set) P and u ∈ P , the principal ideal {x ∈ P : x ≤ u} and the
principal filter {x ∈ P : x ≥ u} will be denoted by idl(u) and fil(u), respectively. A subset X of P
is an order ideal of P if for every u ∈ X, idl(u) ⊆ X. The set of order ideals of P will be denoted
by Idl(P ). Note that Idl(P ) =

(

Idl(P );∩,∪
)

is a distributive lattice. For a finite lattice L, Ji(L) is
a subposet of L with respect to the order inherited from L. It is well known that D ∼= Idl(Ji(D))
for each finite distributive lattice D; see, e.g., Grätzer [9, Theorem 107]. In particular, since the
congruence lattice of any lattice is well known to be distributive, see [9, Theorem 149],

for each finite lattice L, Con(L) ∼= Idl(Ji(Con(L))). (2.1)
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Let L be a finite lattice. As the blocks of each Θ ∈ Con(L) are convex sublattices, Θ is
determined by

{(a, b) : (a, b) ∈ Θ and a ≤ b}.

Thus, when dealing with lattice congruences, we consider only the comparable pairs they collapse.
For such a pair (a, b), so a ≤ b, con(a, b) will stand for the smallest congruence containing (a, b).
It is well known (see the first sentence in Grätzer [11]) and it is easy to prove that

Ji(Con(L)) = {con(a, b) : a ≺ b}; (2.2)

that is, the join-irreducible congruences and the congruences generated by edges (of the diagram
of L) are the same. (Note the terminological nuance: for a ≺ b, (a, b) ∈ L2 is an edge, but
[a, b] = {a, b} ⊆ L is a prime interval.) The “pentagon lattice” N5 has five edges. With the
notation of the first diagram in Fig. 1, (d, i) and (o, d) are the (upper and lower) long edges, (v2, i)
and (o, u2) are the (upper and lower) short edges, and (u2, v2) is the monolith edge of N5. In B4,
there are two upper edges, (u1, i) and (v2, i) on the right of Fig. 1, and two lower edges.

Figure 1. Visualizing րp, րb, ցp, and ցb.

Definition 1. On the set Edge(L) of edges of our finite lattice L, we define the following eight
relations; some of them are visualized in Fig. 1, where the bold edges denote coverings in L. For
distinct edges (u1, v1), (u2, v2) ∈ Edge(L), the following definitions apply :

• (u1, v1) րp (u2, v2)
def

⇐⇒ (u1, v1) is the long lower edge and (u2, v2) is the monolith edge of
an N5 sublattice;

• (u1, v1) ցp (u2, v2)
def

⇐⇒ (u1, v1) is the long upper edge and (u2, v2) is the monolith edge of
an N5 sublattice;

• (u1, v1) →p (u2, v2)
def

⇐⇒ (u1, v1) րp (u2, v2) or (u1, v1) ցp (u2, v2);

• (u1, v1) րb (u2, v2)
def

⇐⇒ (u1, v1) is a lower edge and (u2, v2) is the opposite upper edge of a
B4 sublattice;

• (u1, v1) ցb (u2, v2)
def

⇐⇒ (u1, v1) is an upper edge and (u2, v2) is the opposite lower edge of
a B4 sublattice;

• (u1, v1) →b (u2, v2)
def

⇐⇒ (u1, v1) րb (u2, v2) or (u1, v1) ցb (u2, v2);

• (u1, v1) →bp (u2, v2)
def

⇐⇒ (u1, v1) →b (u2, v2) or (u1, v1) →p (u2, v2);

• (u1, v1) →
∗ (u2, v2)

def

⇐⇒
(

(u1, v1), (u2, v2)
)

is in the reflexive-transitive closure of the rela-
tion →bp.

For (a, b), (c, d) ∈ Edge(L), Grätzer [11, Lemma 1.4 and Note 1.2] proved that

con(a, b) ≥ con(c, d) ⇐⇒ (a, b) →∗ (c, d). (2.3)
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Let the Strict Order

{(x, y) : x, y ∈ L and x < y} be denoted by SO(L).

The relations given in Definition 1 are meaningful even for (u1, v1), (u2, v2) ∈ SO(L). Clearly, see
also Grätzer [11], for any (a, b), (c, d) ∈ SO(L),

(a, b) →∗ (c, d) implies that con(a, b) ≥ con(c, d). (2.4)

Since →b, which is called the perspectivity relation, is a symmetric, (2.4) implies that for
(x1, y1), (x2, y2) ∈ SO(L),

if (x1, y1) →b (x2, y2), then con(x1, y1) = con(x2, y2). (2.5)

Let us emphasize: While →∗ is a reflexive relation on Edge(L), each of ցb, րb, ցp, րp, →p, →b,
and →bp is irreflexive. For a ∈ Ji(L), the unique lower cover of a will be denoted by a∗. Dually,
for a ∈ Mi(L), we denote the unique (upper) cover of a by a∗. Day [7, Page 71] strengthened (2.2)
to the following equality:

Ji(Con(L)) = {con(a∗, a) : a ∈ Ji(L)}. (2.6)

Although the “C-relation” in Day [7] (which was called the “D-relation” later) combines (2.3) and
(2.6) to describe Con(L), we stick to (2.3), which is visual and easier to apply (especially when it
is used together with its dual).

In (2.8), which will be formulated soon, we make only minor additions to Theorem 3.10 from
Grätzer [10]. The reader could be interested in how to derive (2.8) from the widely known (2.1)
in a straightforward way, so we present some details. (In spirit, we follow both Grätzer [10] and
Czédli [2, Page 317], though the reader need not consult these sources.) A quasiorder is a reflexive
and transitive relation. For a quasiorder τ , x ≤τ y will stand for (x, y) ∈ τ , and we define

x ≡τ y
def

⇐⇒ (x ≤τ y and y ≤τ x).

For a quasiordered set (A; ν), a (possibly empty) subset X of A is an ideal if for all x ∈ X and
y ∈ A, y ≤ν x implies that y ∈ X. With respect to the subset inclusion “⊆”, the ideals of (A; ν)
form a lattice, which we denote by Idl(A; ν). The canonical equivalence θ := ν ∩ ν−1 is the same
as ≡τ . For u ∈ A, u/θ will stand for the θ-block {x ∈ A : (x, u) ∈ θ} of u. For a, b ∈ A, let
a/θ ≤ν/θ b/θ mean that a ≤ν b; the choice of a and b in their θ-blocks is irrelevant. Clearly,
(A/θ; ν/θ) is a poset, the so called canonical poset associated with (A; ν), and it is easy to see that
the function

Idl(A; ν) → Idl(A/θ; ν/θ) defined by X → {u/θ : u ∈ X} (2.7)

is a lattice isomorphism. For a finite lattice L and H ⊆ Edge(L), we say that H is a congruence-
determining subset of Edge(L) if

{conL(x, y) : (x, y) ∈ H} = Ji(Con(L)).

For example, {(a∗, a) : a ∈ Ji(L)}, {(a, a∗) : a ∈ Mi(L)} (by (2.2) and its dual), and Edge(L) itself
are such subsets. We define a quasiorder ν(L) of Edge(L) by letting

(x1, y1) ≤ν(L) (x2, y2)
def

⇐⇒ conL(x1, y1) ≤ conL(x2, y2).

For a congruence-determining subset H of Edge(L), we denote the quasiordered set (H;H2 ∩ ν(L))
simply by (H; ν(L)). (So, we make no notational distinction between ν(L) and its restriction to H.)
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Clearly, the canonical poset associated with (H; ν(L)) is isomorphic to the poset Ji(Con(L)). Thus,
combining (2.1) with (2.7), we obtain that for every congruence-determining subset H of Edge(L),

Con(L) ∼= Idl(H; ν(L)). (2.8)

Next, let Γ: a(1), . . . , a(p) be a repetition-free list of the elements of Ji(L). An x ∈ L is a
join-deficit (modulo Γ) if either x ∈ Jr(L), or x is of the form a(i) ∈ Ji(L) such that there exists a
j ∈ {1, 2, . . . , i − 1} with con(a(j)∗, a

(j)) = con(a(i)∗, a
(i)). Meet-deficits (modulo a repetition-free

list ∆ of Mi(L)) are defined dually. Since our only purpose is to count the join-deficits and the
meet-deficits of L, the choice of Γ and ∆ is irrelevant. Hence, “(modulo Γ)” and “(modulo ∆)”
will be dropped.

Lemma 1 (Three-Deficits Lemma). If a finite lattice L has at least three join-deficits or at
least three meet-deficits, then cd(L) ≤ 8/64. In particular, if |Jr(L)| ≥ 3 or |Mr(L)| ≥ 3, then
cd(L) ≤ 8/64.

P r o o f. Since L and its dual have the same congruence lattice, we can assume L has at least
three join-deficits. Let n := |L|. As 0 /∈ Ji(L), (2.6) yields that

|Ji(Con(L))| ≤ |L| − 1− 3 = n− 4.

Combining this with (2.1), we have that

|Con(L)| ≤ 2n−4.

Hence,

cd(L) = |Con(L)|/2n−1 ≤ 2−3 = 8/64,

as required. �

Lemma 2 (Glued Sum Lemma). For 2 ≤ t ∈ N+ and finite lattices L1, . . . , Lt, cd(L1 ∔ · · · ∔
Lt) is equal to the product cd(L1) . . . cd(Lt).

P r o o f. Let L := L1 ∔ L2. As Mureşan and Kulin [13] observed (and as it is easy to see),
Con(L) ∼= Con(L1)× Con(L2) and |L| = |L1|+ |L2| − 1. Thus

cd(L) =
|Con(L)|

2|L|−1
=

|Con(L1)|

2|L1|−1
·
|Con(L2)|

2|L2|−1
= cd(L1) · cd(L2).

Thus, the lemma holds for t = 2, and a trivial induction completes the proof. �

Lemma 3 (Core Lemma). For any finite lattice L, cd(L) = cd(Cor(L)).

P r o o f. The congruence density of any chain is 1. Hence (the Glued Sum) Lemma 2 implies
Lemma 3. �

Lemma 4 (Glue-B4 Lemma). If L is a Hall–Dilworth gluing of B4 and a finite lattice K, then
cd(L) = cd(K)/2. In other words, if a finite lattice L is an edge gluing or a glued sum of a lattice
K and B4, then cd(L) = cd(K)/2.
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P r o o f. For L ∈ {K ∔ B4, B4 ∔ K}, (the Glued Sum) Lemma 2 and cd(B4) = 1/2 imply
that cd(L) = cd(K)/2. Let L be an edge gluing of K and B4; by duality, we can assume that K is
the lower lattice. Denote the atoms of B4 by a and b so that a ∈ K but b /∈ K. Define

H := Edge(K) ∪ {(0B4
, b)}.

It follows from (2.3) and (2.5) that H is a congruence-determining subset of Edge(L), ν(K) is the
restriction of ν(L) to Edge(K), and for every (x, y) ∈ Edge(K), neither (0B4

, b) ≤ν(L) (x, y) nor
(x, y) ≤ν(L) (0B4

, b). Thus, each X ∈ Idl(H; ν(L)) can be written uniquely in the form Y ∪Z, where
Y ∈ Idl(Edge(K); ν(K)) and Z ⊆ {(0B4

, b)} can be chosen independently. Hence,

|Idl(H; ν(L))| = 2 · |Idl(Edge(K); ν(K))|,

and (2.8) yields that |Con(L)| = 2 · |Con(K)|. Dividing this equality by

2|L|−1 = 22 · 2|K|−1,

we obtain the required equality cd(L) = cd(K)/2. �

Lemma 5 (Three-Covers Lemma). If a finite lattice L has an element with at least three covers
or at least three lower covers, then cd(L) ≤ 8/64 = 1/8.

P r o o f. By duality, we can assume that an element o ∈ L has t ≥ 3 covers, a1, . . . , at. We
will use only a1, a2, a3. By (the Three-Deficits) Lemma 1, we can assume that |Jr(L)| ≤ 2. Hence,
in particular, a1 ∨ a2, a1 ∨ a3, a2 ∨ a3, which belong to Jr(L), are not pairwise distinct. After
rearranging the subscripts if necessary, we have a1 ∨ a3 = a2 ∨ a3 := i. Depending on a1 ∨ a2, there
are two cases to consider.

Case (i). We assume that v := a1 ∨ a2 < i; see Fig. 2, where the bold edges denote coverings, the
thin solid edges stand for “<”, and the dotted edges indicate “≤”. As |Jr(L)| ≤ 2, Jr(L) = {v, i}.
In particular, a1, a2, a3 ∈ Ji(L). Since a3 ≤ v would lead to i ≤ v, we have that a3 � v. Let
j ∈ {1, 2}. As aj ∨a3 ∈ Jr(L) = {v, i} but aj ∨a3 = v would contradict that a3 � v, we obtain that
aj∨a3 = i. Furthermore, o ≤ a3∧aj < a3 and o ≺ a3 yield that a3∧aj = o. Thus, (o, aj) րb (a3, i),
for j ∈ {1, 2}, and (2.5) yields that con(o, a1) = con(a3, i) = con(o, a2). In particular,

con(a1∗, a1) = con(a2∗, a2).

Thus, v, i ∈ Jr(L) and a2 are distinct join-deficits, and (the Three-Deficits) Lemma 1 implies that
cd(L) ≤ 8/64, as required.

Case (ii). We assume that a1 ∨ a2 = i; see Fig. 2 again. So

a1 ∨ a2 = a1 ∨ a3 = a2 ∨ a3 = i.

Clearly,
a1 ∧ a2 = a1 ∧ a3 = a2 ∧ a3 = i.

Hence, for every j, t ∈ {1, 2, 3} distinct, (o, aj) րb (at, i). Thus, (2.5) (or the fact that M3 is a
simple lattice) leads to

con(o, a1) = con(a3, i) = con(o, a2) = con(a1, i) = con(o, a3),

whereby
con(o, a1) = con(o, a2) = con(o, a3). (2.9)
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If
|Jr(L) ∩ {a1, a2, a3}| ≥ 2,

then Jr(L), which contains also i, has at least three elements, and the required cd(L) ≤ 8/64 follows
from (the Three-Deficits) Lemma 1. If

|Jr(L) ∩ {a1, a2, a3}| = 0,

then {a1, a2, a3} ⊆ Ji(L), two members of {a1, a2, a3} are join-deficits by (2.9), and so is i ∈ Jr(L),
whereby (the Three-Deficits) Lemma 1 applies again. Finally, assume that

|Jr(L) ∩ {a1, a2, a3}| = 1.

Apart from indexing, a1 ∈ Jr(L) and {a2, a3} ∈ Ji(L). By (2.9), a3 is a join-deficit, and so are
a1, i ∈ Jr(L). So we can apply (the Three-Deficits) Lemma 1, completing the proof of Lemma 5.

�

Figure 2. Illustrating the proofs of Lemmas 5 and 6.

Lemma 6 (Antichain Lemma). If a finite lattice L has a three-element antichain, then
cd(L) ≤ 8/64 = 1/8.

P r o o f. Let n := |L|. By (the Three-Deficits) Lemma 1, we can assume that |Mr(L)| ≤ 2
and |Jr(L)| ≤ 2. Let {a1, a2, a3} be a three-element antichain in L. Let o := a1 ∧ a2 ∧ a3 and
i := a1 ∨ a2 ∨ a3. Define the sets

S∧ := {{j, t} : j 6= t and aj ∧ at > o}

and
S∨ := {{j, t} : j 6= t and aj ∨ at < i}.

For {j, t}, {j′ , t′} ∈ S∧, if {j, t} 6= {j′, t′}, then aj ∧ at 6= aj′ ∧ at′ , as otherwise

aj ∧ at = (aj ∧ at) ∧ (aj′ ∧ at′) = a1 ∧ a2 ∧ a3 = o

would contradict that {j, t} ∈ S∧. Using this observation,

{o} ∪ {aj ∧ at : {j, t} ∈ S∨} ⊆ Mr(L),

and |Mr(L)| ≤ 2, we obtain that |S∧| ≤ 1.
Assume that |S∧| = 0 that is,

a1 ∧ a2 = a1 ∧ a3 = a2 ∧ a3 = o.
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For j ∈ {1, 2, 3}, let xj ∈ [o, aj ] such that o ≺ xj. These covers of o are pairwise distinct; indeed, if
we had that xj = xt for j 6= t, then

o ≺ xj = xj ∧ xt ≤ aj ∧ at = o

would be a contradiction. Hence, the required inequality cd(L) ≤ 8/64 follows from (the Three
Covers) Lemma 5.

Therefore, we can assume that |S∧| = 1 and, by duality, |S∨| = 1. Apart from symmetry,
there are two cases to deal with: either S∨ = {{1, 2}} and S∧ = {{1, 2}} or S∨ = {{1, 2}} and
S∧ = {{2, 3}}.

Case (A). We assume that S∨ = {{1, 2}} and S∧ = {{1, 2}}. This means that

v := a1 ∨ a2 < i = a1 ∨ a3 = a2 ∨ a3

and
u := a1 ∧ a2 > o = a1 ∧ a3 = a2 ∧ a3.

Note that Jr(L) = {v, i} and Mr(L) = {o, u}. Pick x4, x5, x6 ∈ L such that u ≺ x4 ≤ a1,
u ≺ x5 ≤ a2, o ≺ x6 ≤ u, and remember that o ≺ x3 ≤ a3; see Fig. 2. The elements x3, . . . , x6,
being outside {v, i}, are in Ji(L). Since x3 ≤ u would imply x3 ≤ a1∧a2∧a3 = o and u ≤ x3 would
imply u ≤ o, we obtain that x3 ‖ u. Thus, as Jr(L) = {v, i}, we obtain that v ≤ u ∨ x3. Since

o ≺ x3 and o ≤ u ∧ x3 < x3, we have u ∧ x3 = o.

So, (o, x3) րb (u, u ∨ x3). Thus, by the convexity of the con(o, x3)-block of u, (2.4), and (2.5),
we obtain that con(u, x4) ≤ con(u, v) ≤ con(u, u ∨ x3) = con(o, x3) and con(u, x5) ≤ con(o, x3).
Since x6 ≤ a3 would imply x6 ≤ o and a3 ≤ x6 would lead to a3 ≤ a1, we obtain that x6 ‖ a3.
Combining this with o ≺ x6, v � a3 (as otherwise v ≥ i), and Jr(L) = {v, i}, we conclude that
(o, x6) րb (a3, i). Hence, (2.5) yields that con(a3, i) = con(o, x6). We have seen that v � a3, while
v ≤ a3 would lead to a1 ≤ a3. So, v ‖ a3. Trivially, v ∨ a3 = i. Using that Mr(L) = {u, o}, we have
that {u, o} ∋ v∧a3 ≤ u. Hence, (a3, i) ցb (v∧a3, v), and (2.5) gives that con(v∧a3, v) = con(a3, i).
By the convexity of the con(v ∧ a3, v)-block of v and v ∧ a3 ≤ u, con(u, x4) ≤ con(v ∧ a3, v) and
con(u, x5) ≤ con(v ∧ a3, v). So, by transitivity, con(u, x4) ≤ con(o, x6) and con(u, x5) ≤ con(o, x6).
We have seen that

for j ∈ {4, 5} and t ∈ {3, 6}, con(xj∗, xj) ≤ con(xt∗, xt). (2.10)

On the set H := {(p∗, p) : p ∈ Ji(L)}, define a quasiorder ρ by letting (p∗, p) ≤ρ (q∗, q) if and only if
p = q or there is a pair (j, t) ∈ {4, 5} × {3, 6} such that p = xj and q = xt. Furthermore, as before,
(p∗, p) ≤ν(L) (q∗, q) means that con(p∗, p) ≤ con(q∗, q). Then we have two quasiordered sets, (H; ρ)
and (H; ν(L)). By (2.10), ν(L) is coarser than ρ. Therefore, Idl(H; ν(L)) ⊆ Idl(H; ρ). Since H is
a congruence-determining subset of Edge(L) by (2.6), we obtain from (2.8) that

|Con(L)| = |Idl(H; ν(L))| ≤ |Idl(H; ρ)|. (2.11)

The quasiordered set (H; ρ) is actually a poset, and its subposet

H0 := {(p∗, p) : p ∈ {x3, x4, x5, x6}}

is depicted in Fig. 2. Clearly, |Idl(H0; ρ)| = 7. The rule X 7→ X ∩H0 defines a map g : Idl(H; ρ) →
Idl(H0, ρ). Since

|H \H0| = |H| − |H0| = (n− 1− |Jr(L)|) − 4 = n− 7,
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each Y ∈ Idl(H0; ρ) has at most 2n−7 preimages. Hence, |Idl(H, ρ)| ≤ 7 ·2n−7. Combining this with
(2.11), we obtain the required

cd(L) = |Con(L)|/2n−1 ≤ (7 · 2n−7)/2n−1 = 7/26 ≤ 8/64.

Case (B). We assume that S∨ = {{1, 2}} and S∧ = {{2, 3}}. This means that

v := a1 ∨ a2 < i = a1 ∨ a3 = a2 ∨ a3 and u := a2 ∧ a3 > o = a1 ∧ a2 = a1 ∧ a3.

Pick an element y ∈ L such that u ≺ y ≤ a2, and remember that o ≺ x1 ≤ a1; the situation is
visualized in Fig. 2. As Jr(L) = {v, i}, {x1, y} ⊆ Ji(L). Since x1 ≤ a3 would lead to x1 ≤ a1∧a3 = o
and x1 ≥ a3 would lead to a1 ≥ a3, we have that x1 ‖ a3. So o ≤ x1 ∧ a3 < x1 and o ≺ x1 give that
x1 ∧ a3 = o. On the other hand, x1 ∨ a3 ∈ Jr(L) = {v, i}. As x1 ∨ a3 = v would lead to a3 ≤ v and
so i = v ∨ a3 = v, we have that x1 ∨ a3 = i. Hence, (o, x1) րb (a3, i), whereby (2.5) yields that
con(a3, i) = con(o, x1) = con(x1∗, x1).

Next, y ≤ a3 would lead to y ≤ a2 ∧ a3 = u while y ≥ a3 to a2 ≥ a3, whence a3 ‖ y. Combining
u ≤ a3 ∧ y < y with u ≺ y, we obtain that a3 ∧ y = u. Since a3 ∨ y = Jr(L) = {v, i} and
a3 ≤ a3 ∨ y = v would lead to i ≤ v, we have that a3 ∨ y = i. Thus, (u, y) րb (a3, i), whence (2.5)
gives that con(a3, i) = con(u, y) = con(y∗, y). Hence, con(y∗, y) = con(x1∗, x1), whereby y is a
join-deficit. So y, v, and i are three join-deficits, and (the Three-Deficits) Lemma 1 gives the
required inequality cd(L) ≤ 8/64), completing the proof of Lemma 6. �

Figure 3. Illustrating the proofs of Lemmas 7, 8, and 9.

Lemma 7 (Circle Lemma). If 4 ≤ n ∈ N+ and L ∈ Circ(n), then

cd(L) =
8 + 3/2n−7

64
=

1

8
+

3

2n−1
.

P r o o f. The set of minimal elements and that of maximal elements of a poset P will be
denoted by Min(P ) and Max(P ), respectively. Let L ∈ Circ(n). Label its two edges departing
from 0L with α and β, and label the remaining of edges that are disjoint from 1L with µ1, . . . , µn−4.
These labels stand for the congruences generated by the corresponding edges. As an illustration,
all L ∈ Circ(8) are drawn on the left of Fig. 3. The two α-labeled edges of each of these diagrams
are perspective (i.e., →b), and the same holds for the β-labeled edges.
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Let J := Ji(Con(L)), (2.2) and (2.3) give that Max(J) = {α, β}, Min(J) = {µ1, . . . , µn−4}, J is
the disjoint union of Max(J) and Min(J), and ξ < ψ holds for every ξ ∈ Min(J) and ψ ∈ Max(J).
There are 2n−4 members of Idl(J) that are disjoint from Max(J). If X ∈ Idl(J) is not disjoint from
Max(J), then Min(J) ⊆ X; so there are 3 ways to pick such an X. Therefore, (2.1) leads to

cd(L) = |Con(L)|/2n−1 = |Idl(J)|/2n−1 = (2n−4 + 3)/2n−1 = 1/8 + 3/2n−1,

completing the proof of Lemma 7. �

The concept of edge gluing, defined in the paragraph right after Theorem 1, is meaningful for
any two non-singleton finite lattices: if we form a Hall–Dilworth gluing of L1 and L2 so that we
identify a two-element filter of L1 with a two-element ideal of L2, then we obtain an edge-gluing of
L1 and L2.

Lemma 8 (Two-Circles Lemma). Assume that m ≥ 4 and n ≥ 4 are integers, L1 ∈ Circ(n),
L2 ∈ Circ(m), and L is an edge-gluing of L1 and L2. Then the following two assertions hold.

(1) If m ≥ 5 and n ≥ 5, then cd(L) ≤ 6.5/64 = 13/128.

(2) If either m = 4 and n ≥ 6 or m ≥ 6 and n = 4, then cd(L) ≤ 7/64.

P r o o f. For part (1), the situation is visualized in the middle of Fig. 3. The distribution of
the δ1, . . . , δn−4 between the left boundary and the right boundary of L1 is unimportant, regardless
of how many are on each side. The same holds for ε1, . . . , εm−4 in case of L2. By (2.2) and (2.3),
we obtain J := Ji(Con(L)), see the figure again. In the computation below, Nα, N¬α,β, etc. will
denote |{X ∈ Idl(J) : α ∈ X}|, |{X ∈ Idl(J) : α /∈ X, β ∈ X}|, etc., respectively. By (1.1) and
(2.1), we can compute as follows

cd(L) = |Idl(J)| / 2|L|−1 = (N¬α,¬β,¬γ +N¬α,β,¬γ +N¬α,¬β,γ +N¬α,β,γ +Nα) / 2
n+m−3

= (2n+m−8 + 2m−4 + 2n−4 + 1 + 4) / 2n+m−3

= (21 + 2−(n−5) + 2−(m−5) + 5 · 2−(n−5)−(m−5)−1) / 26

≤ (2 + 1 + 1 + 5/2) / 26 = 6.5/64,

as required by part (1). Part (2) is a trivial consequence of (the Glue-B4) Lemma 4 and (the
Circle) Lemma 7, completing the proof of Lemma 8. �

3. The final steps of the proof of the theorems

In addition to proving the new result, Theorem 2, no extra effort is required to provide an
entirely new proof of Theorem 1 as well. Thus, we prove both theorems. We proceed with a
lemma.

Lemma 9. For a finite lattice L, the following two conditions are equivalent :

(1) |Jr(L)| = 2, |Mr(L)| = 2, and L contains no three-element antichain.

(2) There are 4 ≤ m,n ∈ N+ and lattices L1 ∈ Circ(m) and L2 ∈ Circ(n) such that Cor(L) is
the glued sum or an edge-gluing of L1 and L2.
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P r o o f. As the second condition implies the first trivially, we assume that the first condition
holds. Pick a pair (a, b) of incomparable elements of L. Let u := a∧ b, v := a∨ b, and n := |[u, v]|.
Furthermore, let

C := [u, v] ∩ (idl(a) ∪ fil(a)) and D := [u, v] ∩ (idl(b) ∪ fil(b)).

In the rightmost diagram of Fig. 3, [u, v] is indicated by the light-grey color. Note that the diagram
is loosely connected to the proof. While certain features of the diagram align with specific parts
of the proof, other features, such as the presence of three-element antichains, illustrate (indirect)
assumptions that must be excluded. Additionally, the diagram primarily supports the “u < v′”
portion of the proof (i.e., the second half). We claim that

C and D are chains, C ∪D = [u, v], and C ∩D = {u, v}. (3.1)

For the sake of contradiction, assume that there are x, y ∈ C such that x ‖ y. By duality, we can
assume that x, y ∈ fil(a) ∩ [u, v]. Since x ‖ y, we have that x < v and y < v. If we had that
b ≤ x, then v = a ∨ b ≤ x would be a contradiction, while x ≤ b would contradict that a ‖ b.
Hence, x ‖ b. Similarly, y ‖ b. So, {x, y, b} is a three-element antichain, which is a contradiction.
This proves that C is a chain. By symmetry, so is D. Next, assume that x ∈ C ∩ D. As a ‖ b,
either x ∈ idl(a) ∩ idl(b) or x ∈ fil(a) ∩ fil(b). In the first case, u = a ∧ b ≥ x ∈ [u, v] gives that
x = u. Dually, the second case leads to x = v, and we have shown that C ∩D = {u, v}. Finally, if
we had an element y in [u, v] \ (C ∪D), then {a, b, y} would be a three-element antichain. Thus,
[u, v] = C ∪D, and we obtain the validity of (3.1).

Next, let uC ∈ C and vC ∈ C be the (unique) elements of C such that uC covers u and vC is
covered by v. Similarly, uD ∈ D and vD ∈ D denote the (unique) elements of D such that u ≺ uD
and vD ≺ v. We claim that for each x, y ∈ L,

if x > u then x ≥ uC or x ≥ uD, and if y < v then y ≤ vC or y ≤ vD. (3.2)

To see this, note that x > u implies the existence of an x0 such that u ≺ x0 ≤ x. As there is no
three-element antichain, x0 ∈ {uC , uD}. Thus, (3.2) follows by duality.

We continue by showing that

every x ∈ Jr(L) ∪Mr(L) is comparable with both u and v. (3.3)

To see this, we assume by duality that x ∈ Jr(L). Then x is comparable with v, as otherwise v, x,
and v∨x would be three distinct elements of Jr(L). Assume, aiming for a contradiction, that x ‖ u.
Then u ∨ x = v, since Jr(L) = {v, x}. But then x < v and (3.2) give that x ∈ idl(vC) ∪ idl(vD),
whence v = u ∨ x ≤ vC or v = u ∨ x ≤ vD, which is a contradiction proving (3.3).

Next, we show that if there exist a′, b′ ∈ L such that

a′, b′ ∈ idl(u) ∪ fil(v) and a′ ‖ b′, then Cor(L) is of the required form. (3.4)

By duality, it suffices to deal with a′, b′ ∈ idl(u). Let u′ := a′ ∧ b′, v′ := a′ ∨ b′, and m := |[u′, v′]|.
Since u′ < v′ ≤ u, v′ ≤ u < v, and |Mr(L)| = |Jr(L)| = 2, we have that Mr(L) = {u′, u} and
Jr(L) = {v′, v}. We know that u′ < v′ ≤ u < v, and we claim that {u′, v′, u, v} ⊆ Nar (L). If
we had an element x such that x ‖ u′, then x ∧ u′ would belong to Mr(L), contradicting that
|Mr(L)| = 2. Hence, there is no such x, and so u′ ∈ Nar (L). Dually, v ∈ Nar (L). By duality, it
suffices to deal with u alone, out of v′ and u. Seeking a contradiction, suppose that there is an x ∈ L
such that x ‖ u. As we already know that v ∈ Nar (L), we have that x < v, as v ≤ x would lead to
u < x. By (3.2), u ∨ x ≤ vC or u ∨ x ≤ vD, and so u ∨ x 6= v. As v′ ≤ u < u ∨ x, u ∨ x 6= v′. Thus,
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u ∨ x, which is clearly join-reducible, cannot belong to {v′, v} = Jr(L). This contradiction rules
out the existence of x ∈ L with x ‖ u, and we have shown that {u′, v′, u, v} ⊆ Nar (L). Therefore,

L = idl(u′) ∔ [u′, v′] ∔ [v′, u] ∔ [u, v] ∔ fil(v). (3.5)

Each of idl(u′), [v′, u], and fil(v) is a chain, since otherwise we would obtain a third join-reducible
element. Since C \{u, v} is disjoint from both Jr(L) = {v′, v} and Mr(L) = {u′, u}, the elements of
C \{u, v} are doubly irreducible. As the same holds for D \{u, v}, (3.1) yields that [u, v] ∈ Circ(n).
Similarly, [u′, v′] ∈ Circ(m). These facts and (3.5) imply(3.4).

If necessary, we can select new a and b with the same v = a∨ b as before and allow u to change
accordingly. Therefore, in the remainder of the proof, we assume that a ≺ v = a ∨ b and b ≺ v.
(These covering relations mean that a = vC and b = vD.) Obviously, (3.1)–(3.4) remain valid.
However, the extra assumption allows us to strengthen (3.1) to

[u, v] ∈ Circ(n) (3.6)

To verify this, it suffices to augment (3.1) with the following property: for any x ∈ C \ {u, v}
and y ∈ D \ {u, v}, x and y are incomparable. This is straightforward. Indeed, x ≤ y leads to
x = x ∧ y ≤ vC ∧ vD = a ∧ b = u, a contradiction, while swapping C an D shows that y ≤ x is
impossible, either. We have verified (3.6).

We obtain from (3.3) that (the two-element) Jr(L) is a chain. Therefore, we can assume that,
in addition to a ≺ v and b ≺ v, v is the largest element of Jr(L). Let u′ be the unique element of
Mr(L) \ {u}, and pick a′, b′ ∈ L such that u′ = a′ ∧ b′, u′ ≺ a′, and u′ ≺ b′. Let v′ := a′ ∨ b′ ∈ Jr(L)
and, as earlier, m := |[u′, v′]|. In the interval [u′, v′], we define C ′, D′, v′C′ , and v′D′ in the same
way as their non-primed counterparts are defined in the interval [u, v]. Furthermore, u′C′ = a′ and
u′D′ = b′.

By (3.3), u and v′ are comparable. If v′ ≤ u, then a′, b′ < u and (3.4) applies. Therefore, we
can assume that u < v′. As v is the largest element of Jr(L), we know that v′ ≤ v. By (3.3), u′

and u (which are distinct) are comparable. Assume, aiming for a contradiction, that u < u′. Then
a′, b′ ∈ [u′, v′] ⊆ [u, v] and u < u′ = a′ ∧ b′ ∈ Mr([u, v]) contradicts (3.6). Hence, u′ < u.

After a series of smaller observations, we will strengthen v′ ≤ v to v′ < v. If we had that u < a′,
then u′ < u < a′ would contradict the covering u′ ≺ a′. Thus, u 6< a′. Similarly, u 6< b′. Thus,
since {u, a′, b′} cannot be a three-element antichain and a′ ‖ b′, at least one of a′ ≤ u and b′ ≤ u
holds. On the other hand, at least one of them fails, as u < v′ = a′ ∨ b′. Hence, after swapping
the roles of a′ and b′ if necessary, we know that a′ ≤ u but b′ � u, so a′ ≤ u and b′ ‖ u. Since
b′ < v′ ≤ v, (3.2) implies that b′ ≤ vC = a or b′ ≤ vD = b. So, after swapping the roles of a and
b if necessary, we have that b′ ≤ b. Using the inequalities established in this paragraph, we obtain
that v′ = a′ ∨ b′ ≤ u ∨ b = b < v. Thus, we have shown that v′ < v, and we have also obtained
that v′ ≤ b. Let us summarize; a ‖ v′ below comes from a = vC , u < v′ ≤ b = vD, and (3.6), while
“[u′, v′] ∈ Circ(m)” follows from (3.6) by duality:

u′ ≺ a′ ≤ u < v′ ≤ b ≺ v, u ‖ b′, a ‖ v′, and [u′, v′] ∈ Circ(m). (3.7)

Next, we claim that

[u′, v] = [u′, v′] ∪ [u, v]. (3.8)

To derive a contradiction, assume that [u′, v] 6= [u′, v′] ∪ [u, v]. As “⊇” in the place of “6=” follows
from the inequalities summarized in (3.7), we have an element x ∈ [u′, v] such that x /∈ [u′, v′]∪[u, v].
We know that x ‖ u, since otherwise either u ≤ x and x would belong to [u, v], or x ≤ u ≤ v′

and x would be in [u′, v′]. Similarly, x ‖ v′, as otherwise we would have that x ∈ [v′, v] ⊆ [u, v] or
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Figure 4. The seven-element lattices H1,1–H3,2.

x ∈ [u′, v′]. As x ‖ v′, x ∨ u 6= v′. But x ∨ u ∈ Jr(L) = {v, v′} since x ‖ u. Hence, x ∨ u = v. On
the other hand, x < v and (3.2) yield that x ≤ vC = a or x ≤ vD = b. Hence v = u ∨ x ≤ a or
v = u ∨ x ≤ b, which is a contradiction implying (3.8).

By (3.8), every element of [u′, v] is in [u, v] or [u′, v′], but this will not be repeated in the
remainder of the proof. Moving forward, we will show that

u ≺ v′. (3.9)

Suppose the contrary, that is, u ⊀ v′; see Fig. 3. We know from b = vD and (3.7) that v′ ∈ D
and u < v′. These facts and u ⊀ v′ imply that uD < v′. Using (3.7) and a′ = u′C′ ∈ C ′, we have
that u ∈ C ′ \ {u′}, whereby u < uD < v′ yields that uD ∈ C ′, and so uD ≤ v′C′ . In particular, as
v′ ∈ D \ {v}, uD ∈ D, and uD ≤ v′C′ < v′, we obtain that v′C′ ∈ D \ {u, v}. Since u ∈ C ′ \ {u′, v′},
the [u′, v′] ∈ Circ(m) part of (3.7) implies that u ‖ v′D′ and u ∨ v′D′ = v′. Hence, if we had that
uC ≥ v′D′ , then u < u ∨ v′D′ ≤ uC and u ≺ uC would lead to u ∨ v′D′ = uC , and combining
this equality with the previously established u ∨ v′D′ = v′, we would obtain that uC = v′ ∈ D,
contradicting (3.6). Therefore, uC � v′D′ . On the other hand, uC ≤ v′D′ would lead to uC ≤ v′ ≤ b
by (3.7), whereby (3.6) would imply that v = uC ∨ b = b = vD, a contradiction. Thus, uC � v′D′ ,
and we have obtained that uC ‖ v′D′ ; this was the first step to show that Y := {uC , v

′
C′ , v′D′} is a

three-element antichain. By the [u′, v′] ∈ Circ(m) part of (3.7), v′C′ ‖ v′D′ . We have already seen
that v′C′ ∈ D \ {u, v}, whence (3.6) gives that uC ‖ v′C′ . So Y is a three-element antichain, which
is a contradiction that proves (3.9).

Finally, (3.6), the [u′, v′] ∈ Circ(m) part of (3.7), (3.8), and (3.9) imply that [u′, v] is an edge-
gluing of L1 := [u′, v′] ∈ Circ(m) and L2 := [u, v] ∈ Circ(n). Hence,

{v, v′} ⊆ Jr(L), {u, u′} ⊆ Mr(L), |Jr(L)| = 2, and |Mr(L)| = 2

yield that Cor(L) = [u′, v]. Thus, Cor(L) is of the required form, completing the proof of Lemma 9.
�

Most of the following lemma summarizes what we have already proved. By a core lattice we
mean a finite lattice L that is its own core, that is, L = Cor(L).
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Figure 5. The seven-element lattices H3,3–H5,5.

Lemma 10. The complete list of core lattices L with cd(L) > 8/64, along with their sizes and
congruence densities, is the following.

(1) The singleton lattice; its congruence density is 64/64, its size is 1.
(2) B4, the only element of Circ(4); cd(B4) = 32/64 and |B4| = 4.
(3) N5, the only element of Circ(5); cd(N5) = 20/64 and |N5| = 5.
(4) C2×C3, that is, the edge gluing of two copies of B4; cd(C2×C3) = 16/64 and |C2×C3| = 6.
(5) B4 ∔ B4; cd(B4 ∔ B4) = 16/64 and |B4 ∔ B4| = 7.
(6) All L ∈ Circ(6), where cd(L) = 14/64 and |L| = 6.
(7) All L ∈ Circ(7), where cd(L) = 11/64 and |L| = 7.
(8) All edge gluings L of B4 and N5; cd(L) = 10/64 and |L| = 7.
(9) L = B4 ∔ N5 or L = N5 ∔ B4; cd(L) = 10/64 and |L| = 8.

(10) All L ∈ Circ(n) for 8 ≤ n ∈ N+, where cd(L) = (8 + 3/2n−7)/64 and |L| = n.

P r o o f. It follows from (the Glued Sum) Lemma 2, (the Glue-B4) Lemma 4, and (the Circle)
Lemma 7 that the congruence densities are correctly given in the lemma. Clearly, so are the sizes
of the lattices that occur. We need to show only that every core lattice L with cd(L) > 8/64 is in
the list supplied by the lemma. So, assume that L is a core lattice such that cd(L) > 8/64.

By (the Three-Deficits) Lemma 1, we can assume that |Jr(L)|, |Mr(L)| ∈ {0, 1, 2}. Clearly,
|Jr(L)| = 0 if and only if |Mr(L)| = 0 if and only if L is a chain. As the only core chain, the
singleton chain, is in the list, we can assume that |Jr(L)|, |Mr(L)| ∈ {1, 2}.

Assume that |Jr(L)| = 1. Pick two incomparable elements a and b (in notation, a ‖ b), and
denote a ∨ b and a ∧ b by v and u, respectively. So v is the only nontrivial join. If L = {u, a, b, v},
then L = B4 is in the list. Assume that x is an additional element of L. Consider the following six
intervals of L:

[0, u], [v, 1], [u, a], [u, b], [a, v], [b, v]. (3.10)

If we had that x ‖ v, then x ∨ v would be a second nontrivial join, which is excluded. If x was
incomparable with u, then we would have x ∨ u = v, since v is the only nontrivial join. But then
a ≤ x or b ≤ x would violate x ‖ u, while x ≤ a or x ≤ b would contradict x ∨ u = v. Therefore,
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Figure 6. The seven-element lattices H5,6–H7,5.

{a, b, x} would form a three-element antichain, contradicting (the Antichain) Lemma 6. Hence, x
is comparable with both u and v. So x is either in one of the first two intervals listed in (3.10), or
x ∈ [u, v]. Assume that x ∈ [u, v]. As we know from (the Antichain) Lemma 6 that {a, b, x} is not
an antichain, x belongs to one of the last four intervals given in (3.10). We have seen that

each x ∈ L \ {u, a, b, v} is in one of the six intervals given in (3.10). (3.11)

We cannot have two incomparable elements in [a, v], as these two elements and b would form a three-
element antichain, contradicting (the Antichain) Lemma 6. By symmetry, [b, v] cannot contain two
incomparable elements either. Two incomparable elements in the remaining four intervals in (3.10)
would give a nontrivial join distinct from v, which would violate |Jr(L)| = 1. We have obtained
that

each of the six intervals given in (3.10) is a chain. (3.12)

Therefore, as L = Cor(L), we obtain that [0, u] and [v, 1] are singletons. This fact, (3.11), (3.12),
and |Ji(L)| = 1 imply that L ∈ Circ(n), and so L is in the list.

We have seen that L is in the list when |Jr(L)| = 1. By duality, L is in the list when |Mr(L)| = 1.
We are left with the case where |Jr(L)| = |Mr(L)| = 2. Then, by (the Antichain) Lemma 6 and
Lemma 9, there are 4 ≤ n1, n2 ∈ N+, L1 ∈ Circ(n1), and L2 ∈ Circ(n2) such that L is the glued
sum or an edge-gluing of L1 and L2.

First, let L = L1 ∔ L2. We obtain from (the Circle) Lemma 7 that, for ni = 4, 5, 6, . . . , cd(Li)
equals 1/2, 5/16, 7/32, . . . , respectively. By (the Glued Sum) Lemma 2,

8/64 < cd(L) = cd(L1) · cd(L2).

But the product of two (not necessarily distinct) entries of the sequence (1/2, 5/16, 7/32, . . . ) is
greater than 8/64 if and only if two copies of 1/2 are multiplied or we form the product (1/2)·(5/16).
Thus, L is B4 ∔ B4, B4 ∔ N5, or N5 ∔ B4, whereby L is in the list, as required.

Second, assume that L is an edge-gluing of L1 and L2. Since cd(L) > 8/64, (the Two-Circles)
Lemma 8 implies that (n1, n2) ∈ {(4, 4), (4, 5), (5, 4)}. Hence, as (4) and (8) in Lemma 10 show, L
is in the list again. Thus, the proof of Lemma 10 is complete. �

Based on the work carried out in this paper so far, the following proof is short.
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P r o o f. Lemma 10 implies Theorems 1 and 2 in a trivial way. �

Figure 7. The seven-element lattices H7,6–H9,3

4. The congruence densities of seven-element lattices

By Kyuno [12], there are exactly 53 seven-element lattices (up to isomorphism). Here, we
list all of them in Fig. 4–7, and we compute their congruence densities. Out of these 53 lattices,
we have already mentioned H5,3 and H5,7 as examples of glued sums and edge-gluing constructs,
respectively. With these two exceptions, this section is not needed in the earlier parts of the paper.

To make the completeness of our list easy to verify, the jth lattice in the ith line of Kyuno’s
drawings is denoted by Hi,j. In most cases, cd(Hi,j) is trivially obtained by (the Glued Sum)
Lemma 2, (the Glue-B4) Lemma 4, (the Core) Lemma 3, (the Circle) Lemma 7, or from an earlier
case by duality. In all other cases, we diagram Ji(Con(Hi,j)) and adopt the following convention:
For each Greek letter ξ in Fig. 4–7, the edges labeled by ξ1, ξ2, ξ3, . . . generate the same congruence.
Moreover, the equality of the congruence generated by a ξj−1-labeled edge and that generated by
a ξj-labeled edge follows directly from applying (2.5).

Based on the list, Fig. 4–7, we obtain lcd7(k) for k ∈ {1, . . . , 14}, and we also obtain that lcd7(k)
does not exist for k > 14. With respect to the common denominator 64 = 27−1, the numerators
of the lcd7(k) for k ∈ {1, . . . , 14} are given in the Table 1. Note that these numerators are the
sizes |Con(Hi,j)|. Each “i, j” entry gives one of the witnesses Hi,j of the corresponding congruence
density. Based on (the Core) Lemma 3, one could easily obtain the counterparts of the Table 1
for |L| = 5 and |L| = 6 from Fig. 4–7. Obtaining analogous tables for |L| = 8, 9, . . . would be
excessively tedious, as the computational complexity rapidly increases with |L|.

5. Conclusion

For n ≥ 7, let SCL(n) denote the set of the numbers of congruence relations of n-element
lattices L = (L;∨,∧). For all positive integers k ≥ 6 and n ≥ max{7, k}, we determined the k-th
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Table 1. The numerators of the lcd7(k) for k ∈ {1, . . . , 14}.

k 1 2 3 4 5 6 7 8
64 · lcd7(k) 64 32 20 16 14 11 10 8
Ha witness 1,1 1,2 1,4 3,1 1,6 1,8 4,5 2,4

k (cont’d) 9 10 11 12 13 14 15 16
64 · lcd7(k) 7 6 5 4 3 2 — —
Ha witness 6,2 3,3 6,1 4,3 7,3 8,2 — —

largest element lnc(n, k) of SCL(n). Furthermore, we gave an explicit structural description of the
lattices witnessing lnc(n, k). (Analogous results for k ≤ 5 were previously known.)

By examining the kth largest number of the congruences within the class of all n-element
lattices, this paper could inspire further research where one or more of the concepts —“kth”,
“congruences”,“all”, and “lattices”— are replaced with alternative, yet meaningful and fruitful
notions. (The first paragraph of the Introduction already highlighted a few existing examples that
align with this direction.)
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