29. UNIVERSAL ALGEBRA, ESZTERGOM (HUNGARY), 1977.

An application of Mal'cev type theorems to congruence varieties

G. Czédli

A lattice variety \mathscr{U} is said to be a congruence variety if $\mathscr{U} = \operatorname{Con}(\mathscr{V})$ for some variety \mathscr{V} of algebras where $\operatorname{Con}(\mathscr{V})$ denotes the lattice variety generated by the congruence lattices of all members of \mathscr{V} . Denote by \mathscr{L} the variety of all lattices and by \mathscr{M} the variety of modular lattices. Recently S. V. Polin – refuting the McKenzie-Nation conjecture – gave a variety \mathscr{V} for which $\operatorname{Con}(\mathscr{V}) \neq \mathscr{L}$ and $\operatorname{Con}(\mathscr{V}) \subseteq \mathscr{M}$. However, there is a number of results stating that under certain conditions (on $\operatorname{Con}(\mathscr{V})$ or \mathscr{V}) $\operatorname{Con}(\mathscr{V}) \neq \mathscr{L}$ implies $\operatorname{Con}(\mathscr{V}) \subseteq \mathscr{M}$. For example, Freese and Nation ([2]) have proved this implication for any variety \mathscr{V} of semigroups. For other results, when conditions are supposed on $\operatorname{Con}(\mathscr{V})$, the reader can see [3]. Here we intend to show for a certain kind of varieties \mathscr{V} that $\operatorname{Con}(\mathscr{V}) \neq$ $\neq \mathscr{L}$ implies $\operatorname{Con}(\mathscr{V}) \subseteq \mathscr{M}$.

For an algebra Q, a subset of the set of all polynomial functions of Q is called a clone of Q if it is closed under superposition and contains all the projections. Let us recall some notations from \hat{A} . Szendrei's paper [4]. Let R be a ring with 1, S a subring of R ($l \in S$ is not supposed) and M a (unitary left) module over R. Denote by $Cl_M(S)$ the clone of M consisting of all idempotent polynomials

$$f(x_1, x_2, ..., x_n) = s_1 x_1 + s_2 x_2 + ... + s_n x_n$$

where at most one of the coefficients $s_1, s_2, ..., s_n$ is not in S.

Theorem (Å. Szendrei [4]). Let R be a ring with 1. Then the following two conditions are equivalent.

- (i) For an arbitrary module M over R, any idempotent clone of M (that is, any clone consisting of idempotent polynomials) is of the form $\bigcap_{\alpha < \beta} Cl_M(S_{\alpha})$ where each S_{α} ($\alpha < \beta$) is a subring of R.
- (ii) For any $r \in R$ there exist non-negative integers $n > 0, a_0, a_1, ..., a_n, b_0, b_1, ..., b_n$

such that

$$a_i + b_i \leq \binom{n}{i} \quad (i = 0, 1, ..., n) \quad and$$
$$\sum_{i=0}^n a_i r^i (1-r)^{n-i} = 1, \quad \sum_{i=0}^n b_i r^i (1-r)^{n-i} = r(1-r).$$

In what follows we shall denote the class of all rings with 1 satisfying the (equivalent) conditions of the above theorem by K. Á. Szendrei [4] has shown that the ring Z of integers, every ring with finite characteristic and $Z^n \times R$ (n=1, 2, ..., R) is any ring with finite characteristic) belong to K. Because of $Z \in K$ the following theorem generalizes A. Huhn's similar result for Abelian group reducts (cf. [1]).

Theorem. Let $R \in \mathbf{K}$, M be a module over R, A a reduct of M and \mathscr{V} the variety generated by the algebra A. Then $\operatorname{Con}(\mathscr{V}) \neq \mathscr{L}$ implies $\operatorname{Con}(\mathscr{V}) \subseteq \mathscr{M}$.

Proof. We first describe the necessary Mal'cev conditions. Let $r \ge 2$ and $s \ge 2$ be integers, P a set of maps

$$P \subseteq \{\pi | \pi \colon \{1, 2, ..., s\} \rightarrow \{1, 2, ..., s\}\},\$$

and $H \subseteq \{1, 2, ..., r\} \times P \times \{1, 2, ..., r\}$. The following condition "There exist s-ary *idempotent* polynomials $f_1, f_2, ..., f_r$ such that the identities $f_i(x_1, x_2, ..., x_s) = x_i$ (for i=1, 2) and $f_c(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(s)}) = f_d(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(s)})$ (for all $(c, \pi, d) \in H$) hold" will be called a *linear* Mal'cev condition (corresponding to r, s, H). By R. Wille's theorem [6], linear Mal'cev conditions U_{tv} (t=2, 3, ..., v=2, 3, ...) can be given for an arbitrary lattice identity λ such that the following two conditions are equivalent for any variety \mathscr{V} .

- (i) λ holds in Con (\mathscr{V});
- (ii) For any integer $t \ge 2$ there exists an integer $v \ge 2$ such that U_{tv} is satisfied in \mathscr{V} .

Returning to the proof, let C be the full idempotent clone of A (consisting of all idempotent A-polynomials). Let B=(D, C) where D is the support of A (that is, the support of M). Denote by \mathcal{W} the variety generated by the algebra B. The same linear Mal'cev conditions are satisfied in A, B, \mathcal{V} and \mathcal{W} . So we obtain $Con(\mathcal{V})=Con(\mathcal{W})$ from Wille's theorem mentioned above. We can assume that

(*) the annihilator ideal I of M consists only of the zero element of R (otherwise M can be regarded as a module over $R/I \in K$). Let E be the subring of R generated by 1.

If $\operatorname{Cl}_{M}(E) \subseteq C$, then we obtain $\operatorname{Con}(\mathcal{W}) \subseteq \operatorname{Con}(\operatorname{HSP}\{M^{+}\}) \subseteq \mathcal{M}$ from Wille's theorem. $(M^{+}=(D, \{+, -, 0\}))$ means the additive group of M. So $\operatorname{Cl}_{M}(E)$ is the full idempotent clone of M^{+} .)

Now it is sufficient to show that $\operatorname{Cl}_M(E) \not\subseteq C$ implies $\operatorname{Con}(\mathscr{W}) = \mathscr{L}$. From Szendrei's theorem we obtain that $\operatorname{Cl}_M(E) \not\subseteq \operatorname{Cl}_M(S) \supseteq C$ for a suitable subring S of R. Clearly $1 \notin S$. We show that

170

(**) If a linear Mal'cev condition holds in \mathcal{W} (and so in B), then it holds in each variety.

Let U be a linear Mal'cev condition corresponding to r, s, H which is satisfied by the polynomials $f_1, f_2, ..., f_r$ in B. It follows from (*) that the f_i (i=1, 2, ..., r)can be uniquely written in the form

$$f_i(x_1, x_2, ..., x_s) = r_{i1}x_1 + r_{i2}x_2 + ... + r_{is}x_s$$

where $r_{i1}, \ldots, r_{is} \in \mathbb{R}$. Here $r_{i1} + r_{i2} + \ldots + r_{is} = 1 \notin S$ and $f_i \in \mathbb{C} \subseteq Cl_M(S)$. Thus all coefficients of f_i but exactly one belong to S. Let $r_{ii} \notin S$ for i=1, 2, ..., r. Let $(c, \pi, d) \in H$ and denote by $\hat{\pi}$ the equivalence relation induced by π (that is, $n \equiv m(\hat{\pi})$ iff $\pi(n) = \pi(m)$). The identity

$$f_c(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(s)}) = f_d(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(s)})$$

holds in *B*, thus for each block ϱ of $\hat{\pi} \sum_{i \in \varrho} r_{ci} = \sum_{i \in \varrho} r_{di}$. Now $j_c \notin \varrho$ iff $\sum_{i \in \varrho} r_{ci} \in S$ iff $\sum_{i \in \varrho} r_{di} \in S$ iff $j_d \notin \varrho$. Therefore $j_c \equiv j_d(\hat{\pi})$. Consequently the linear Mal'cev condition U is satisfied in every variety by the projections $f_i(x_1, x_2, ..., x_s) = x_{ij_i}$ (i=1, 2, ..., r), which proves (**).

Let \mathscr{U} be the variety of sets, then $\operatorname{Con}(\mathscr{U}) = \mathscr{L}$. (By P. M. Whitman's theorem [5], every lattice is embeddable into an equivalence lattice.) Hence (* *) and Wille's theorem imply $\operatorname{Con}(\mathcal{W}) = \mathcal{L}$, which was to be proved.

The author is grateful to A.P. Huhn for a helpful suggestion.

References

- [1] A. P. HUHN, Congruence varieties associated with reducts of Abelian group varieties, Algebra Universalis 9 (1979), 133-134.
- [2] R. S. FREESE and J. B. NATION. Congruence lattices of semilattices. Pacific J. Math. 49 (1973). 51-59.
- [3] B. Jónsson, Identities in congruence varieties, Lattice theory (Proc. Conf. Szeged, 1974), pp. 195-205. Collog. Math. Soc. J. Bolyai, 14, North-Holland, Amsterdam, 1976.
- [4] A. SZENDREI, On the idempotent reducts of modules, this volume.
- [5] P. M. WHITMAN, Lattices, equivalence relations and subgroups, Bull. Amer. Math. Soc. 52 (1946), 507-522.
- [6] R. WILLE, Kongruenzklassengeometrien, Springer, Lecture Notes in Math. 113, Berlin-Heidelberg-New York, 1970.

JATE Bolyai Institute H-6720 Szeged, Aradi vértanúk tere 1

Received August 11, 1977: revised December 5, 1977

171

79-3364 — Szegedi Nyomda — Felelős vezető: Dobó József igazgató