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Abstract. Galois closure operators play an important role in many fields

including algebra, formal concept analysis and mining association rules from
databases. Given a context (A(0) ,A(1) , ρ), the pair of the induced Galois

closure operators will be denoted by G = G(A(0) ,A(1) , ρ). The present paper

studies a new pair C = C(A(0), A(1), ρ) of closure operators, which has been
introduced in [3]. After pointing out that C is of some interest for algebra,

decision making and knowledge discovery from databases, we characterize C
as a fixed point of an appropriate contraction map. This easy result leads to a

computer program, which is available at the author’s home page. Due to this
program, there are some statistical results in the paper.

For ρ ∈ {≤, <,�,≺}, the main theorem characterizes finite posets P with
C(P,P, ρ) = G(P, P, ρ). It is proved that that C(J(L), M (L), ≤) = G(J(L),

M (L), ≤) when L is a finite modular lattice.

1. Introduction and motivating examples

Following Wille’s terminology, cf. [10] or [6], a triplet

(A(0), A(1), ρ)

is called a context if A(0) and A(1) are nonempty sets and ρ ⊆ A(0) × A(1) is a
binary relation. From what follows, we fix a context (A(0), A(1), ρ) and let

ρ0 = ρ and ρ1 = ρ−1.

From now on, unless otherwise stated, i will be an arbitrary element of {0, 1}. So
whatever we say including i without specification, it will be understood as prefixed
by ∀i. The set of all subsets of A(i) will be denoted by P (A(i)).

It is often, especially in the finite case, convenient to depict our context in the
usual form: a binary table with row labels from A(0), column labels from A(1), and
a cross in the intersection of the x-th row and the y-th column iff (x, y) ∈ ρ. We will
refer to this table as the context table. For example, a context is given by Table 1.

Although the concrete meaning of this context about juggling is not relevant
for this paper, we make some comments on it, and we refer to Polster [8] and its
bibliography for more details. Attribute b4 means that at least one hand essentially
leaves the starting position. Attribute b2 means that the balls are indistinguishable,
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i.e, if we do not watch the performance for a while then we cannot tell which ball
was thrown first. The rows are well-known three-ball juggling patterns.

equal equal different moving
hands balls heights hand
b1 b2 b3 b4

3 (cascade) a1 × ×
423 a2 × ×
Mill’s mess a3 × × ×
50505 (snake) a4 ×
robot a5 × × ×

Table 1

A mapping D(i) : P (A(i)) → P (A(i)) is called a closure operator if it is extensive
(i.e., X ⊆ D(i)(X) for all X ∈ P (A(i))), monotone (i.e., X ⊆ Y implies D(i)(X) ⊆
D(i)(Y )), and idempotent (i.e., D(i)(D(i)(X)) = D(i)(X) for all X ∈ P (A(i))). By a
pair of extensive operators we mean a pair D = (D(0),D(1)) where D(i) : P (A(i)) →
P (A(i)) is an extensive mapping for i = 0, 1. If these mappings are closure operators
then D is called a pair of closure operators.

If D = (D(0),D(1)) and E = (E (0, E (1)) are pairs of extensive operators then
D ≤ E means that D(i)(X) ⊆ E (i)(X) for all i ∈ {0, 1} and all X ∈ P (A(i)).

Now, associated with (A(0), A(1), ρ), we define some pairs of closure operators.
The motivation will be given afterwards. For X ∈ P (A(i)) let

Xρi = {y ∈ A(1−i) : for all x ∈ X, (x, y) ∈ ρi},
and, again for X ∈ P (A(i)), define

G(i)(X) := (Xρi)ρ1−i =
⋂

y∈Xρi

({y}ρ1−i) .

Then G = (G(0), G(1)) is the well-known pair of Galois closure operators, which
plays the main role in formal concept analysis, cf. Wille [10] and Ganter and Wille
[6]. The visual meaning of

G = G(A(0), A(1), ρ)

is the following. The maximal subsets of ρ of the form U (0) ×U (1) with U (i) ⊆ A(i)

are called the (formal) concepts, cf. [10] or [6]. Pictorially, they are the maximal full
rectangles U (0) ×U (1) of the context table. (Full means that each entry is a cross.)
For Xi ∈ P (A(i)) take all maximal full rectangles U (0) × U (1) such that X ⊆ U (i),
then G(i)(X) is the intersection of all the U (i)’s.

Now we define a sequence Ci, i = 0, 1, 2, . . . , of pairs of of closure operators. For
X ∈ P (A(i)) let

Xψi := {Y ∈ P (A(1−i)) : there is a surjection ϕ : X → Y with ϕ ⊆ ρi}.
Let C0 = G. If Cn is already defined then let

(1) C(i)
n+1(X) := C(i)

n (X) ∩
⋂

Y ∈ Xψi

⋃

y ∈ C(1−i)
n (Y )

{y}ρ1−i .
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This defines the pair Cn+1 = (C(0)
n+1, C(1)

n+1). Finally, let

C = (C(0), C(1)) := (
∞∧

n=0

C(0)
n ,

∞∧

n=0

C(1)
n ),

which means that, for all X ∈ P (A(i)),

C(i)(X) =
∞⋂

n=0

C(i)
n (X).

Even if the above definitions do not look friendly at the first sight, it was routine
to prove in [3] that we have indeed defined pairs of closure operators.

Lemma 1. (cf. [3]) C = C(A(0), A(1), ρ) and Cn = Cn(A(0), A(1), ρ) (n = 0, 1, . . .)
are pairs of closure operators. Further, G = C0 ≥ C1 ≥ C2 ≥ · · · ≥ C .

It is well-known that, for each context (A(0), A(1), ρ), the complete lattices ({X ∈
P (A(0)) : G(0)(X) = X},⊆) and ({X ∈ P (A(1)) : G(1)(X) = X},⊆) are dually
isomorphic. The analogous statement is far from being true for C; indeed, in case
of the context given by Table 1, |{X ∈ P (A(0)) : C(0)(X) = X}| = 12 while
|{X ∈ P (A(1)) : C(1)(X) = X}| = 10.

From now on we always assume that (A(0), A(1), ρ) is finite. Then there are only
finitely many pairs of operators, whence there is an n with C = Cn = Cn+1 =
Cn+2 = · · · .

Now we give our motivations, and this will explain why “association rule” occurs
in the title of the paper. Closure operators have been playing an important role in
the theory of relational databases and knowledge systems for a long time, cf. e.g.,
Caspard and Monjardet [2] for a survey. Nowadays most investigations of this kind
belong to formal concept analysis, cf. Ganter and Wille [6] for an extensive survey.
The theory of mining association rules goes back to Agrawal, Imielinski and Swami
[1]; Lakhal and Stumme [7] gives a good account on the present status of this field.

For a data miner, the context is a huge binary database, and mining association
rules is a popular knowledge discovery technique for warehouse basket analysis.
In this case A(0) is the set of costumers’ baskets, A(1) is the set of items sold in
the warehouse, and the task is to figure out which items are frequently bought
together. This information, expressed by so-called “association rules”, can help the
warehouse in developing appropriate marketing strategies. For example,

{cereal, coffee} → {milk}
is an association rule (in many real warehouses), and this association rule says that,
with a given probability p, costumers buying cereal and coffee also buy milk. When
milk ∈ G(1){cereal, coffee} then this probability is 1 and we speak about a strong
association rule.

However, the importance of looking for the hidden regularities and rules is not
restricted only to huge databases. The success of formal concept analysis, cf. Ganter
and Wille [6], or Mendeleyev’s classical periodic system of chemical elements show
that exploring some rules in small databases may also lead to important results.
From this aspect, the present paper offers C, a mathematical tool, to formulate some
regularities in abstract contexts. Since C ≤ G, the “association rules” corresponding
to C are stronger than the previously mentioned ones. It would be nice to find some
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concrete contexts outside mathematics, say in natural or social sciences, where C
has some real applications. This is much beyond the scope (i.e., lattices and posets)
of the present paper but there is a hope, for finding associations is an integral part
of any creative activity.

Now we use the context given by Table 1 to develop our ideas further. Let
X = {a1, a2}, which is a subset of A(0) = {a1, . . . , a5}. Then {a1, . . . , a4} × {b1}
is the only relevant maximal full rectangle to compute G(0)(X) = {a1, . . . , a4}.
Notice that Y = {b2, b3} ∈ Xψ0 but there is no y ∈ G(1)(Y ) = {b2, b3, b4} with
a4 ∈ {y}ρ1 , for {a4} × {b2, b3, b4} is disjoint from ρ. Hence, according to formula
(1), a4 /∈ C(0)

1 (X). After the trivial and therefore omitted details we can easily see
that C = C1 and C(0)(X) = {a1, a2, a3}.

Suppose our whole knowledge is decoded in the context and we are asked to
associate an element with X. Usually we want an element outside X, and we look
for something similar, i.e., we want an element which shares the common attributes
of the elements of X. So the first answer is that we should associate some element
of G(0)(X)\X = {a3, a4}. This way we obtain more than one element, but we may
want to chose only a single one. For example, if a beginner can perform the juggling
patterns a1 and a2 then which of a3 and a4 should he learn next? Which of a3 and
a4 should a scientist choose if the context represents something in his research field
and choosing both is not permitted? The unique element a3 of C(0)(X) \X? The
other element, a4? There is no general answer to this question of decision making
in full generality (and I think that even experienced jugglers would give different
answers to the concrete question about Table 1). We just point out that sometimes
C offers a method distinct from coin tossing.

Let us mention that [3] gives a purely universal algebraic theorem which has
nothing to do with the notion of C but C is heavily used in the proof. This shows
that C is useful in algebra. The rest of the paper is scheduled as follow. First we
characterize C as the largest fixed point of an appropriate contraction map. This
theorem was exploited when we wrote a computer program to compute C. The
program is available at the author’s home page. (Although the source code is in
Borland’s old Turbo Pascal 7.0 for MS DOS, the executable version runs in today’s
Windows environment as well.) The next question is how often C is different from
G. There will be experimental results obtained with the help of the program, and
there will be mathematical results for some specific contexts obtained from finite
lattices or posets.

2. From a fixed point theorem to a program

Given a context (A(0), A(1), ρ), let H = H(A(0), A(1), ρ) be the set of all pairs of
extensive operators defined in the previous section. Similarly, the set of all pairs of
closure operators will be denoted by T = T(A(0), A(1), ρ). Then H = (H,≤) and
T = (T,≤) are posets, T is a sub-poset of H, and G, C ∈ T ⊆ H. Motivated by
formula (1), we define a mapping f : H → H, D = (D(0), D(1)) �→ E = (E (0), E (1))
by

(2) E (i)(X) := D(i)(X) ∩
⋂

Y ∈ Xψi

⋃

y ∈ D(1−i)(Y )

{y}ρ1−i .
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Clearly, E = f(D) ∈ H, f is a monotone mapping, and f(Cn+1) = Cn for all n.
Since f(D) ≤ D for all D ∈ H, we will call f a contraction map. The following
proposition is mentioned to shed more light on the topic only, and we will not use
it in the sequel.

Proposition 1. Given a finite context (A(0), A(1), ρ), T = (T,≤), the set of pairs of
closure operators over (A(0), A(1), ρ), is an (upper) semimodular coatomistic meet-
semidistributive lattice, and T is closed with respect to the contraction map f.

Proof. Let Li be the poset of closure operators over A(i), i = 0, 1. Then, according
to Corollaries 30 and 58 in Caspard and Monjardet [2], Li is a lattice that has some
nice properties, including those listed in the proposition. Notice that [2] attributes
some of these properties to others, including Demetrovics, Libkin and Muchnik [4],
Duquenne [5] and Ore [9]. Since T is the direct product of L0 and L1 and the
properties we consider are clearly preserved by finite direct products, the first part
of the statement is shown. The statement about the contraction map is included,
modulo notational changes, in the proof of Lemma 1 in [3]. �

If D ∈ H and f(D) = D then D is called a fixed point of f . As usual, for D ∈ H
the set {E ∈ H : E ≤ D} will be denoted by (D]. Since f is a monotone contraction
map, (D] is always closed with respect to f . Remembering that (A(0), A(1), ρ) is
assumed to be finite, we have the following theorem.

Theorem 1. C is the largest fixed point of f in (G]. I.e., f(C) = C, and for every
D ∈ (G], f(D) = D implies D ≤ C.

Proof. Since the context is finite, there is a k with Ck = Ck+1 = C. Hence f(C) =
f(Ck) = Ck+1 = C, so C is a fixed point of f . Clearly, C ∈ (G].

Now let D ∈ (G] be an arbitrary fixed point. Then, using that f is monotone,
D = f(D) ≤ f(G) = C1. So D = f(D) ≤ f(C1) = C2, etc. Thus D ≤ Ck = C. �

Even if the above theorem is a very simple statement, it is useful from algorithmic
point of view. The speed of the obvious algorithm for computing C depends on how
fast the sequence C0 = G, C1, C2, . . . decreases. If we follow what formula (1) says
then we obtain Cn+1 from Cn in two steps. In the first step we compute, say, C(0)

n+1

from (C(0)
n , C(1)

n ), and then in the second step we compute C(1)
n+1 from (C(0)

n , C(1)
n ).

However, we could obtain a more rapidly decreasing sequence if we performed the
second step from (C(0)

n+1, C(1)
n ) instead of (C(0)

n , C(1)
n ). (This would also mean less

memory usage, which would save some additional time, too.) We will refer to this
strategy as the modified algorithm.

Corollary 1. The modified algorithm computes C, and it is at least as fast as the
straightforward algorithm suggested by formula (1). (In fact, it is usually faster.)

Proof. For i ∈ {0, 1} we define a mapping fi : H → H, (D(0), D(1)) �→ (E (0), E (1))
such that E (i) is defined as in formula (2) and E (1−i) = D(1−i). (It follows easily
from Proposition 1 that T is closed with respect to the contraction maps fi, i ∈
{0, 1}, but we do not need this fact in the proof.) The modified algorithm produces
the sequence

f0(G), f1(f0(G)), f0(f1(f0(G))), f1(f0(f1(f0(G)))), . . . .
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Computing two new members of this sequence needs a slightly less computer work
than computing one new member of the sequence C0 = G, C1, C2, . . . Hence all we
have to show is that, for every n, the 2n-th member of the first sequence is above
C and below Cn. But this follows via a trivial induction, since f(D) ≤ fi(D) ≤ D
and f(f(D)) ≤ f1(f0(D)) ≤ f(D) hold for all D ∈ H. �

It is clear from the proof of Theorem 1 and that of Corollary 1 that instead of
the poset H we could have worked only with the lattice T. However, the advantage
of H is not only to make Theorem 1 stronger. In a practical calculation, like
computing C(i)(X) just for a single X, it gives a better theoretical background: we
can reduce the G(i)(Yj)’s for certain (not necessarily distinct) subsets Yj of A(0)

and A(1) according to (2) in an arbitrary order, and we do not have to care if the
actual pair of operators is a pair of closure operators, the process converges to C.

The computer program mentioned before uses the modified algorithm of Corol-
lary 1. When |A(0)| or |A(1)| is large then it is not possible to determine C, at least
not with this program, for it needs 2|A

(0)| + 2|A
(1)| steps even to store C. However,

as it is clear from formula (1), we can determine C(i)(X) for all X with |X| ≤ m
and all i ∈ {0, 1} without determining C, and this is much faster when m is not too
large. The program allows m ∈ {2, . . . , 9} when |A(0)|, |A(1)| ≤ 14, and it allows
only m = 2 when |A(0)|, |A(1)| ≤ 48. However, the running time even for a single
context with m = 9 and |A(0)| = |A(1)| = 14 is usually too long to wait for. The
program can generate and test many random contexts. The experimental results
obtained by the program are reported by the following tables.

size 4 5 6 8 10 12 14 20 30 40 48
|{tests}| 1000 1000 1000 100 100 100 100 100 100 100 100
(−,−,−) 549 757 889 98 100
([0, 4],−,−) 549 757 889 98 100 100 100
([0, 2],−,−) 535 707 844 97 100 100 100
({2},−,−) 282 517 736 94 100 100 100 100 100 100 100
({2},⊂,−) 235 484 721 94 100 100 99 86 18 4 1
([2,∞),⊂, �=) 0 134 491 96 100
([2, 4],⊂, �=) 0 134 491 96 100 100 99
({2},⊂, �=) 0 134 470 92 100 100 99 86 18 4 1

Table 2

In Table 2, size denotes |A(0)| = |A(1)|, i.e., only “square” contexts have been
tested. The number of contexts tested with the given size is denoted by |{tests}|.
For a given context, C �= G can be due to some more or less trivial reason like
C(i)(∅) �= G(i)(∅). Therefore the program counted those contexts for which there
is an i ∈ {0, 1} and an X ∈ P (A(i)) such that C(i)(X) �= G(i)(X) and X satisfies
some further conditions. These further conditions are denoted by a vector (α, β, γ).
Here α is missing or it is a set of integers, like [2, 4] = {2, 3, 4}. If α is a set of
integers then |X| has to belong to α. If β not missing then it is the “⊂” sign and
X has to satisfy X ⊂ C(i)(X). If γ is not missing then it is the “ �=” sign and X
has to satisfy G(i)(X) �= A(i). For example, the row (−,−,−) gives the number of
contexts with C �= G, and the entry 484 means that among 1000 random contexts
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there are 484 contexts containing a 2-element subset X with C(i)(X) �= G(i)(X)
and X ⊂ C(i)(X).

It is important to emphasize that, for each column, the program produced the
given number of random contexts first, and counted those context that have the
desired property only afterwards. In other words, different entries in the same
column refer to the same set of random contexts. Due to the limited power of the
program some entries are missing, but some obvious relations among the numbers
in the same column give lower bounds for the missing entries.

We may also ask the question that if we take a random context table of size n×n
and choose an i ∈ {0, 1} and a subset X of A(i) randomly then what is the chance
that (−,−,−): C(X) �= G(X), or ([2,∞),⊂, �=): 2 ≤ |X| and X ⊂ C(i)(X) �=
G(i)(X) �= A(i). The experimental results for some values of n are reported in
Table 3.

size 3 4 5 6 7 8 9
|{tests}| 1000 1000 1000 1000 1000 1000 1000
(−,−,−) 17 39 82 185 306 402 571
({2},⊂, �=) 0 0 0 12 35 54 86

Table 3

Table 2 gives the strong belief1 that a “medium sized” square context gives an
“essentially new” C with high probability. Here “essentially new” means that the
condition ({2},⊂, �=) holds for some X. However, this probability decreases rapidly
when the size of the context grows.

Let us call a random context a p-random context, 0 < p < 1, if we put a cross
to each entry with probability p, independently from other entries. So far we have
considered 0.5-random contexts. However, we may get different results with other
values of p. For example, we tested 100 p-random 40 × 40-sized contexts with
different values of p, and counted the essentially new contexts among them (in the
sense of ({2},⊂, �=)). The result is given by Table 4.

100 · p 10 20 30 40 50 60 70 80 90
({2},⊂, �=) 100 68 14 5 2 3 23 64 77

Table 4

Finally, we tested some contexts from the real life: essentially all those contexts
from Ganter and Wille [6] which are given by simple context tables (with × being
the only entry) and whose size fits into the program. (Sometimes the context was
given by a multi-valued table and we had to reduce it.)

1.1 1.5a 1.5b 1.13 1.16 1.21 1.23 1.24 2.4 2.13 2.15
|A(0)| 8 8 5 5 14 6 6 8 7 12 14
|A(1)| 9 5 4 25 16 12 8 8 7 9 9
({2},⊂, �=) no no no yes no no yes no yes no yes
([0, 6],−,−) yes no no yes yes yes no yes no yes

Table 5

1Theoretically there could be some unknown hidden connection between C and the built-in
random number generator and this could mislead us, but the chance of this is minimal.
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3. Lattices and posets

There are many frequently used relations, and therefore contexts, in lattices and
posets (=partially ordered sets). It is probably not always possible to describe
those with C �= G in an elegant way. However, there are some particular relations
where something interesting can be stated. As usual, for a finite lattice L the set of
nonzero join irreducible elements is denoted by J = J(L) while M = M(L) is the
set of meet irreducible elements distinct from 1. The context (J,M,≤) is famous
since Wille [10] has pointed out that its concept lattice is isomorphic to L, so this
context is a very economic way to describe L up to isomorphism.

Theorem 2. Let L be a finite lattice. If L is modular then

C(J(L),M(L),≤) = G(J(L),M(L),≤).

Note that the converse is unfortunately not true. There are nonmodular lattices,
like the five element ones: N5 and M3, for which C = G. But there are a plenty
of nonmodular lattices for which C �= G. The simplest such example is perhaps
an n-crown with additional 0 and 1 for n ≥ 4, i.e. the (2n + 2)-element lattice
({0, a0, . . . , an−1, b0, . . . , bn−1, 1},≤) where the {a0, . . . , an−1} is the set of atoms,
{b0, . . . , bn−1} is the set of coatoms, and aj < bk iff k ∈ {j, j + 1} where j + 1 is
understood modulo n.

Given a context (A(0), A(1), ρ), by the dual context we mean

(A(1), A(0), ρ−1).

Clearly, if Ld = (Ld,≤d) denotes the dual of L, then (J(Ld),M(Ld),≤d) is the dual
of the context (J(L),M(L),≤). Similar observations are valid for posets occurring
in the next theorem. Hence the lattice duality principle extends to our case and
can be used in our proofs.

Proof. Let L be a finite modular lattice. Its ordering relation will also be denoted
by ρ = ρ0 . Since modularity is a selfdual lattice property, by the duality principle
it suffices to show that C(0) = G(0). Let X = {a1, . . . , an} ⊆ J with |X| = n ≥ 1
and let

x ∈ G(0)(X) = (Xρ0)ρ1 = ([a1 ∨ · · · ∨ an) ∩M)ρ1 = (a1 ∨ · · · ∨ an] ∩ J
be an arbitrary element. Let Y = {b1, . . . , bn} ∈ Xψ0. This means that aj ≤ bj ∈
M for j = 1, . . . , n (but the bj are not necessarily distinct). Then, dually to the
above displayed formula, G(1)(Y ) = [b1 ∧ · · · ∧ bn) ∩ M . Let b = b1 ∧ · · · ∧ bn.
According to formula (1), we have to show that

there exists a y ∈ [b) ∩M such that x ≤ y.

This is evident when x ∨ b �= 1, for [x ∨ b) ∩M is not empty in this case. So we
assume that x ∨ b = 1. Then

1 = x ∨ b = (b1 ∧ · · · ∧ bn) ∨ x ≤ b1 ∨ · · · ∨ bn ∨ x =
(a1 ∨ b1) ∨ · · · (an ∨ bn) ∨ x =

(b1 ∨ · · · ∨ bn) ∨ (a1 ∨ · · · ∨ an ∨ x) =
= (b1 ∨ · · · ∨ bn) ∨ (a1 ∨ · · · ∨ an) =

(a1 ∨ b1) ∨ · · · (an ∨ bn) = b1 ∨ · · · ∨ bn.
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Hence b1 ∨ · · · ∨ bn = 1 and this happens in the interval [b, 1] = [b, b∨ x]. Since L
is modular, this interval is isomorphic to the interval [b ∧ x, x]. But x ∈ J , so x is
join irreducible also in the interval [b ∧ x, x], whence 1 is join irreducible in [b, 1],
and we conclude that bj = 1 for some j. But this is a contradiction, for bj ∈ M

and 1 /∈ M . Thus we have shown that C(0)
1 (X) = G(0)(X) when X �= ∅. When X

is the empty set then ∅ρ0 = M and therefore C(0)
1 (∅) = G(0)(∅) = ∅. This proves

C(0)
1 = G(0), whence C(0) = G(0). �

In order to formulate the main theorem, we need some definitions. Let Q =
(Q,≤) be a finite poset. Let max(Q) resp. min(Q) denote the set of maximal resp.
minimal elements of Q. Notice that Q is an antichain iff max(Q) = min(Q) = Q. If
Q is a chain then the length of Q, denoted by length(Q), is |Q| − 1. In the general
case, length(Q) is the maximum of the set {length(C) : C ⊆ Q and C is a chain}.
If X is a subset of Q then L(X) denotes the set of lower bounds of X:

L(X) = {y ∈ Q : y ≤ x for all x ∈ X},

and, dually, U(X) denotes the set of upper bounds of X. In particular, U(∅) =
L(∅) = Q. For X = {x1, . . . , xn} we will write U(x1, . . . , xn) instead of U({x1, . . . ,
xn}), and the same convention applies for L. The disjoint union (or cardinal sum)
of the posets (Q1,≤1) and (Q2,≤2) is (Q1 ∪Q2,≤1 ∪ ≤2) where Q1 is assumed to
be distinct from Q2. For example, an n-element antichain is the disjoint union of
n chains of length 0.

Finally, we have to define three kinds of posets, cf. also Figure 1. For 1 ≤
m, n we define an (m + n + 1)-element poset Tmn = {a1, . . . , am, b, d1, . . . , dn}
such that min(Tmn) = {a1, . . . , am}, max(Tmn) = {d1, . . . , dn} and aj < b < dk

for all (j, k) ∈ {1, . . . , m} × {1, . . . , n}. In particular, T11 is the three element
chain. For 2 ≤ m, n we define two (m + n)-element posets, Gmn = {a1, . . . , am,
b1, . . . , bn} andHmn = {a1, . . . , am, b1, . . . , bn} such that min(Gmn) = min(Hmn) =
{a1, . . . , am}, max(Gmn) = max(Hmn) = {b1, . . . , bn} and we have aj < bk for all
(j, k) ∈ {1, . . . , m} × {1, . . . , n} in Gmn while aj < bk iff 1 ∈ {k, j} in Hmn.

b

m a
1

a

mn T

a
2

n d
1

dd
2

m a
1

a

mn H

a
2

n b
1

bb
2

mn G

n b
1

bb
2

m a
1

aa
2

Figure 1

Theorem 3. Let Q = (Q,≤) be a finite poset, and let us consider the contexts
(Q,Q,<), (Q,Q,≺), (Q,Q,≤) and (Q,Q,�). Then we have

(A) C(Q,Q,<) = G(Q,Q,<) if and only if U(Q \ max(Q)) �= ∅ and L(Q \
min(Q)) �= ∅.

(B) C(Q,Q,≺) = G(Q,Q,≺) if and only if length(Q) ≤ 1, U(Q \ max(Q)) �= ∅
and L(Q \ min(Q)) �= ∅.
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(C) C(Q,Q,≤) = G(Q,Q,≤) if and only if either |max(Q)| = |min(Q)| = 1, or
|max(Q)| ≥ 2, |min(Q)| ≥ 2 and

(∀x, y, z, t ∈ max(Q)) (x �= y and z �= t imply L(x, y) = L(z, t)) and
(∀x, y, z, t ∈ min(Q)) (x �= y and z �= t imply U(x, y) = U(z, t)).

(D) (Q,Q,�). Then C(Q,Q,�) = G(Q,Q,�) if and only if either Q is (iso-
morphic to) Tmn for some m, n ≥ 1, or Q is Hmn or Gmn for some m, n ≥ 2, or
length(Q) ≤ 1 and Q is a disjoint union of chains.

Proof. Let ρ = ρ0 denote the relation of the context in question, and remember
that ρ1 stands for ρ−1. Since the conditions in the theorem are selfdual, by the
duality principle it will suffice to deal with C(0) and G(0). Formula (1) will be used
often without referring to it. Notice that C = G iff C1 = G, and this fact will be
used implicitly either (so we usually drop the subscript of C1).

(A) Suppose that C = C(Q,Q,<) coincides with G = G(Q,Q,<). Let A =
Q \ max(Q) and B = Q \ min(Q). By way of contradiction, suppose that U(A)
or L(B) is empty. By the duality principle, it suffices to consider the case when
U(A) is empty. Then A �= ∅, Aρ0 = ∅ and G(0)(A) = (Aρ0)ρ1 = Q. Let x ∈
max(Q) ⊆ G(0)(A) = C(0)(A). Clearly, Aψ0 is not empty, so we can choose a
Y ∈ Aψ0. However, since x is a maximal element, x ∈ {y}ρ1, i.e. x < y, holds for
no y ∈ G(1)(Y ). Hence x /∈ C(0)(A), a contradiction.

To prove the converse, suppose that A has an upper bound a and B has a lower
bound b. We can assume that a ∈ max(Q) and b ∈ min(Q). If A or B is empty
then Q is an antichain, and C = G follows from the fact that Xψi is empty when
X is nonempty. Hence we assume that neither A nor B is empty. Clearly, x < a
for all x ∈ A and b < y for all y ∈ b. Moreover, a ∈ B and b ∈ A, and therefore
b < a. Notice that, for any ∅ �= U ⊆ Q, Uρ0 ⊆ B and Uρ1 ⊆ A.

Let X be a subset of Q. If X = ∅ then Xρ0 = Q gives G(0)(X) = Qρ1 = ∅, so
C(0)(∅) = G(0)(∅). If X �⊆ A then Xψ0 = ∅ yields C(0)(X) = G(0)(X).

Now let X ⊆ A. Then Xρ0 ⊇ {a} yields

G(0)(X) = (Xρ0)ρ1 ⊆ {a}ρ1 = L(a) \ {a} ⊆ A.

Now let x ∈ G(0)(X) and Y ∈ Xψ0 be arbitrary. Then Y ρ1 ⊆ A gives G(1)(Y ) =
(Y ρ1)ρ0 ⊇ Aρ0 � a. Since x ∈ A, x ∈ {a}ρ1. Hence a can play the role of y in
formula (1) and we obtain x ∈ C(0)

1 (X). This shows that C1 = G, thus C = G,
proving part (A) of the theorem.

(B) Suppose length(Q) ≥ 2. Then we can choose a, b, c ∈ Q such that a ≺ b,
b ≺ c and c ∈ max(Q). Let X = {a, b}. Then G(0)(X) = ({a, b})ρ0)ρ1 = ∅ρ1 = Q.
If C = G then c ∈ Q = G(0)(X) = C(0)(X) and Y = {b, c} ∈ Xψ0 implies that
c ∈ {y}ρ1 , i.e. c ≺ y, for some y ∈ G(1)(Y ), which contradicts c ∈ max(Q). Hence
C = G implies length(Q) ≤ 1. Then (Q,Q,≺) is exactly the same context as
(Q,Q,<), and the rest of part (B) follows from part (A).

(C) Consider the context (Q,Q,≤) and suppose that C = G. Suppose first that
|min(Q)| = 1, i.e., Q has a unique least element 0. Let X = ∅. Then C(0)(X) =
G(0)(X) = Qρ1 = {0} and Y = ∅ ∈ Xψ0 yields that there is a y ∈ G(1)(Y ) with
0 = x ∈ {y}ρ1. Thus G(1)(Y ) = G(1)(∅) = (∅ρ1)ρ0 = Qρ0 = {z ∈ Q : t ≤ z for all
t ∈ Q} is nonempty. Therefore Q has a greatest element and |max(Q)| = 1. Now
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the duality principle gives that |min(Q)| = 1 iff |max(Q)| = 1, and the condition of
(C) holds.

Now suppose that |min(Q)| > 1, then |max(Q)| > 1 either. By way of contradic-
tion let us assume that L(u, v) (where u �= v) is not a constant on max(Q). Then
we can choose a three element subset {a, b, c} of max(Q) such that L(a, b) �⊆ L(a, c).
Then there is an element x ∈ L(a, b) \ L(a, c). Let X = {a, b}. We obtain
G(0)(X) = (Xρ0)ρ1 = L(U(a, b)) = L(∅) = Q, so c ∈ G(0)(X). Let Y = X.
Then Y ∈ Xψ0 and C = G imply that there is an element y ∈ G(1)(Y ) with
c ∈ {y}ρ1, i.e, c ≤ y. Since c ∈ max(Q), c = y ∈ G(1)(Y ) = (Y ρ1)ρ0 = U(L(a, b)).
This and x ∈ L(a, b) yield x ≤ c, contradicting x ∈ L(a, b)\L(a, c). This shows that
L is constant on {(u, v) : u, v ∈ max(Q) and u �= v}. It follows from the duality
principle that U is constant on {(u, v) : u, v ∈ min(Q) and u �= v}.

Now, to prove the converse, suppose first that 0, 1 ∈ Q, i.e., |max(Q)| =
|min(Q)| = 1. Then 1 ∈ U(Q) = U(L(∅)) = G(1)(∅). Since G(1) is monotone,
1 ∈ G(1)(Y ) for any Y ⊆ Q. Moreover, {1}ρ1 = Q. Hence 1 can always serve as y
in formula (1), and we conclude that C = G.

From now on we suppose that |max(Q)| = |min(Q)| ≥ 2, L is constant on
{(u, v) : u, v ∈ max(Q) and u �= v} and U is constant on {(u, v) : u, v ∈ min(Q)
and u �= v}. Then G(0)(∅) = L(U(∅)) = L(Q) = ∅ gives C(0)(∅) = G(0)(∅).

Now let us consider a nonempty subset X of Q, and an arbitrary Y ∈ Xψ0 .
Then Y is nonempty either. We distinguish two cases according to U(Y ).

First suppose that U(Y ) is nonempty, and let us fix an element z ∈ U(Y ).
Since Y ∈ Xψ0 , U(X) ⊇ U(Y ), so U(X) ⊇ {z}, whence G(0)(X) = L(U(X)) ⊆
L({z}) = {z}ρ1. On the other hand, the transitivity of the ordering gives U(Y ) ⊆
U(L(Y )) = G(1)(Y ), whence z ∈ G(1)(Y ). Now it is clear from formula (1) that
C(0)(X) = G(0)(X).

Secondly, we suppose that U(Y ) is empty. Then there are y1, y2 ∈ Y and z1, z2 ∈
max(Q) such that y1 ≤ z1, y2 ≤ z2 and z1 �= z2. Since G(1)(Y ) = U(L(Y )) is an
order filter including Y , {z1, z2} ⊆ G(1)(Y ). Now let x be an arbitrary element of
G(0)(X), and choose an element x̃ ∈ max(Q) such that x ≤ x̃. If x̃ = zj for some
j ∈ {1, 2} then we can chose y = x̃ = zj in formula (1). Hence we can assume
that |{x̃, z1, z2}| = 3. Using the assumption that L is constant for distinct maximal
elements we obtain

x̃ ∈ G(1)({x̃, z1}) = U(L(x̃, z1)) = U(L(z1 , z2)) =

G(1)({z1, z2}) ⊆ G(1)(G(1)(Y )) = G(1)(Y ),

and therefore the choice y = x̃ for formula (1) works again. This shows that
C(0)
1 (X) = G(0)(X) for any X ∈ P (A(0)). So C = G, proving part (C).

(D) Consider the context (Q,Q,�) and suppose Q is one of the posets listed in
(D). We need to show that C = G. If length(Q) ≤ 1 then (Q,Q,�) coincides with
(Q,Q,≤) and part (C) easily implies that C = G. So we can assume that Q is Tmn

for some m, n ≥ 1. By the duality principle, it suffices to show that C(0) = G(0).
Let

K = {X ∈ P (Q) : (∀Z ∈ P (Q)) (Z ⊂ X⇒G(0)(Z) ⊂ G(0)(X))}.
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If C(0) and G(0) would agree on K then for any X ∈ P (Q) we could take a minimal
element Z of {X′ ∈ P (Q) : G(0)(X′) = G(0)(X)}, and from Z ∈ K we could deduce

C(0)(X) ⊇ C(0)(Z) = G(0)(Z) = G(0)(X),

implying C(0) = G(0).
Hence it suffices to show that for all X ∈ K, C(0)(X) = G(0)(X). Moreover, it

suffices to consider a small subset K′ of K such that for all X in K there is an
automorphism of Q which maps X to an element of K′. Let A = {a1, . . . , am},
A+ = A∪{b}, D = {d1, . . . , dn}, D+ = D∪{b}, and assume that m ≥ 2 and n ≥ 2.
(The case m = 1 or n = 1 is simpler and will not be detailed.) Then an appropriate
K′ is given by the second row in Table 6, where, for brevity, we write x, y instead
of {x, y}:

X ∅ a1 a1, a2 b a1, b a1, d1 b, d1 d1 d1, d2

X ∈ K′? yes yes yes yes yes yes no yes yes
G(0)(X) ∅ a1 A+ b A+ Q b, d1 b, d1 Q

G(1)(X) ∅ a1, b Q b a1, b Q D+ d1 D+

Table 6

Now we can easily list all possible Y ’s from formula (1) (up to isomorphism, again)
and check that C(0)(X) = G(0)(X) for X ∈ K′; the tedious details will be omitted.

Now, in order to prove the converse direction, assume that C = G. If length(Q) =
0 then Q is an antichain, which is a disjoint union of chains, and there is nothing
to prove.

Now assume that length(Q) = 1 and Q is not a disjoint union of chains. Then
part (C) of the theorem applies, so 2 ≤ |max(Q)|, 2 ≤ |min(Q)|, L is constant
on {(u, v) : u, v ∈ max(Q), u �= v} and U is constant on {(u, v) : u, v ∈ min(Q),
u �= v}. Since Q is not a disjoint union of chains, there are a1, b1, b2 ∈ Q such
that a1 < b1 and a1 < b2, or dually. So we can assume that a1 < b1 and a1 < b2.
If c ∈ max(Q) ∩ min(Q) then ∅ = L(b1, c) �= L(b1, b2) ⊇ {a1} would lead to a
contradiction. Therefore Q is the disjoint union of max(Q) and min(Q). Notice
also that the Hasse diagram of Q is connected as a graph, for otherwise we could
find an x ∈ max(Q) with L(b1, x) = ∅. Let

B = {x ∈ max(Q) : a1 ≤ x}, and remember that b1, b2 ∈ B.

Since a1 is connected with other elements of min(Q) in the graph, there is an
a2 ∈ min(Q) \ {a1} which is less than some element of B. So we can assume that
a2 < b1. Let

A := {x ∈ min(Q) : x < b1}, and notice that a1, a2 ∈ A.

If c ∈ max(Q) \ B then a1 /∈ L(b1, c) = L(b1, b2) ⊇ {a1} would be a contradiction.
Hence B = max(Q), and we obtain A = min(Q) similarly.

Now Q is the disjoint union of A and B. Let m = |A| and n = |B|. If, for a ∈ A
and b ∈ B, a < b holds only when {a1, b1} ∩ {a, b} �= ∅ then Q is Hmn. Otherwise
we may suppose that a2 < b2. Then, for any b ∈ B \ {b1}, a2 ∈ L(b1, b2) = L(b1, b)
yields a2 < b. Hence U(a1, a2) = B, and for any a ∈ A \ {a1} we have U(a1, a) =
U(a1, a2) = B. This means that Q = Gmn, and the case length(Q) = 1 is settled.
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Now suppose that length(Q) ≥ 2 and introduce the notation

mid(Q) = Q \ (max(Q) ∪ min(Q)).

Let us observe that for any u, v ∈ Q,

if u ≺ v then G(0)({u, v}) = {x : x � v}
and G(1)({u, v}) = {x : u � x}.(3)

Indeed, G(0)({u, v}) = ({u, v}ρ0)ρ1 = {v}ρ1 = {x : x � v}, and the other equation
follows by duality.

First we consider the case when length(Q) ≥ 3. Then there are elements a, b, c ∈
Q and d ∈ max(Q) such that a ≺ b ≺ c ≺ d. Let X = {b, d}. Then C(0)(X) =
G(0)(X) = (Xρ0)ρ1 = ∅ρ1 = Q. Let Y = {c, d} ∈ Xψ0. Then for any y ∈ G(1)(Y )
we have c ≤ y by (3), so a �� y, whence a /∈ {y}ρ1 , and a /∈ C(0)(X) = Q by formula
(1), a contradiction. Hence length(Q) ≥ 3 is excluded, and from now on we assume
that length(Q) = 2.

The first step in the case length(Q) = 2 is to show that for any b �= c

(4) if b, c ∈ mid(Q) and b ‖ c then |L(b, c)| ≤ 1 and |U(b, c)| ≤ 1.

Suppose, by way of contradiction, that d1, d2 ∈ U(b, c) and d1 �= d2. Let X =
{d1, d2}, and choose an element a such that a ≺ b. Since X ⊆ max(Q), we obtain
that a ∈ Q = ∅ρ1 = G(0)(X) = C(0)(X). Let Y = X ∈ Xψ0. By formula (1) there
is a y ∈ G(1)(Y ) with a � y. But Y ρ1 ⊇ {b, c} implies y ∈ G(1)(Y ) = (Y ρ1)ρ0 ⊆
{b, c}ρ0, i.e., b � y and c � y. Since b ‖ c, we obtain a ≺ b ≺ y, which contradicts
a � y. This and the duality principle prove (4).

Now, to sharpen the previous assertion, we prove that for any b �= c

(5) if b, c ∈ mid(Q) and b ‖ c then L(b, c) = U(b, c) = ∅.
Suppose the contrary. By the duality principle, we may assume that L(b, c) is
nonempty. Let L(b, c) = {a}. We can choose d1, d2 ∈ max(Q) such that b ≺ d1 and
c ≺ d2. If possible, then we choose them equal: d1 = d2. Let X = {b, c}. If U(b, c)
is nonempty then d1 = d2, Xρ0 = {d1} and we have d1 ∈ G(0)(X) = C(0)(X).
If U(b, c) is empty then so is Xρ0 and we have d1 ∈ G(0)(X) = C(0)(X) again.
Let Y = X = Xψ0. Then, by formula (1), d1 � y for some y ∈ G(1)(Y ). Since
d1 ∈ max(Q), d1 = y ∈ G(1)(Y ) = (Y ρ1)ρ0 = {a}ρ0. This gives a � d1, which
contradicts a ≺ b ≺ d1. This shows (5).

Based on (5) we can prove even more: for any elements of Q we have

(6) if c ∈ Q, b ∈ mid(Q) and b ‖ c then L(b, c) = U(b, c) = ∅.
Suppose the contrary. By (5), c /∈ mid(Q). By the duality principle we can assume
that c ∈ max(Q). Then U(b, c) = ∅. Let a ∈ L(b, c) and choose an element
d ∈ max(Q) with b ≺ d. For X = {a, d} from Xρ0 = ∅ we obtain c ∈ Q =
G(0)(X) = C(0)(X). Let Y = {b, d} ∈ Xψ0. Then c � y for some y = G(1)(Y )
by (1) and b � y by (3). This together with b ‖ c imply c ≺ y, which contradicts
c ∈ max(Q). This proves (6)

Now we are in the position to show that

(7) if b ∈ mid(Q) then there is no c ∈ Q with b ‖ c.
Suppose the contrary, and choose a, d ∈ Q with a ≺ b ≺ d. If X = {a, d} and
Y = {b, d} ∈ Xψ0 then, exactly the same way as in the previous step, we obtain an
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element y with c � y and b � y, and we conclude that y ∈ U(b, c), which contradicts
(6). This proves (7)

Now, since length(Q) = 2, we can choose elements a1 ≺ b ≺ d1 in Q. It follows
from (7) that for any further element x either x < b or b < x. Let m = |{x ∈ Q :
x < b}| and n = |{x ∈ Q : b < x}|, then clearly Q is Tmn. �

We conclude the paper by open problem about C. For motivation and a possible
application cf. [3]. Let us say that (A(0), A(1), ρ) is a decomposable context if there
are nonempty sets B(i) and C(i) with B(i) ∪ C(i) = A(i) and B(i) ∩ C(i) = ∅ such
that

ρ = (ρ ∩ (B(0) ×B(1))) ∪ (ρ ∩ (C(0) ×C(1))).
Otherwise (A(0), A(1), ρ) is called an indecomposable context. We say that it is a
uniform context if |{x}ρi| = |{y}ρi| for all x, y ∈ A(i). In the terminology of context
tables, if any two columns contain the same number of crosses and any two rows
contain the same number of crosses. For example, each finite block design (P,B, I)
and, in particular, each finite projective space (P, L, I) is a uniform context.

Problem 1. Is it true that for each indecomposable uniform context (A(0), A(1), ρ)
with |A(0)| ≥ 3 and |A(1)| ≥ 3 there exists an i ∈ {0, 1} and there are x, y, z ∈ A(i)

such that
C(i)({x, y}) ∩ C(i)({y, z}) ∩ C(i)({z, x}) = ∅?
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