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MAL’CEV CONDITIONS FOR HORN SENTENCES
WITH CONGRUENCE PERMUTABILITY

G. CZEDLI* (Szeged)

1. Introduction

From the general description of properties of varieties characterizable by Mal’cev
conditions (cf. Taylor [12] and Neumann [10)) it follows (Jonsson [9, Theorem 2.16])
that the satisfaction of a Horn sentence in the congruence lattices of n-permutable
varieties can be characterized by Mal’cev conditions. Yet, no concrete Mal’cev con-
ditions have been known in general (for exceptions cf. [1, 2, 3]). The aim of the
present note is to give an algorithm which associates a suitable concrete Mal’cev con-
dition with any (lattice) Horn sentence.

By a (universal lattice) Horn sentence we mean a first order formula of the form

X (Vag)... (V) (;/:\1 p=q)=p= q]

where p;, q;, p, and q are lattice terms over the set S= {«y, &, ..., a;} of variables,
and k=0. Let y of the above form be fixed throughout, and let us fix an integer n=2,
too. A variety V of algebras is said to be n-permutable if «Vf=aofoaofoao...
(with n factors) holds for congruences of its members.

Given a variety V, the class of lattices embeddable into congruence lattices of its
members will be denoted by SCV=S {Con (4): 4€V}={L:L=Con (4) for some
A€V}, The quest for our Mal’cev conditions can be motivated by the following.

ProrosiTION 1.1 (cf. Hutchinson [6] for varieties of modules). For any n-per-
mutable variety V, SCV is a quasivariety, i.e., a class of lattices definable by a set of
Horn sentences.

In [8] rings are classified according to lattice identities being satisfied in congru-
ence lattices of the corresponding modules. This classification is based on (strong)
Mal’cev conditions supplied by the Wille—Pixley algorithm [11, 13]. Hutchinson [7]
has shown that this classification can be properly refined if we use Horn sentences
rather than only identities, which gives another motivation for our investigations.

2. Proof of Proposition 1.1
Let X be the set of all Horn formulae that hold in CV or, equivalently, in SCV,
and let Z hold in a lattice L, too. We have to show that LeSCV. Choose a well-
ordering of L, i.e., L={a,: a<y} and over the set X={x,: a<y} of variables let D
be the operation table (or diagram statement) of L. I.e., D is the conjunction of all
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inequalities of the forms x;=x,, x,Ax,=x,, x,=x,Vx, that hold in L under the
substitution X—L, x—~a, (a<y). Note that D holds for a system {b,: a<y} of
elements in a lattice 4 iff L—A, a,—b, is a homomorphism. Now let a;%a, in L
and consider the universally quantiﬁed generalized Horn sentence D=x;=x,.
Then D=x;=x, does not hold in L and we claim that it does not hold in SCV
either. Suppose indirectly that D=x;=x, still hold in SCV and, following the me-
thod of Taylor’s [12], consider the similarity type t=cU {r,: a<7} where ¢ is the
similarity type of V and r, are binary relation symbols. Let 4, be the set of all identi-
ties holding in V and let 4, be the set of first order t-formulae that express that r, are
congruences and satisfy D. (This is possible. If, e.g., a,=a,Va; holds in L then
consider the formula (Vye) (V¥ (o7 Vs = (33D ... (V) (Vor J1 3 017y & paroys &
&ysreya& ... yy)), cf. also Taylor [12].) Since D=x;=x, holds in CV, we have
that (V y)(V z) (yrsz=>yr,z) is a consequence of 4,Ud4,. By the compactness theo-
rem it is a consequence of 4,UA4; for some finite 4;C 4,, too. Therefore there
exists a finite part D’ of D (i.e., D’ is only a finite conjunction of some members oc-
curring in D) such that D’=x;=x, holdsin CV. But D'=x;=x, is a Horn sentence.
Hence it holds in L, which is a contradiction (choose the substitution x,—a,).
Therefore D= x;=x, does not hold in CV, whence there is an algebra A4; €V
and a lattice homomorphism ¢; ,: L—~Con (4;,) for which ¢; .(a;) % ¢; .(a).
Let I denote the set {(J,¢): asxa, in L, J,e<7}, let ]] As ., =AcV, and

consider the map ¢: L—~Con (4), as>¢(a)={(/, g)GA2 f((S £) 0s,.(a,)8 (9, ©)
for all (0, )€I'}. We claim that ¢ is an embedding. 1t is easy to see that ¢ preserves
the meet. Since @(a@)Ve(B)=¢(aVbh) (a, b L) follows from ¢ being monotone, the
converse inequality has to be shown. Suppose (f, €@ (aVb). Then, for all (6, e)€T,
(£, 2), g(8, s))E @s,.(aVb)=0; ,(@)V @5 ,(b). By n-permutability we can choose
elements hd ey "y hg a€A6 £ such that f((s 8) hé es g(5 8) h& &> (hé &3 h )Eq)d a(a)
for i<n, zeven and (K ,, Bi*DE@; (b) for i<n, iodd. Defining A°, h1 ., h"cA
by #(5,e)=H,, we obtain f——h° g=h", (I, K*Y€p(a) for i even, and (h' h'“)E
€@ (b) for i odd. Thus ( f, g)€ go(a)Vgo(b) and ¢ is a homomorphism. Finally, for
(0, O)€T, 95 ,(as) £ @s,.(a;) implies ¢(a;)F¢(a,), whence ¢ is injective. The proof,
which uses only that V is axiomatizable, n- -permutable, and closed under products, is
complete.

3. The Mal’cev condition and its necessity

If we presented the main theorem before having proved anything from it, it could
seem too complicated at the first sight. Hence the proof of its necessity part will
preceed the main theorem. However, the necessary notations and concepts will be
emphasized in this section.

To simplify our forthcoming notations, if Q= {z,, z,, ..., z;} is a set {or a system)
and d is an (s+1)-ary term over Q then let d(Q), d(y: y€Q), and d(z;: i=s)
stand for d(z,, zy, ..., z). If no (well-)ordering of Q is given then any fixed one can
be considered. Therefore our Mal’cev conditions will be unique only modulo the
choices of these orderings, but we shall get appropriate conditions at all choices.

First for any lattice term d=d(a: 2€S) we define a graph G(d)=G,(d) asso-
ciated with d. The edges of G(d) will be coloured by the variables a€.S, and two
distinguished vertices, the so-called left and right endpoints, will have special roles.
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MAL’CEV CONDITIONS FOR HORN SENTENCES 117

In figures these endpoints will be always placed on the left-hand side and on the right-
hand side, respectively. An a-coloured edge connecting the vertices x and y will be
often denoted by (x, «, y). Before defining G(d) we introduce two kinds of operations
for graphs. We obtain the parallel connection of graphs G, and G, by taking disjoint
copies of G, and G, and identifying their left (right, resp.) endpoints (Figure 1). By

Fig. 1

taking disjoint graphs H,, H,, ..., H, such that H;>=G, for i odd and H;=G, for i
even, and identifying the right endpoint of H; and the left endpoint of H; , for i=
=1,2,...,n—1 we obtain the serial connection (of length n) of the graphs G, and G,.
(The left endpoint of H, and the right one of H, are the endpoints of the serial con-
nection, cf. Figure 2.)

Fig. 2

Now, if d is a variable then let G(d) be the graph consisting of two vertices (the
endpoints) and a single d-coloured edge connecting them. Let G(d,Ad,) be the paral-
lel connection of G(d,) and G (d,) while G(d,Vd,) is defined to be the serial connection
(of length n) of G(d;) and G(dy).

For an algebra 4, a lattice term d(x: a€S), a9, ;€A and congruences con (a)
(06 S) of 4 we say that a, and a, can be connected by G(d) in A if there is a map ¢
(referred to as connecting map) from the vertex set of G(d) into 4 such that g, and a,
are the images of the left and right endpoint, respectively, and for any a€.S and
a-coloured edge (x, a, y) we have (¢(x), ¢(»))€con (o). If it is necessary we can
emphasize that the colour a is represented by the congruence con (¢).

The following statement follows by a straightforward induction from definitions,
therefore its proof will be omitted.

ProprosITION 3.1. Consider an algebra A with n-permutable congruences, ay, a,€ A,
a lattice term d(a: a€S) and congruences con () (x€S) of A. Then (ay, a)€
€d (con (a): a€S) if and only if ay and a; can be connected by G(d) in A.

We also need the following.

PROPOSITION 3.2. Let V be an n-permutable variety, a, b€ A€V, and let con (a, b)
be the congruence of A generated by (a, b). Then, for x, y€ A, (x, y)€con (a, b) if and
only if there are translations (i.e., unary algebraic functions) t,, ...,t,_, of A such
that x=ty(a), y=t,_s(b), and t,(b)=t;.,(a) for all i, 0=i<n--2.
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PRrOOF. It is easy to check that the relation V= {(x, y)€ 42%: t{a)=x and t(b)=y
for some translation ¢} is reflexive and compatible. By applying a theorem of Hage-
mann [4] (cf. also the Remark in [5]) we obtain that ®=¥oW¥o...0¥ (n—1 fac-
tors) is already a congruence. Now (a, b)€ #<con (@, b)) completes the proof.

In order to formulate an evident corollary to Proposition 3.2 precisely we define
two functions, v: {1,2,3,..}~{1,2,3,...} and k: {(ui): 1=i=v(u)}~
-{1,2,3, ...}, via induction. Put v(1)=k(l, 1)=1 and assume that v(u), k(u, 1),
k(u,2), ...,k (u,v(x)) have already been defined. Then let v(u+1)=v(u)+1+
+o(W)+1+ovw)+1+... (with n summands), k(u+1,)=k(u,j) for 1=j=v(u)
and j=imod (v(u)+1), and k(u+1,i)=u+1 for i=0mod (v(u)+1).

COROLLARY 3.3. Given an n-permutable variety V, A€V, (x, y)€A® and
H={(a,, b)), ..., \a,, b))} S A%, we have (x, y)ccon(H)=V{con(a;, b): 1=i=u}
if and only if there are translations t;; (1 =i=v(u), 0=j=2) such that x="t1,(ax(,1))>
Y=ty n—2Brcu, vun)s fi,n-2Okgu, i) =tir1,0(@kqu,i+1) for 1=i<v(), and t,;(byg, )=
=t; j+1(@e, ) for 1=i=v(w) and 0=j<n-2.

Now let us fix an n-permutable variety V of similarity type ¢ and consider the
Horn sentence y from the Introduction. Following the customary way of finding
Mal’cev conditions we intend to define suitable congruences of a free V-algebra for
which the premise of y holds.

Continue the list p,=q, ..., py=q; cyclicly by repeating its elements, i.e., for
k<i<w p; and g; are defined to be p; and g;, respectively, provided i=jmod (k).
For a lattice term d=d(x: a€S) let V(d), W(d) and E(d) denote the vertex set of
G(d), the set of inner vertices of G(d) (vertex set without the endpoints), and the edge
set of G(d), respectively. Note that 0=|W(d)|=|V(d)|—2 and E(d)ESV(d)XSX
X V(d).

Now let Xy=Y,=V(p), with x,, x,€ V(p) the endpoints, and put A,=Fy(X,),
the free V-algebra generated by X,. For a€S let cony(a) be the congruence of 4,
generated by {(x, y): (x, a, ) is an edge of G(p)}. By Proposition 3.1 we have
(%0, x,)€p (cong (@): a€ S'). To make the premise of x hold we shall improve this
construction in countably many steps.

Suppose A;_;=Fy(X;_,) and con;_, (¢) (¢€ S) have already been defined for
some 1=i<w. For a lattice term d(a: a€S) let con;_,(d) stand for d(con;_,(a):
a€S). Put Y;={i}xN Xconi_l(pi)ax WSQ.-) (V\:here N is the set of natural numbers)
and X,-——X,_IUYi=Xi_1L°J Y=Y, U..UY,_,UY,; (where U stands for disjoint
union). Note that {i} and N are for making Y; disjoint from X;_, and for making Y;
infinite (if not empty). For a€ S let con; («) be the congruence of A; generated by
Coni—l(a)u{((i’ j’ a, b> X), (l’ j’ a, b’ J’)) JEN, (d, b)€coni—l(pi)’ X, yE W(ql)’ and
(x, @, Y)EE(g)}U{(a, G, j, a, b, 2)): JEN, (a, b)ccon;_,(p;), and (left endpoint,
a, Z)EE(@)}J{(G, J, &, b, 2), b): JEN, (a, b)econ;_,(py), and (z, «, right endpo-
int)c E(q)} where (i,j,a, b,x) stands for (i, (a,b), x)€Y;. Observe that, by
Proposition 3.1, con;_,(p)E gi(con,(«): € S)=con,(g).

Finally, let X and A=Fy(X) be the directed unions of X; and 4; (i<w), res-
pectively. Then, for a€ S, con(¢)= U {con;(®): i<w} is a congruence. From Pro-
position 3.1 it follows that d(con (a): ac S)=U{d(con;(o): a€ S): i<w}, for
any lattice term d. Hence we obtain that, for 1=j=k and (a, b)ép, (con (a):
2€S ), (a, b)Ep; (con;_1(2): 2€ S ) = con;_,(p;) = con;_;(p;) S con,(gy) = cony(g;) =
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=g, (con; (®): € S)Sq;(con (0): a€S) for some i<w, i=jmod (k). Le., the
premise equations of y hold for con (x), «€S.

Suppose that y holds in CV. Then we have (xo,x)€p(con (2): a€S)=
=g (con (a): ®€S), from which we will derive our Mal’cev condition.

For a cardinal »>0 and a lattice term d(a: a€S) let G(xXd) denote the
disjoint union of # copies of G(d). Let E(xXd) and ¥V (xXd) stand for the edge set
and for the vertex set of G(xXd), respectively. The graph G(» X d) has 2x» endpoints.
However, x pairs of endpoints will have special roles, the two components ¢, ¢; of
any such pair (¢,, ¢;) are the left and oright endpoints, respectively, of the same copy
of G(d). Let us also agree that E(dy) U E(xXd,) stands for the edge set of G(d)U
U G(x Xd,), etc. The set of inner (not endpoint) vertices of G(xXd) is denoted by
W(xXd).

Now from (xo, x)€q (con (2): «€.S) we obtain that x, and x, can be connected
by G(q) in A, using a connecting map ¢: V(g)—A and representing a colour a by
con («). By ﬁmteness there exists an m, 2=m<w, such that ¢ (V(g))S4,, and
each colour a€S is represented by con,, (o).

Consider the map o: v(p)U U{V(x Xg): 1=i<w}>A where x=|N|.

- [con, 1 (p))], e(x)=(, j, @, b, x)€ Y, if x is an inner vertex of the (j, (a, b))-th copy
of G(g), o(x)=a(=b, resp.) if x is the left (right, resp.) endpoint in the (J, (a, b))th
copy of G(g;) for some i, j, and p(x)=x if x€ V(p). Observe that the restriction of ¢
to V(p)UU{W(x;Xg): 1=i<w} is injective and maps onto X. Further, con, (%)
is generated by {(e(a), 0(9)): (a, a, b)EE(p)UE(xIXqI)U .UEQuxa)).

Since G(g) is finite, there are ﬁmte cardinals ug, u;, ..., u,,, 1, 4, and a restriction
¥ of ¢ such that for any (f, a, 2)€E(g) (o(f), (p(g)) is in the congruence of 4,
generated by {(W (), ¥(3)): (x, % WEE(P U E@Xq) U ... UE@WUp—1Xqm-1) U
U E(u,, ><q,,,)} and for any f€ V(g) (p(f) is in the subalgebra generated by ¥ (V(p) ]
UW i xq) U.. OWl_ X g U W(u qu)) If (a, b) is a pair of endpoints in
G(u; Xq,), for 1<1<m (where u;=u, in case of i=m), then (Y1), ¥ (b))€
€con;_, (p,) Hence ()% Proposmon 3. 1 there is a (multiple connecting) map #:
Ve, xp) U ... OV (s XPm—) U V(U XPm)—~Am_1, Tepresenting the colour of any
(a, o, BYC E(u] ><p,) by con;_;(«), such that ¢ and n are “compatible”. 1.e., for any
I1=i=m and 1=j=uj, if (a, b) and (¢, d) are the j-th pairs of endpoints in G(u{ Xpy)
and G(u;Xgq;), respectively (i.e., they are taken from the j-th copies of G(p;) and
G(@), then n(@=¢(c) and NB)=Y(.

Similarly, there are u,,_ l—u,,, —1s W ZUL, .., Up_o=u,,_, and we'can extend Y
and 7 such that, besides the previous propertles for any (f, &, )€ E(unXp,) (n(f)
n(g)) belongs to_the congruence generated by {(¥ (@), y(®): (a, , b)EE(p) U
UE(u qu) U UE(u qu 2) l-’ E(um Iqu—-l)} and for any fe V(u Xpm)

n(f) is in the subalgebra generated by ¥ (V(p) UW i xg)U ... U W3 Xgm_o) U
CUW(u,_y Xgm-1))- And so on, finally we obtain u;, us, ..., 4y, such that, besides the
earlier properties, for 1=i=m, (f, «, 2)€E(u;Xp;) and hE V(u Xp;) the congruence
generated by {(IP (@, lﬁ(b)) (a, o, b)EE(P) UE(u1><q1) J.. UE(”: 1Xg;— 1)} con-
tains (7(f), n(g))and y(h)is in the subalgebra generated by ¥ (V(p) UWuxg)U..

LU W _1Xg;_ 1))
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Without loss of these properties any u; can be enlarged. Indeed, we can define
y and 7 for the (u;+ 1)-th copy of ¥(g;) and V(p,) as follows. Let n(V(p,)) {xo} S
S Xy, Y(left endpoint)=y (right endpoint)=y (xo)=x,, and ¥ (a)=(,j, Xq, X0, @)
if a¢W(g,) and jEN is the smallest index not occurring before.

Therefore w,=u,=...=u,=m can be assumed (to enlarge m it suffices to en-
large wu,,,=0) and we obtain:

v: V(p) UV(mxg)U...UV(mxgq,) — A4
n: Vnxp)U ... OV Xp,) ~ A1,

 restricted to V(p) Uw(mxg)U...U W(mXgq,) is injective, ¥ and n are compa-
tible, ¥ (x5)=x,, |//(x1) =X, n(V(mXp)) is a subset of the subalgebra of 4;_,
generated by ¥ (V(p) U W (mXqy) U...u W(mXxg;—1)), » (V(g)) isin the subalgebra
of A,, generated by ¥ (V(p) UW(mxq)U...UW(mXq,)), for (f,a, g)c E(mxp)
(n(f ), n(g)) belongs to the congruence generated by {(y(a), 1//(b)) (a, o, b)€
cE(PDUEmxg)U ... UE(mxq;_p)}, for (f,a )€E(G) (¢(f), ¢(g)) belongs to
the congruence generated by {(¥(a), ¥ ()): (a, a, B)EE(p) UEmxg) U ..

. UE(mXq,)}, ¥ (W(mXxq))SY;, and § restricted to V(p)=X, is the 1dent1ty
map.

Now any element of A= Fy(X) can be written in the form f(x: x¢X) where f
is a g-term over X, i.e. it is an element of the absolute free ¢-algebra F,(X). Hence
we can consider approprlate maps (not homomorphisms!) @: V(q)—»F x), ¥:
V() UV (mxg)VU...UV(mXg,)~F,(X), and #: V(imxp)U...UV(mxp,)—
~F,(X) such that ¢(@)=@(a)(x: x€X), ¥(8) = P(b)(x: x€X), and n(c)=
=ﬁ(c)(x: x€X) hold in A4 for any admissible choice of a, b, and ¢. The right hand
sides of these equations will be abbreviated by a(X), b(X), and c¢(X), respectively.

Let X;, Xi, ..., X, stand for X,=V(p)=y(V(p), ¥(V(p)U W (mXqy), ...
DY (VU W(mxg)U...UW(mXq,)), respectively. We have seen that, for

1=i=m,
M {';(V(m. XgN\W(m; X q))) € F(X{_y),
i(Vimxp)) S F,(X,_) and ¢V (@) S E X
Further, for 1=i=m,
if (f,a,@€E(mXp) then (f(X_y),g(X{_)

) belongs to the congruence of A4;.; generated by
{(a(Xi_0), b(X_D): (3,2, B)EE(p)UEmXq)U ... UE(m X g;-1)}.

Similarly,

if (f, 2 8)€E(@) then (f(X.,),g(X,)) belongsto
2) the congruence of A4, generated by . .
{(a(X7), B(X): (a, a, BYEE(P)UE(m X q)U ... UE(m X q,)}.

Now we intend to introduce a condition which is similar to a strong Mal’cev
(cf. J6nsson [9] or Taylor [12]) condition. Suppose we have two graphs G,, G, with
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edgesets E;CV(G)XSXV(G), and n: V(G)—~F,(Y), t: V(Gy)—~F,(Y) are maps
for some set Y. The condition to be introduced will be denoted by T(E,, n, Ey, 1, Y)

and we want, e.g., (2) to be equivalent to T(E(p)UE(mXq)VU...UE(mXg;.,),
¥, E(mXp), i, X{_,). For acS let E, stand for {(a, o, b): (a, a, b)€E;} and let,
say, E,={(a;,a,b): 1=i=u}. Let z be a variable symbol, z¢Y, and consider an
edge (f, @, 8)€E,. Then T, , , is defined to be the following condition:

“There are terms #;;(z, Y)=t;;(z; x: x€Y), for 1=i=v(u) and 0=j=n-2,
such that the identities

t(f)(x: x€Y) = tp(n(ar, ) (x: x€Y); x: x€Y)
or Shortly T(j)(Y) = tlo(n(ak(u,l))(y)s Y)’
T(g)(Y) = tu(u),n—2(7r(bk(u,u(u)))(Y)’ Y)’ ti,n-2(n(bk(u,i))(y)’ Y) =
= ti+1,0(n(ak(u,i+1))(Y)~ Y) for 1=i<uv(u),
i (R Br ) (X)), Y) =t 11(m (@, p)(Y), Y) for 1 =i=0v(u)

and 0=j<n-—2 hold.”
Now let T(E,, n, E;, 7, Y) be the conjunction of all T, ,, where a€S and

(f; o, g)€E2 . . .
Since any translation of A4;_, is of the form ¢(z, X;_;) for some o-term ¢ and
identities holding for the free generators of A4;_, also hold in V, from Corollary 3.3

and (2) we can conclude that T(E(p)OE(qul)D DE(rani_l), ¥V, E(mXxp),
7, X;_;) holds in V. By identifying any variable y€X, ,\X;_; with xo€ X, we obtain
that, for 1=i=m,

3 TEPUEmxq)U...UEmXg_1), ¥, EmXp), i, X{_;) holdsin V.
Similarly, from (2’) we obtain that
3) T(E(p)UE(mxg)U...UE@mXq,), ¥, E(g), 3, X,)holds in V.

Conversely, from Corollary 3.3 it is easy to check that

and

if T(E,, =, E,,7,Y) holdsin V, and (: F(Y)—~ A
is a homomorphism then for any (f; a, g,)€E,

(L=, L(z(g))) belongs to the congruence of A
generated by  {({(n(a)), {(x(b))): (a, o, B)EE},

Now we can define our Mal’cev condition. (We shall write X;, W(mXgq), ¢, ...
instead of X7,y (W(mXxgq)),®, ...).

A variety V of type o is said to satisfy the (strong Mal’cev) condition U(n, y, m)
if and only if

“Considering the pairwise disjoint sets V(p), W(mXgqy), ..., W(mXgq,) and
denoting V(p) and V(p) ) W(mxq,) UL U W(mxXgq;) by X, and X;, respectively,
there are maps

@ V(q)_:Fa(Xm)s . .

y: V(pUV(nxg)U ...UV(mXq,)~F,(X,), and

4
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n: V(mXpl)CJ .U V(mXp,)—~F,(X,,_y) such that the following five condi-
tions hold:

(@) For 1=i=m Y(V(mxqg)\W(mXq)) and n(V(mXp)) are subsets of
F,(X;_1), and ¥ restricted to X, is the identity map;

(b) For I=i=m T(E(p)UE(mXg)VU...UEmXg;_y), ¥, E(mXpy), n, X;_;)
holdsin V; .

(©) T(E(P)UEmxg)U ... UE(mXgmw, ¥, E(g), ¢, X,,) holds in V;

(d) n and Y are compatible in the sense that for any 1=i, j=m, if (c,, ¢,) and
(e,, €,) are the j-th pairs of endpoints in G(mXp;) and G(mXq;), respectively, then
the “endpoint” identities #5(co)(x: x€X; )=y (e)(x: x€X;_;) and n(c)(x:
x€X;_))=vy(e)(x: x€X;_;) hold in V; and

(e) ¢ and ¥ are compatible in the sense that for the endpoints x,, x; and f,, f;
of G(p) and G(q), respectively, the identities @(f)(x: x€X,)=¢(x)=x;, i=0,1,
hold in V.”

We have shown that if ¥ holds in CV then there exists an m, 2=m <, such that
the (strong Mal’cev) condition U(n, x, m) holds in V.

4. Main theorem and its sufficiency

THEOREM. For any n-permutable variety V, a lattice Horn sentence y is satisfied
in the congruence lattices of members of V if and only if U(n, y, m) holds in V for some
m,2=m=<qw.

To prove the sufficiency assume U(n, y, m). Let con (a), a€ S, be congruences of
an algebra B¢V such that p;(con (a): a€ S )=g,(con (2): a€S) for all i=1. Let
(a9, ay)€p (con (0): a€ S). We have to show that (a,, @,)€q (con (x): a€S) as well.

For a map y, yx will stand for y(x). Via induction we define homomorphisms
(i1 F,(X)—~B for i=0,1,...,m such that {; is an extension of {;_,, {;¥ and {n
are (multiple) connecting maps* (i.e. if (a, &, b) and (c, «, d) are edges in the corres-
ponding domains then ({;yra, {;yb)Econ («) and ({;nc, {;nd)écon (x)), and for the
endpoints x,, x; of V(p) {Wx,=a, and {Yx,=a, hold.

By Proposition 3.1, a, and g, can be connected by G(p) in B. Choose a connecting
map ¢: V(p)=X,—~B and extend it to a homomorphism {,: F,(X,)—B. Then
{a¥ =0, is clearly a connecting map. Since T(E(p), ¥, E(mXp,), 11, X,) holds in V,
(4) applies and we have that {({,¥a, {¥b): (a, o, b)) E(p)} generates a congruence,
say oy, which collapses {onf and (,ng for any (f, o, g€ E(mXp,). But oySa
follows from {,¢ being connecting, whence {,n is (multiple) connecting, too.

Now assume that {(E{, S ... E{;_; (0<i=m) have been defined appropriately.
Since {;_,n is a (multiple) connecting map, Proposition 3.1 yields that ({;_,nf,
i—1n)€p; (con (@): «€S)Sq;(con (@): a€S) holds for any pair (f, g) of endpoints
in G(mXp;). Therefore, by Proposition 3.1 again, there is a (multiple) connecting
map ¢;: V(mXgq;)—~B suchthat g;and {;_,n (restricted to G(m X p;)) are compatible.
Now consider the map X;—B, x—{;_;x if x€X;_; and x—g;x if x€ W(mxgq),

* In this context y and # will be restricted to ¥(p) J V(mXqy) 0.0 V(mxq) and, if i<m,
to V(mXp,)U... UV (mXp,.1), respectively.
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and extend it to a homomorphism {;: F,(X;)—~B. Clearly {; extends {;_,. Hence to
show that {;i is a connecting map it suffices to check that g; and the restriction of
(¥ to V(mXgq;) coincide. If xc W(mXgq;) then {Yyx={;x=g;x while, by (d),
for the j-th pairs (c,, ¢,) and (e,, €,) of endpoints in G(mXp;) and G(mXgq;) we have
ey =G 11//e0—C i—1MCo=0:€, and the same for e;. Since {;n and {;_,n coincide on
V (mXpy) U...u V(mXp;); it suffices to show that (1f i<m) {;n restricted to

V(mXp;.y) is connecting. Since T(E(p) UEmxg) U ... D E(mXq), ¥, E(mXp;.y),
1, X;) holds in V, (4) applles and we have that the congruence o; generated by
{(C¥a, {iyb): (a, o, B)EE(p) UE(mxgq) U .. UE(qul)} collapses {;nf and {ing
for any (f, o, g)€ E(mXp;,1). But we have o;Ca from {;| being a connecting map,
whence {;n (restricted to V(mXp;,1))is a connecting map either.

Now put {=(, and denote a, the congruence generated by {({¥a,{¥b):
(a, a, b)EE(p)OE(qul) U...UE(@mxq,)}. From () and (4) we obtain that
{o: V(q) — B is a connecting map which represents a by a,,. Since (i is also a connect-
ing map, «,Scon («). Hence {¢ represents a by con («) as well. From Proposition
3.1 it follows that (Lof,, {of)€q((con (®): «€.S). Now by making use of (¢) we have
Ceofo, Lof)=(CYx,, hx1)=(ay, a;), Which completes the proof of the sufficiency.

5. Concluding remarks

The usual form of a strong Mal’cev condition is (roughly saying, for precise de-
finition cf., e.g., Jonsson [9]) the following: ““There are certain finitary terms f;(X), .

- (X)) for which certain prescribed identities hold”. If any prescribed 1dent1ty is
of the form filu(x): x€X)=f(v(x): x€X) or fi(u(x): x€X )=y for some maps
u: X—~X and v: X—X and y€X then the strong Mal’cev condition will be called
linear. While the Wille-Pixley algorlthm [t1, 13] ylelds linear Mal’cev conditions,
ours does not. (However, the U(n, x, m) in Theorem is a strong Mal’cev condition. )

Now we intend to point out that our algorithm cannot be improved so that
U(n, x, m) in Theorem be linear in general.

The reason for this is the following. For a ring R with 1 let M(R) denote the
variety of unitary left R-modules. Hutchinson [7] has produced two rings, R, and R,,
such that though CM(R,) and CM(R,) satisfy the same lattice identities, they satisfy
different sets of Horn sentences. But, as it is implicit in [8], if CM(R;) and CM(Ry)
satisfy the same lattice identities then M(R,) and M(R,) satisfy the same linear strong
Mal’cev conditions.

The condition (3m) (U(n, x, m)) in our Theorem does not seem to be a Mal’cev
condition yet. To make it a real Mal’cev condition we have to prescribe appropriate
linear orders of the occurring edge sets. Let the orderings of E(p), E (q), E(p;), and
E(q) 1=i=k, be fixed arbitrarily. The linear orders of E™=E(p)UE(mxq)U ..

.UE(@mxgq,) and mE= E(mXp,) U...UE (mX p,,,) will be defined via lnductlon
Slnce E°=E(p) and °E=@, their orderings are unique. Having the linear orders of
E™ and ™E defined put E™"*1=E"+E(q,)+... + E(Gum)+ E(Gms1) +-.- + E(q,+1) and
mAIE="E+E(p)+... +E(P) + E(Pmi) + ... +E(Pms1). Here + stands for the
ordinal sum, whence, e.g., any element of E™ precedes all the elements of E™ 1\ E™.
Further, let us also agree that if E; has a fixed linear ordering in the definition of
T(E,, r, E,, 1, Y) then (a;, o, b)) E, precedes (a;,.q,, b;,) for i=1,2,..,u—1.
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Now (3m) (U(n, x, m)) has become a Mal’cev condition. To show that U(n, x, m)
implies U(n, x, m+1) (in any variety and for all m=2) indeed, we can repeat some
earlier terms, consider some projections, and introduce irrelevant variables. The long
technical details will be omitted.

Added in proof (April 5, 1984). Recently it has appeared that Proposition 1.1
is a special case of Herrmann and Poguntke’s [14, Thm. 6]. Yet, our approach is
different from [14].
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