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1. INTRODUCTION

In the classical paper [4] [5] A.I. MAL'CEV proved
that congruence permutability of a variety T of alge-
bras is equivalent to the existence of a polynomial (x,
y,2)? on T, a Mal'cev (completion of a) parallelogram
polynomial, satisfying the identities (¢,x,3)P = 2 and
(¢,2,2)P = x. For example, 1if T 1is the variety of
groups, (x,y,2)P may be taken to be ey 'z or ay lz.
Some of the theory of varieties with such a polynomial,
eponymously called Mal'cev varieties, was presented in
[9], to which reference is implicit for certain features
mentioned in this paper. An important part of the study
of a Mal'cev variety T involves the subvariety Z(T)
[9, 2.3] consisting of those algebras A4 in T for
which the diagonal 2 = {(a,a) | a€A} 1is a normal sub-
algebra of the direct square 4 X 4 (i.e. a V-class for

"The first author is grateful to the Jdnos Bolyai Mathe-
matical Society and the Arbeitsgruppe Allgemeine Alge-
bra of the TH Darmstadt for the opportunity of partici-
pating in the Arbeitswochen Allgemeine Algebra at Darm-
stadt during which this paper was written.
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a congruence V on A4 x A). For example, if T is the
variety of groups, Z(T) 4is the variety of abelian
groups. Now in Z(T) the parallelogram polynomial is
unique (as an element of the free algebra in Z(7) on
three generators); in the case of groups, commutativity
of the multiplication implies for example that xy—lz =
= zyulx. In [3] the second author raised the question
of the converse: does uniqueness of the Mal'cev poly-
nomial in a Mal'cev variety T 4imply that T = Z(T) ?
For example, in a variety of groups the equality xy_]z =
= zy_]m becomes the commutative law when the identity is
substituted for y. This paper sets out to answer the
gquestion. It transpires that a deeper and more detailed
analysis of the uniqueness is required than might be
thought at first sight. The answer given furnishes u-
nigueness conditions tailored to the individual variety
T sufficient to prove that T = Z(T), and provides an
example demonstrating the necessity for such specific

conditions.

2. THE MAIN THEOREMS

This section presents the main theorem stating that
a Mal'cev variety T 1is equal to Z(T) when certain u-
niqueness hypotheses appropriate to T are satisfied.
Before introducing the hypotheses it is necessary to con-
sider more closely the various kinds of Mal'cev poly-
nomial. Mal'cev deduced the existence of a parallelogram
polynomial (x,y,z)P from the permutability of congru-~
ences in the Mal'cev variety T by considering the free
algebra FX(T) in T on the three-element set X = {x,
y,2}. If ¢ and ¢ denote the congruences on FX(T)
which are the respective kernels of the morphisms
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FX(T) - F P T X, Y L, 33

{x,2}
and

F (T) - F ;X X, Y B, 203

{x, 2}
then 2t y ¢ 2. The permutébility of ¢ and ¢ then
gives the existence of an element (x,y,2)P such that

x ¢ {(x,y,8)P ¢t 8. Such an element of FX(T) is what
was defined above as a parallelogram polynomial, and T
satisfies the identities (x,x,2)P =2 and (x,2,2)P =
=gx. If a o b B e for elements a,b,¢c and congruences
a,8 of any algebra 4 in T, then a 8 (a,b,c)P o c.
Suppose now more generally that instead of considering
z,Yy,2 as elements of FX(T) one considers them as ele-

ments of F for an ordinal ¢ £ w, where W(u)

XUW(L)(T)
is the set {wi | © < v} of distinct elements disjoint
from X. Letting ¢ and ¢ denote the congruences on

F (T) which are the respective kernels of the mor-

XUW (u)
phisms
Fyowv) T = Figzyom(u)
T X, Yy X, 30 3, wi > wi
and

Fyow() (M 2 Frg ayumqu) #

X =» X = 3 a2 = 2 W, P w,
r Y r r W, i

(Z < V), ¢t y ¢ 2. The permutability of these ¢ and
¢ now gives the existence of an element 'P(x,y,z;wil

7 < uv) of such that =z ¢ P(x,y,z;wili <)z 3.

Fyowu)
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Such an element of FXUW(L)(T) will be called a Mal'cev
polynomial, for which T satisfies the identities P (x,
%350 |2 < v) =3 and P(x,z,z;wi |2 <) =x. If

a o b B¢ for elements a,b,¢ and congruences o,B of
any algebra 4 in T, then a B P(a,b,c;dil 7 < LV)a e

for any set {di | 2 < v} of elements of 4. For exam-

ple,
my_lz[[x,y,wol ' [y:zlwl]]

(where [a,b,e] = []a,b]l,c]) is a Mal'cev polynomial
P(x,y,z;wo,wl) in the variety of groups. It will often
prove convenient to distinguish between a parallelogram
polynomial (x,y,2)P (almost always assumed unigue) and
the Mal'cev polynomials P(x,y,z;wi | 2 < v) having .
irrelevant variables W, (Z < v). With this distinction

made, the uniqueness hypotheses may now be introduced:

2,1. DEFINITION. Let T be a Mal'cev variety. For
L < w, T is said to satisfy the generalised uniqueness
hypothesis U(.) 1if there is at most one Mal'cev poly-

nomial P(x,y,z;wi | 2 < v) as an element of F (T).

XUW (u)

Note that U(0) merely says that the parallelogram
polynomial is unique. In particular, (xz,y,2)P = (z,y,
x)P, since F(x,y,3) = (z,y,2)P 1is a Mal'cev polynomial,
If U(.) 1is satisfied, then U(p) is satisfied for all
p < L. U(w) 4is the conjunction of the U(.) for all
finite . If U(.) is satisfied by T, then the e-
quality of the parallelogram polynomial with each Mal'cev
polynomial having o irrelevant variables is an identity
in T.

- 130 -



The other hypothesis that plays an important r8le in
these considerations is that the Mal'cev variety T sat-

isfy the so-called B<Zg Dipper identity
(y,x,(x,y,Z)P)P = %

for the paralleiogram polynomial (x,y,2)P (CEf. [8,
P2%]). This identity says that the parallelogram poly-
nomial is in a certain sense invertible.

Satisfaction of generalised uniqueness hypotheses
and the Big Dipper identity are reasonable requirements

because of the following

2.2. THEOREM. If a Mal'cev variety T <s equal to
2(T), then T satisfies the generalised uniqueness hy-—

pothesis U(w) and the Big Dipper identity.

The main theorem of the paper provides the vonverse
of Theorem 2.2. However, the strength of the hypothesis
U(w) means that such a direct converse is of little
practical value. The theorem is therefore stated with
weaker hypotheses U(.) tallored to the peculiarities of
the variety 7T . under consideration. For the concept of

clone of polynomials of a variety, cf. [2, III.3].

2.3. THEOREM. Let T be a Mal'cev variety of type
T seatisfying the Big Dipper.

(a) If 1 consists of at most ternary operations
and includes at least one nullary operation, let T sat-
isfy U(0).

(b) If all operations of 1 have arity less than
b+ for some 0< o Suw, let T satisfy U().
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Then T = I(T), and the clone of T 1is generated
by the parallelogram and polynomials of arity at most 2.

The latter result on generation of the clone appears
naturally in deriving equality of T and Z(T) from the
hypotheses. Combining it with Theorem 2.2 gives the fol-
lowing generalisation of a result of OSTERMANN and
SCHMIDT [8, Satz 2, (8),(9)] about affine spaces (regarded
as algebras under the operations of taking weighted
means) :

2.4, COROLLARY. If a Mal'cev variety T is equal to
Z(T), ‘then its clone is generated by the parallelogram
and polynomiale of arity at most 2.

The next two sections of the paper are devoted to
proving Theorems 2.2 and 2.3, while the last section
provides an example of a Mal'cev variety T satisfying
the Big Dipper and U(0) for which Z(T) 1is a proper
subvariety of T.

3. PROOF OF THEOREM 2.2

Polynomials f(xi | 2 < m) and g(yj |l d < n) in a
variety are said to commute [2, III.3] if f(g(yijl Jd <
<n) << m = g(f(yij |2 <m) g < n). This notion
helps formulate a characterisation of varieties T = Z(T)
that will be useful in what follows:

3.1. PROPOSITION. A Mal'cev variety T <s equal to

Z(T) <ff T satisfies U(0) and the (unique) parallel-
ogram commutes with all polynomials of T.
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PROOF. Firstly, suppose that T satisfies U (0)

" and the unique parallelogram commutes with all polyno-
mials of T. PFor an algebra 4 in T define a rela-
tion V on 4 x A by

(x,y) V (u,v) 1iff v = (y,xz,u)P.

V is clearly reflexive, and if (xi,y.) Vv (ui,vi) for

7
7 < n, then for an n-ary polynomial f(xi | 2 < n)

f(vil'i < n) = f((yi,wi,ui)l’li < n) =

= (f(yi | £ < n),f(xi | 2 < n),f(ui | 2 < n))P

since P commutes with f, so that V is a subalgebra
of (4 x A)Z. It follows by [9, 143] that V is a con- -
gruence on A x A. Note that for all z,y in 4, y =
= (x,2,y)P, so ﬁ is contained in a V-class. Converse-
ly if (x,x) V (u,v), then v = (x,z,u)P = u,. sO 2 is
itself a V-class. It follows that T =.Z(T).
Conversely, suppose 4 1s an algebra in a variety
T for which T = Z(T). Let V denote the congruence on
A x A having 2 as a congruencé class, and let P( ,.,
) be a ternary Mal'cev polynomial in 7. Then -

(0) (®,y) V (z,t) 1iff ¢t = P(y,z,2).

For
(z,y) = P((z,y),(z,2),(x,x)) V
4 P((xly)l(mlx)l(zlz)) =

= (P(x,z,2) ,P(y,x,2)) = (2,P(y,x,2)) = (z,t),
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while on the other hand if (x,y) V (z,t) then

(t,t) = P((t,t),(t,8),(t,8)) =

P((t,t) ,P((t,t),(z,t),(3,8),(t,2)) V

4 P((y:y) IP((yry)l(xry)r(xlx))r(tlz)) =

P((y,y) ’ (y,x) P (t,2)) = (t,P(y,xrz))

.

so that ¢
the free T-algebra on {xz,y,2} shows the unigueness of

P(y,x,2). In particular taking 4 to be

the Mal'cev polynomial P( , , ), so this will be writ-
ten as a parallelogram polynomial ( , , )P. Finally
let f(xi | © < m) be an n—-ary polynomial of T. By
(0) (xi,yi) 4 (Zi’(yi’xi’zi)P) for < < n, so since

V is a congruence (f(xil 7 < n),f(yi |2 < n)) v (f(zil
7 < n),f((yi,xi,zi)P | 2 < »n)). (0) then shows that
f((yi,wi,zi)P (2 < n)) = (f(yil 7 < n),f(xil 7 < n),
f(zi | £ < n))P, as required for the commuting of P
with 7£.

Now the proof of Theorem 2.2 follows rapidly. Sup-
pose that the Mal'cev variety T is equal to (7).
Let (x,y,2)P Dbe the parallelogram polynomial in T,
unique by Proposition 3.1, and let F(x,y,2z;w) be a
Mal'cev polynomial with a vector w of irrelevant vari-
ables. Then (x,y,2)P = (F(x,y,yiw) F(y,y,yiw) F(y,y,z;
w))P = F((x,y,Y)P,(Y+y,y) P, (¥,4,2)P; (W,w,w)P) = F(x,y,
z;w), the penultimate equality holding since by Propo-
sition 3.1 P and F commute. Thus 7T satisfies Ul(w).
To show that T satisfies the Big Dipper identity, note
that the commuting of P with itself yields (y,z, (x,
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y,Z)P)P = ((ylyly)Pl(xlyly)Pl(xlylz)P)P = ((y,z,x)P,
(y,y,y)P,(y,y,Z)P)P = (y,y,z)P = 2. '

4. PROOF OF THEOREM 2.3

The proof of the main Theorem 2.3 will be carried
out in two stages corresponding to the two cases (a) and
(b) . Both cases require the foliowing lemma which shows
the use of the Big Dipper identity:

4.1, LEMMA. Suppose that T <is a Mal'cev variety
satisfying the Big Dipper identity for the pardZZeZogram
polynomial (x,y,3)P. Let f(x), g(x), h(x) be polyno-
mials of T of the same arity for which T satisfies
(F(x)rg(x) ,A(x))P
= h(x).

flx). Then T also satisfies g(x) =

PROOF. g(x) = (g(x),f(x),f(x))P = (g(x),f{x),(Ff{x),
g(x) A (x))P)P = h(x).

The crucial idea underlying the proof of Theorem 2.3
is that of designing new Mal'cev polynomials in which two
adjacent components are the two sides of an identity one
wishes to derive, and then using Lemma 4.1 to prove e-
quality of these components. 4

Suppose then that T 1is a Mal'cev variety satisfy-
ing the hypotheses of case (a). By Proposition 3.1 it
suffices to show that the parallelogram ( , , )P com~
mutes with all polynomials of T. Now if a polynomial
commutes with the polynomials in a certain set, it com-
mutes with all the polynomials in the clone generated by
that set [2, Prop. III.3.2]. For the proof of case (a) it

thus suffices to show that all polynomials- of arity at
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most 3 lie in the clone generated by P and poly-
nomials of arity at most 2, and that P commutes with
these.

Let e denote a nullary polynomial of T (such ex-
ist by the hypothesis of case (a)). Then (e,e,e)P = e,
so P certainly commutes with e. Next, let f(x) be
a unary polynomial of 7. Define the ternary polynomial

F(z,y,2) = ((z,y,2)P, (f(z),f{y),f(z))P,

Ffllx,y,2)P))P.

Now F(z,x,2) = (3,f(z),f(z))P =2 and F(x,z,3) =
= (x,f(x),f(z))P = 2, so F(x,y,2) is a ternary Mal'cev
polynomial. U(0) then gives that (x,y,2)P = F(x,y,3),
whence Lemma 4.1 yields (f(x),f(y),f(2))P = f((x,y,2)P),
i.e. P commutes with the unary fl(x).

The next stage of the proof of (a) involves showing
that the parallelogram P commutes with itself. Since
this stage is also necessary for the proof of (b), it is

formulated as the general

4.2, LEMMA. Let T be a Mal'cev variety satisfying
the Big Dipper.

(a) If T contains a nullary operation, let T
satisfy U(0).

(b) Otherwise, let T satisfy U(l).

Then the parallelogram operation P commutes with
itself.

PROOF. In case (a), let w denote a nullary oper-

ation of T, and let A4 be the free T-algebra on a 9-
element set X. In case (b), let 4 be the free T-al-
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gebra on X U {w}. Define the maps

+ 1 4 x A > A ; (ac,y) > Xty = (xrwly)P
and
A~ 4 ; = (_-’E) = (wry W) P

It will be shown in a series of steps that (4,+,-,») is
an abelian group, and that (x,y,2)P = z-y+z on A.
Since the statement that P commutes with itself in T
is a 9-variable identity, the result follows.

Step 1. Commutativity of + . By the remarks fol-
lowing Definition 2.1, (x,y,2)P = (2,y,x)P 1is a con-
sequence of U(0). Substituting w for y gives the
commutativity of + .

Step 2. w <s a unit for + . x+w = (r,w,wW)P = x.

Step 3. x+ (-x) = w. This step shows directly how
the Big Dipper works as an invertibility condition: « +
+ (~x) = (x,w, (W, x,W)P)P = w.

Step 4. Associativity of + . For this step, the
identity

(0) ((wlwrz)Prwly)P = ((x,w,y)P:WIZ)
will be proved in T. The required result then follows
on recalling the commutativity of + . Define the ter-

nary polynomial

F(w,y,z) = ((-’JG,yrZ)P,((x,y,Z)P,yrﬂc)Pr

((,y,2)P,y,2)P)P

in T. Then F(x,x,3) = (2,(z,x,2)P,(x,2,3)P)P =

= (2,2,2)P =2 and F(x,z,3) = (x,(x,2,2)P,(x,2,x)P)P =
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= x, so that F(x,y,3), being a Mal'cev polynomial, is
equal to (x,y,2z)P by U(0). ZLemma 4.,] then shows that

(1) ((e,y,2)P,y,2)P = ((x,y,2)P,y,3)P

holds in T. Now define the polynomial (ternary for (a),
quaternary for (b))

G(m,y,z;w) = ((x,y,23)P,((x,w,8)P,w,y)P,

((x:w:y)P,w,Z)P)P
in T. Then

Glx,x,3;w)

= (2, ({x,w,2)P,w,2)P,((z,w,2)P,w,z)P)P

Il
Y

by (1) and

Glx,z,2;w) =

It

= (x, ((x,w,3)P,w,2)P,((x,w,28)P,w,2)P)P x,
so that G(x,y,zi;w), being a Mal'cev polynomial, is
equal to (x,y,2)P, by U(0) in case (a) and U(1) in
case (b). Lemma 4.1 then yields (0).

Step 4 completes the proof that (4,+,-,w) 1is an
abelian group.

Step 5. (x,y,2)P = x-y+z. This equality is equiv-
alent to the identity

(w,y,Z)P = ((mlwl(wlylw)P)Prwlz)Pl
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which follows (from U(0) in case (a) or from U(1) in
case (b)) if the right hand side can be shown to be a
Mal'cev polynomial. But by the Big Dipper

(w,w,8)P = 3

It

({(x,w,(w,x,w)P)P,w,3)P

and by (0) and the Big Dipper

I

((x,w,(w,2,0W)P)P,w,3)P

= (x,w,{((w,2,w)P,w,2)P)P = (x,w,w)P = x.
The proof of Lemma 4.2 is complete.
Armed with the commutativity of P with itself the

proof of case (a) of Theorem 2.3 continues much as be-

fore. For a typical binary polynomial #F(x,y) one de-

fines
Flz,y,2) = ((z,y,2YP,f(x,3),
(Flx,y) Fy.y) Fy,3))P)P.
Then F(x,x,2) = 2 and F(x,z,8) = x, s0 (x,y,2)P =

= F(x,y,2), from which Lemma 4.1 gives the identity

(2) f(xlz) = (f(fcly) rf(yly) ,f(y"z))P.

In particular for the nullary operation e

flx,2) = (flz,e),f(e,e),f(e,z))P

is an identity holding in T. It shows that the binary

polynomial f(x,g2) 1is in the clone generated by P and
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the set of polynomials of arity at most one in 7. But
by the earlier part of the proof P commutes with unary
polynomials, and by Lemma 4.2 P commutes with itself.
Thus [2, Prop. III.3.2] P commutes with the binary
polynomial f(x,z).

Finally, for a typical ternary polynomial f(x,y,z),

define
F(x,y,z) = ((x,y,8)P,f(x,y,3),
(Flzoy,y) o F Y ysy) o Fly,y,2))P)P.
Once again F(x,x,2) = 2z and F(x,z,3) =z, sO

(¢,y,3)P = F(x,y,2), from which Lemma 4.1 gives the
identity

fle,y,2) = (Fle,y.9) 2 F Y y0y)  Fly,y,2))P

showing that the ternary f 1lies in the clone generated
by P and the polynomials of arity at most 2. Since
P commutes with all of these, it also commutes with £,

and the proof of case (a) is complete.

For the proof of case (b), commuting of P with
nullary and unary polynomials proceeds just as for case
(a) , as does the derivation of identity (2). The proof
that P commutes with binary polynomials is somewhat
different: define

F(x'ylz;w) = ((w,y,Z)P,(f(x:w) ' Flyw),

Ff(z,w))P,f((x,y,2)P,w))P
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for an irrelevant variable w. Since F(x,y,2;w) is a
Mal'cev polynomial, U(l) and Lemma 4.! give the iden-
tity

(3) (Ffle,w),fly,w),f{z,w))P = Ff{x,y,23)P,w).

Then by (2), by Lemma 4.2, by (3) (applied to f(x,y)
and its opposite g(z,y) = f(y,x)) and again by (2),
respectively, we get

(fx,2)  fly,8),f(2,t))P =
= ((f(x,w),fw,w),flw,v))P,
(fly,w),flw,w),f(w,s))P,
(f(z,w),fw,w),f(w,t))P)P =
= ((f(x,w),fy,w),f(z,0))P,
(F (0 ,0) o F 00) ,F (0,0)) P,
(fw,r) ,f(w,8) ,f(w,t))P)P =

It

(f((w,y,Z)P,w) lf(w]w) fw,{r,8,t)P))P =

f((x,y:Z)P, (r,s,t)P)
so that P commutes with the binary polynomial 7.
Now for 0 < 72 < 2+. consider the induction hypoth-
esis
" I(£): Polynomials of arity at most 2+7 commute
with P and lie in the clone generated by P

and polynomials of arity at most 2.

I(0) has been proved, and by [2, Prop. III.3.2] case (b)
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of Theorem 2.3 follows once I(Z) 1is proved for all

0 £ 7 < 2+u.. Suppose then by induction that I(Z) has
been proved for 0 < 7 < l+uv. Let f(x,y,z,wj 1 d < 1)
be a (3+%)=-ary polynomial of T. Define

Flx,y,3; w |l < 2) = ((2,4,2)P,f(z,y,z, w 14 < 2),
(F 2,y .Y, w5 1§ < 2)0fyry.y, W, ld < z).

Fyy.2, W | § < Z))P)P

for the irrelevant variables wj (§ < 2). Since
Flx,y,3; w | § < 2) is a Mal'cev polynomial, U(Z) and
Lemma 4.1 give the identity

f(ac,yzw ld <) = f(x,yyw 1 J < ),

f(y,y,yw I d < 2Y,f(y,y. zw I d < 2))P,

showing that f 1lies in the clone generated by P and
polynomials of arity at most 2+Z. I(1+Z) £follows by
I(Z) and the commuting of P with itself.

5., AN EXAMPLE

This section mentions an example of a Mal'cev vari-
ety T satisfying the uniqueness hypothesis U(0) and
the Big Dipper identity for which Z(T) is a proper
subvariety of T. Derivation of the properties of T
used wanders too far from the subject of this paper; in-
stead the reader is referred to [6] or [7] and ([9].

A totally symmetric quasigroup or TS—-quasigroup
(9@,*) 1is a quasigroup for which the ternary relation
{(x,y,2) | x»y = 2} on ¢ 1is invariant under all per-
mutations of «,y, and z. A TS-quasigroup (§,°*) is
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said to be Abelian iff for each element e in @, (@,+,
e) 1is an abelian group with identity e under the op-
eration x+y = e+ (x.y). A cubic hypersurface quasigroup
or CH-quasigroup is a TS-quasigroup in which each set
of three elements generates an Abelian subquasigroup. A
commutative Moufang loop or CML is a quasigroup (I,+)
having a nullary operation selecting the so-called <den-
tity element 1 and a unary operation assigning to each
element « its so-called inverse =~x, such that each
set of two elements generates an abelian group and the

Moufang Llaw
x+ (y+(x+z)) = (x+y+x) +2

is satisfied. TS-quasigroups, CH-quasigroups, and
CML's each form Mal'cev varieties.

Let T denote the variety of CH-quasigroups and
CML the variety of CML's. Note that Z(CML) is the
variety of abelian groups [9, p.43]. For arbitrary e in
a CH-quasigroup (@,+), let Fe(Q,-) denote the CML
(@/+,e), where x+y = e« (x+y) (6, .5.11, [7, 5.11,
[9, 4311 ; for another §f in ¢, the loops Fe(Q,-)
and F,(§,+) are isomorphic, so the particular choice of
e is irrelevant. By the definition of "Abelian", a CH-
quasigroup (@,+) is an Abelian quasigroup iff the CML
Fe(Q(~) is an abelian group. For an algebra 4 in a
Mal'cev variety, the centre congruence 4 [9, p. 42] is
the largest congruence on 4 having the diagonal A as
a normal subalgebra; in particular A is normal in 4 x
x A 1ff ¢d =4 x A. By [9, 437], tc(Q,:) = cFe(Q,-).
Thus (@,+) is in Z(T) iff Fe(Q,-) is an abelian
group: Z(T) is the variety of Abelian quasigroups.
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Let (L,+,1) be a CML. For e ¢(L,+,1) 1, define
» on L by «x*y =c-x~y (such ¢ associate with all
pairs of elements of L). Then [6, I.5.2], [7, 5.2],
[9, 432] Gc(L,+,l), defined to be (L,+), is a CH-
quasigroup, and [9, 4371 ¢ (L,+,1) = tG,(L,+,1). In par-
ticular, if (L,+,1) is a CML not satisfying the as~-
sociative law, GI(L,+,1) is a CH-quasigroup that is
not Abelian. But there are CML's which are not associ-
ative [1, VIII.!], and so Z(T) is a proper subvariety
of T.

Finally, note that the hypothesis U (0) and the
Big Dipper identity are three-variable identities. T
satisfies any three-variable identities that are satis-
fied in ZI(T) since any three elements of a T-algebra
generate a Z(T)-algebra. But by Theorem 2.2 Z(T) sat-
isfies U(0) and the Big Dipper, so the variety T does
also,
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