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Abstract. For varieties, congruence modularity is equivalent to the tolerance
intersection property , TIP in short. Based on TIP, it was proved in [5] that
for an arbitrary lattice identity implying modularity (or at least congruence
modularity) there exists a Mal’tsev condition such that the identity holds in
congruence lattices of algebras of a variety if and only if the variety satisfies
the corresponding Mal’tsev condition. However, the Mal’tsev condition con-
structed in [5] is not the simplest known one in general. Now we improve this
result by constructing the best Mal’tsev condition and various related condi-
tions. As an application, we give a particularly easy new proof of Freese and
Jónsson [11] stating that modular congruence varieties are Arguesian, and we
strengthen this result by replacing ”Arguesian” by ”higher Arguesian” in the
sense of Haiman [18]. We show that lattice terms for congruences of an arbi-
trary congruence modular variety can be computed in two steps: the first step
mimics the use of congruence distributivity while the second step corresponds
to congruence permutability. Particular cases of this result were known; the
present approach using TIP is even simpler than the proofs of the previous
partial results.

1. Introduction

It is an old problem if all congruence lattice identities are equivalent to Mal’tsev
(=Mal’cev) conditions. In other words, we say that a lattice identity λ can be
characterized by a Mal’tsev condition, or λ has a Mal’tsev condition, if there exists
a Mal’tsev condition M such that, for any variety V , λ holds in congruence lattices
of all algebras in V if and only if M holds in V ; and the problem is if all lattice
identities can be characterized this way. This problem was raised first in Grätzer
[14], where the notion of a Mal’tsev condition was defined and its importance was
pointed out.

A strong Mal’tsev condition for varieties is a condition of the form ”there exist
terms h0, . . . , hk satisfying a set Σ of identities” where k is fixed and the form of Σ is
independent of the type of algebras considered. The first strong Mal’tsev condition
is due to A. I. Mal’tsev [25]; this classical condition characterizes the congruence
permutability of varieties. By a Mal’tsev condition we mean a condition of the
form ”there exists a natural number n such that Pn holds” where the Pn are strong
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Mal’tsev conditions and Pn implies Pn+1 for every n. The condition ”Pn implies
Pn+1” is usually expressed by saying that a Mal’tsev condition must be weakening
in its parameter. For a more precise definition of Mal’tsev conditions cf. Taylor [32]
or Neumann [28]. For an overview on Mal’tsev conditions cf., e.g., Appendix 3 by
B. Jónsson in Grätzer [15] or Chajda, Eigenthaler and Länger [1].

The problem if each congruence lattice identity has a Mal’tsev condition was
repeatedly asked by several authors, including Taylor [32], Jónsson [21], Freese and
McKenzie [12], and Snow [31].

Certain lattice identities have known characterizations by Mal’tsev conditions.
The first two results of this kind are Jónsson’s characterization of (congruence)
distributivity by the existence of Jónsson terms, cf. Jónsson [20], and Day’s char-
acterization of (congruence) modularity by the existence of Day terms, cf. Day [7].
Jónsson terms and Day terms were soon followed by some similar characterizations
for other lattice identities, given for example by Gedeonová [13] and Mederly [26],
but Nation [27] and Day [8] showed that these Mal’tsev conditions are equivalent
to the existence of Day terms or Jónsson terms; the reader is referred to Jónsson
[21] and Freese and McKenzie [12] (Chapter XIII) for more details.

The next milestone is Chapter XIII in Freese and McKenzie’s book [12]. Let us
call a lattice identity λ in n2 variables a frame identity if λ implies modularity and
λ holds in a modular lattice iff it holds for the elements of every (von Neumann)
n-frame of the lattice. Freese and McKenzie showed that frame identities can be
characterized by Mal’tsev conditions. Their approach is based on commutator
theory. Although that time there was a hope that their method combined with [19]
gives a Mal’tsev condition for each λ that implies modularity, cf. [12] (page 155),
Pálfy and Szabó [29] destroyed this expectation.

The next step, motivated by Gumm’s Shifting Principle [17], is based on elemen-
tary properties of tolerance relations. To formulate the result we recall a notion
from Jónsson [21]. For lattice identities λ and µ, λ is said to imply µ in congru-
ence varieties , in notation λ |=c µ, if for any variety V if all the congruence lattices
Con(A), A ∈ V , satisfy λ then all these lattices satisfy µ as well. If λ implies µ in
the usual lattice theoretic sense then of course λ |=c µ as well. However, it was a
great surprise by Nation [27] that λ |=c µ is possible even when λ does not imply
µ in the usual sense. Jónsson [21] gives an overview of similar results. We mention
that R. Freese gave an algorithm to test if λ |=c modularity, cf. [3], which is based
on Day and Freese [9].

Now it was proved in [5] that if λ is a lattice identity such that λ |=c modularity
then λ can be characterized by a Mal’tsev condition. The proof of this fact is
relatively elementary and easy but the Mal’tsev conditions obtained are far from
being optimal in most of those cases where Mal’tsev conditions were previously
known.

One of our goals here is to improve [5] by giving the simplest (and in this sense
hopefully the best) Mal’tsev condition and some related conditions associated with
λ when λ |=c modularity. The usefulness of these conditions is demonstrated by
proving new results of the form modularity |=c λ. Using the tools of the present pa-
per we prove that lattice terms for congruences of an arbitrary congruence modular
variety can be computed in two steps: the first step mimics the use of congruence
distributivity while the second step corresponds to congruence permutability.
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Our approach is based on a condition on tolerance relations, which we call tol-
erance intersection property , TIP for short. An algebra A is said to satisfy the
tolerance intersection property if for any two tolerances (i.e., reflexive symmetric
compatible relations) α and β of A we have

α∗ ∩ β∗ = (α ∩ β)∗

where ∗ stands for transitive closure. The importance of TIP comes from the
following statement:

Theorem 1. ([6], cf. also [5]) Every algebra in a congruence modular variety sat-
isfies TIP.

This theorem was invented and proved in two steps. The first step was Proposi-
tion 1 (together with Theorem 1) of [4] while the second one is due to Radeleczki
in [6]. For a more direct proof of Theorem 1 cf. [5]. Notice that Kearnes [22], moti-
vated by [4], also invented Theorem 1 and applied it to obtain new results. He was
the first to prove the converse of Theorem 1, namely that TIP implies congruence
modularity; the present paper gives a new proof of this statement. Theorem 1 was
heavily used in the papers [5], [6], and [2]. For example, Radeleczki proves in [6]
that tolerance lattices of algebras in congruence modular varieties are 0-1 modular
(i.e., no N5 includes the greatest and the least elements simultaneously).

Since this paper and Theorem 1 came to existence under unusual circumstances,
the authors decided to give an account on their contribution. Section ”2. From
TIP to Mal’tsev conditions” is a joint work of the three authors. The example
after Proposition 2 is due to the second author. With this exception, the last
two sections, ”3. Identities in modular congruence varieties” and ”4. Combining
distributivity with permutability” belong to the third author. Finally, the first
author is responsible for section ”1. Introduction”.

2. From TIP to Mal’tsev conditions

Given an algebra A, the set Relr(A) of all reflexive and compatible relations on
A (in other words, all subalgebras of A2 including the diagonal subalgebra) has the
operations intersection ∩, inverse −1, composition ◦, transitive closure ∗ and join ∨
as usual: for α and β in Relr(A), (x, y) ∈ α−1 iff (y, x) ∈ α, (x, y) ∈ α ◦ β iff there
exists a z ∈ A with (x, z) ∈ α and (z, y) ∈ β, and α∨β is the transitive closure of
α ∪ β. Notice that for tolerances α, β ∈ Relr(A) we have

α∨β = (α∨β)∗ = α∗ ∨β∗ = (α ◦ β)∗ = (α∗ ∨β∗)∗.

Sometimes we write ∧ instead of ∩. When we speak of terms in these operations
then the motivating idea is substituting the variables by reflexive compatible rela-
tions later.

For a term p = p(x1, . . . , xk) in the binary operations ∩,∨, ◦, in short for a
{∩,∨, ◦}-term, and for n ≥ 2 we define two kinds of derived {∩, ◦}-terms, pn and
p2,2 via induction as follows. If p is a variable then let pn = p2,2 = p. If p = r ∩ s

then let pn = rn∩sn and p2,2 = r2,2∩s2,2. Similarly, if p = r◦s then let pn = rn◦sn

and p2,2 = (r2,2 ◦ s2,2) ∩ (s2,2 ◦ r2,2). Finally, if p = r ∨ s then let pn = rn ◦ sn ◦ · · ·
with n factors on the right and p2,2 = (r2,2 ◦ s2,2)∩ (s2,2 ◦ r2,2). The tool to exploit
TIP is provided by the following lemma; notice that part (D) was previously proved
by Kearnes [22] in a different way.
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Lemma 1. Let A be an algebra satisfying TIP, let p = p(x1, . . . , xk) be a {∩,∨, ◦}-
term, let q = q(x1, . . . , xk) be a lattice term (i.e., a {∩,∨}-term), and let α1, . . .,
αk ∈ Con(A). Then

(A) p2,2(α1, . . . , αk) ⊆ p2(α1, . . . , αk) ⊆ p(α1, . . . , αk) (even without assuming
TIP);

(B) p2,2(α1, . . . , αk)∗ = p2(α1, . . . , αk)∗ = p(α1, . . . , αk)∗;
(C) q2(α1, . . . , αk)∗ = q2,2(α1, . . . , αk)∗ = q(α1, . . . , αk); and
(D) Con(A) is modular.

Proof. Since the operations ∩,∨, and ◦ are monotone, an easy induction on the
length of p shows part (A). Since ∗ is isotone, p2,2(α1, . . . , αk)∗ ⊆ p2(α1, . . . , αk)∗ ⊆
p(α1, . . . , αk)∗ follows from (A). Hence, to prove (B), it suffices to show that

(1) p2,2(α1, . . . , αk)∗ ⊇ p(α1, . . . , αk)∗.

This will be done via induction on the length of p.
First of all notice that p2,2(α1, . . . , αk) is always a tolerance of A; this follows via

induction on the length of p. Now (1) is evident when p is a variable. Suppose that
p = r∩s (and (1) holds for r and s). Then, with the notation ~α = (α1, . . . , αk) and

using TIP (indicated by
TIP
= ) and the induction hypothesis (indicated by

ind
⊇ )

we have

p2,2(~α)∗ =
(

r2,2(~α) ∩ s2,2(~α)
)∗

=
(

r2,2(~α) ∩ s2,2(~α)
)∗∗ TIP

=

(

r2,2(~α)∗ ∩ s2,2(~α)∗
)∗ ind

⊇
(

r(~α)∗ ∩ s(~α)∗
)∗

⊇
(

r(~α) ∩ s(~α)
)∗

= p(~α)∗,

indeed. Now suppose that p = r ◦ s. Then

p2,2(~α)∗ =
(

(

r2,2(~α) ◦ s2,2(~α)
)

∩
(

s2,2(~α) ◦ r2,2(~α)
)

)∗

⊇

(

r2,2(~α) ∪ s2,2(~α)
)∗

= r2,2(~α)∗ ∨ s2,2(~α)∗
ind
⊇

r(~α)∗ ∨ s(~α)∗ =
(

r(~α) ◦ s(~α)
)∗

= p(~α)∗,

indeed. Finally, if p = r ∨ s then

p2,2(~α)∗ =
(

(

r2,2(~α) ◦ s2,2(~α)
)

∩
(

s2,2(~α) ◦ r2,2(~α)
)

)∗

⊇

(

r2,2(~α) ∪ s2,2(~α)
)∗

= r2,2(~α)∗ ∨ s2,2(~α)∗
ind
⊇

r(~α)∗ ∨ s(~α)∗ =
(

r(~α)∨ s(~α)
)∗

= p(~α)∗.

This proves (1) and part (B) of the lemma.
Since q(α1, . . . , αk) is a congruence, it equals its transitive closure and (C) be-

comes a particular case of (B).
Now, to prove (D), let α, β, γ ∈ Con(A) with α ⊆ γ and consider the lattice

terms p(α1, α2, α3) = (α1 ∨α2)∧α3 and q(α1, α2, α3) = α1 ∨(α2 ∧α3). We have
to show that p(α, β, γ) ⊆ q(α, β, γ). Let (x, y) ∈ p2(α, β, γ) = (α ◦ β) ∩ γ. Then
(x, y) ∈ γ and there is a z ∈ A such that (x, z) ∈ α, (z, y) ∈ β. Since α ⊆ γ,
(x, z) ∈ γ and (z, y) ∈ γ by transitivity. So (z, y) ∈ β ∩ γ and we obtain (x, y) ∈
α ◦ (β ∩ γ) = q2(α, β, γ). This shows that p2(α, β, γ) ⊆ q2(α, β, γ). Hence (C)
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applies and we conclude p(α, β, γ) = p2(α, β, γ)∗ ⊆ q2(α, β, γ)∗ = q(α, β, γ), the
modular law. �

Part (D) of Lemma 1, first proved by Kearnes [22], says that TIP is a stronger
property than congruence modularity. It is properly stronger, for [4], right before
Proposition 1, gives an example of a three element (therefore congruence modular)
monounary algebra which fails TIP. However, part (D) of Lemma 1 together with
Theorem 1 imply the following statement, which is worth separate formulating even
if it has been known for a while.

Theorem 2. ([6], [5], [22] ) Let V be a variety of algebras. Then V satisfies the
tolerance intersection property if and only if V is congruence modular.

The way we proved part (D) of Lemma 1 leads to the following more general
statement, which we formulate for later reference.

Corollary 1. Let A be an algebra satisfying TIP, let p = p(x1, . . . , xk) be a
{∩,∨, ◦}-term and let q = q(x1, . . . , xk) be a lattice term. Then the following con-
ditions are equivalent.

(a) p ⊆ q holds for congruences of A,
(b) p2 ⊆ q holds for congruences of A,
(c) p2,2 ⊆ q holds for congruences of A.

Proof. According to Lemma 1 (A), (a) implies (b) and (b) implies (c). Now suppose
(c). Then, in virtue of Lemma 1(B) we obtain

q(~α) = q(~α)∗ ⊇ p2,2(~α)∗ = p(~α)∗ ⊇ p(~α).

This shows that (c) implies (a). �

Given two {∩,∨, ◦}-terms, p = p(x1, . . . , xk) and q = q(x1, . . . , xk), we say that
the congruence inclusion formula p ⊆ q holds in a variety V (or, in other words,
p ⊆ q holds for congruences of V) if for any algebra A ∈ V and for any congruences
α1, . . . , αk of A we have p(α1, . . . , αk) ⊆ q(α1, . . . , αk) in Relr(A). When both p

and q are join-free, i.e. they are {∩, ◦}-terms, then Wille [33] and Pixley [30] gives
an algorithm to construct a strong Mal’tsev condition M(p ⊆ q) such that, for any
variety V , the congruence inclusion formula p ⊆ q holds in V if and only if M(p ⊆ q)
holds in V . We do not give the details of the Wille–Pixley algorithm here, for it is
also available from several secondary sources; for example from [19] or from Chapter
XIII of Freese and McKenzie [12]. Notice that for an arbitrary lattice identity p ≤ q

Wille and Pixley show that this identity holds in all congruence lattices of V iff V
satisfies the weak Mal’tsev condition (∀m ≥ 2) (∃n ≥ n)

(

M(pm ⊆ qn)
)

.
Given a lattice term q, let q[d] stand for its “disjunctive normal form”, which is

computed by distributing meets over joins everywhere as if we were in a distributive
lattice, so q[d] is a join of meets of variables. The precise formal definition and the
simultaneous proof that q[d] is a join of meets of variables go via induction on the
length of q as follows. Let q[d] = q when q is a variable. If q = r ∨ s then let
q[d] = r[d] ∨ s[d]. Finally, if q = r ∧ s then r[d] =

∨

i∈I ai and s[d] =
∨

j∈J bj with the

ai and bj being meets of variables, and we let q[d] =
∨

i∈I, j∈J (ai ∧ bj).
Now we formulate one of our main results.

Theorem 3. Let p ⊆ q be a congruence inclusion formula with q being ◦-free. (I.e.,
p is a {∩,∨, ◦}-term and q is a lattice term.) Then for any congruence modular
variety V the following conditions are equivalent.
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(i) p ⊆ q holds for congruences of V ,
(ii) p2 ⊆ q holds for congruences of V ,
(iii) p2,2 ⊆ q holds for congruences of V ,
(iv) the Mal’tsev condition

(∃n ≥ 2)
(

M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2)
)

(where q2 ◦ q2 ◦ · · · ◦ q2 denotes a product of n factors) holds in V .
(v) the Mal’tsev condition

(∃n ≥ 2)
(

M(p2 ⊆ q[d] 2 ◦ · · · ◦ q[d] 2 ◦ q2)
)

(where q[d] 2 ◦ · · · ◦ q[d] 2 denotes a product of n − 1 factors) holds in V .

Proof. In virtue of Theorem 2 the algebras in V satisfy TIP. Hence the equivalence
of (i), (ii) and (iii) follows from Corollary 1.

If (iv) holds then applying Wille and Pixley’s result to the strong Mal’tsev condi-
tion M(p2 ⊆ q2◦q2◦· · ·◦q2) we obtain that p2 ⊆ q2◦q2◦· · ·◦q2 (with n factors) holds
for congruences of V for some n. But, using Lemma 1 (C), q2 ◦q2 ◦ · · ·◦q2 ⊆ q∗2 = q,
so the congruence inclusion formula p2 ⊆ q holds in V . This shows that (iv) implies
(ii).

Now let (ii) hold and suppose the reader has some basic idea how Wille and
Pixley’s proof works for lattice identities. What we have to know from their proof
is the following. Associated with p2 we construct a finitely generated free algebra
F in V with distinguished free generators x0 and x1. Also, we construct finitely
generated congruences α1, . . . , αk of F such that (x0, x1) ∈ p2(α1, . . . , αk). Let ~α

stand for (α1, . . . , αk). Since p2(~α) ⊆ q(~α), (x0, x1) ∈ q(~α). Now q(~α) = q2(~α)∗ by
Lemma 1 (C), so there is an integer n ≥ 2 such that (x0, x1) ∈ q2(~α) ◦ · · · ◦ q2(~α)
(with n factors). And this is the formula from which Wille and Pixley conclude
that M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2) holds in V . We have shown that (ii) implies (iv).

The treatment for (v) is very similar to that of (iv). The only difference is that
instead of q(~α) = q2(~α)∗ now we use q(~α) = q[d] 2(~α)∗ ◦ q2(~α), which follows from
Lemma 1 (C) applied for q[d] and from the last theorem of the present paper.

�

Remarks. The spirit of Wille and Pixley’s theorem says that part (iv) of Theorem 3
can be replaced with the Mal’tsev condition (∃n ≥ 2)

(

M(p2 ⊆ qn

)

.
However, (iv) and (v) are simpler conditions. In fact, no known Mal’tsev con-

ditions for lattice identities are simpler than those supplied by (iv) and/or (v).
Condition (ii) is not just an intermediate step between (i) and (iv), it will play a
crucial role in the rest of the paper. Sometimes (iii) is the best to use: indeed,
p2,2 ⊆ p2 indicates that, for a given variety V , it is easier to show (iii) than (ii).

According to the historical remarks from the introduction, the following corollary
is worth formulating.

Corollary 2. Let p ≤ q be a lattice identity which implies modularity in congruence
varieties. Then, for an arbitrary variety V, p ≤ q holds for congruences of V iff
M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2) holds in V for some n ≥ 2 and V has Day terms.
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3. Identities in modular congruence varieties

As a generalization of the Arguesian law, Haiman [18] introduced the the follow-
ing “higher” Arguesian identities Dn:

x0 ∧

(

(

∧

1≤i<n

(xi ∨ yi)
)

∨ y0

)

≤ x1 ∨
(

(y1 ∨ y0)∧
∨

1≤i<n

(

(xi ∨xi+1) ∧ (yi ∨ yi+1)
)

)

,

where indices are understood modulo n (that is, xn = x0 and yn = y0). In [18] he
mentions that D3 is equivalent to the Arguesian law and he proves that Dn holds
in every lattice of permuting equivalence relations. The proposition below shows
somewhat more.

Proposition 1. Let n > 1 and let p(x0, . . . , yn−1) resp. q(x0, . . . , yn−1) denote the
left resp. right hand side of Dn. Then p2(α0, . . . , βn−1) ⊆ q2(α0, . . . , βn−1) holds
for all symmetric relations α0, . . . , βn−1 on any set X.

Proof. In order to simplify notations, let

p2 = p2(α0, . . . , βn−1) = α0 ∧

(

(

∧

1≤i<n

(αi ◦ βi)
)

◦ β0

)

,

γi = (αi ◦ αi+1) ∩ (βi ◦ βi+1) for 0 ≤ i ≤ n, and

q2 = q2(α0, . . . , βn−1) = α1 ◦
(

(β1 ◦ β0) ∩ (γ1 ◦ γ2 · · · ◦ γn−1)
)

.

If ρ is a relation, we sometimes write a ρ b instead of (a, b) ∈ ρ. The indices will be
computed modulo n.

Suppose that a, c ∈ X , and a p2 c. Thus, a α0 c, and there is a b ∈ X such that
b β0 c and (a, b) ∈

⋂

1≤i<n(αi ◦ βi), i.e., (a, b) ∈ αi ◦ βi, for 1 ≤ i < n. Hence, for

every 1 ≤ i < n, there is a ci such that a αi ci βi b for 1 ≤ i < n. (The reader is
advised to draw a picture.) Letting c0 = c we have that a α0 c0 β0 b; consequently,
a αi ci βi b for 0 ≤ i < n.

Now, for every i, we have ci αi a αi+1 ci+1 and ci βi b βi+1 ci+1, so ci γi ci+1

for 0 ≤ i < n. From c1 γ1 c2 γ2 c3 . . . γn−2 cn−1 γn−1 c0 = c we conclude that
(c1, c) ∈ γ1 ◦ γ2 . . . γn−2 ◦ γn−1. Since we also have a α1 c1 and c1 β1 ◦ β0 c0 = c, it
follows that a q2 c. �

Although the Arguesian law is stronger than modularity, Freese and Jónsson [11]
proved that modularity implies the Arguesian law in congruence varieties. Since
Haiman’s D3 is equivalent to the Arguesian law, the following theorem offers a
surprisingly simple approach to Freese and Jónsson’s result and generalizes it to
the higher Arguesian identities. Recalling R. Freese’s remark we mention that this
theorem shortens the proof in [10] by immediately implying the fact that none of
Haiman’s lattices lies in any modular congruence variety.

Theorem 4. Let A be an algebra with TIP. (This assumption necessarily holds
when A belongs to a congruence modular variety.) Then Con(A) satisfies all the
higher Arguesian identities Dn.

Proof. Let p resp. q denote the left-hand resp. right-hand side of Dn. Since Con(A)
is a sublattice of the equivalence lattice on A, Proposition 1 combined with (A) of
Lemma 1 shows that p2 ⊆ q holds for congruences of A. Now the theorem follows
from Corollary 1. �
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The idea of the proof above is formulated in the following assertion, which follows
immediately from Theorem 3.

Proposition 2. Let p ≤ q be a lattice identity. If p2 ⊆ q or p2,2 ⊆ q holds
for arbitrary equivalence relations on any set then modularity implies p ≤ q in
congruence varieties.

Example. If

p =
(

(a∧ b)∨(c∧ d)
)

∧
(

(e∧ f)∨(g ∧h)
)

∧
(

(c∧ g)∨(a∧ e)
)

,

and q = (a∧ b)∨(a∧ c)∨(e∧ g)∨(g ∧h),

then p2 ⊆ q does not hold for equivalences on a five element set. However, p2,2 ⊆ q

holds for equivalences on any set, and therefore modularity implies p ≤ q in con-
gruence varieties. Unfortunately we do not have a better example to demonstrate
the superiority of part (iii) in Theorem 3 over (ii) and we have to admit that p2 ⊆ q

would hold for arbitrary equivalences on any set if we changed (c∧ g)∨(a∧ e) to
(a∧ e)∨(c∧ g) in the definition of p.

4. Combining distributivity with permutability

The notion of a “disjunctive normal form”, defined right before Theorem 3,
allows us to formulate the following theorem, which is the strongest known result
for congruence modular varieties stating that distributivity can always be composed
with permutability.

Theorem 5. Let A be an algebra in a congruence modular variety and let p =
p(x1, . . . , xk) be a lattice term. Then

p(α1, . . . , αk) = p[d](α1, . . . , αk) ◦ p2(α1, . . . , αk)

holds for all congruences α1, . . . , αk of A.

The particular case of Theorem 5, namely the case when p is a join of meets
of variables, has already been published by the third author as Remark 5.8 in
[24]. Now, armed with Lemma 1, we can give a simpler proof for a more general
statement.

Notice that there is a general but precisely never formulated feeling that in con-
gruence modular varieties one can combine distributivity with permutability. Per-
haps this originates from the fact that the two extreme cases of the modular com-
mutator operation mimics congruence distributivity resp. congruence permutabil-
ity. But most likely the origin was Gumm’s paper [16], where this phenomenon
was formulated at Mal’tsev condition level. Later in [24], the third author gave a
different meaning to this feeling at lattice term level; indeed, he proved an instance
of Theorem 5 and exploited it for the left hand side of the Arguesian identity.

Recall that in a congruence modular variety one can define the commutator [α, β]
of two congruences α and β. The commutator operation has many nice properties,
cf. Freese and McKenzie [12] and Gumm [17]. From these well-known properties we
recall the following ones: the commutator is a commutative and monotone operation
on the congruence lattice, it distributes over joins, i.e., [α∨β, γ] = [α, γ]∨[β, γ], and
[α, β] ≤ α∧ β. Given a congruence α, its solvable series is defined by α(0) = α, and
α(n+1) = [α(n), α(n)]. An easy induction shows that (α∨β)(m+n) ≤ α(m) ∨β(n).
For meets we will need (α∧β)(m) ≤ α(m) ∧ β(m), which follows from the monotonic-
ity of the commutator.
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The proof of Theorem 5 is based on the following lemma.

Lemma 2. Under the hypotheses of Theorem 5 we have

p(α1, . . . , αk) = p(α1, . . . , αn)(m) ◦ p2(α1, . . . , αk)

for every positive integer m.

Proof. The ⊇ inclusion is trivial. To prove the reverse inclusion, let us observe
by Lemma 1 (C) that the congruence generated by p2(~α) is p(~α). Now we need
Proposition 3.7 from [23]. This assertion says that, for any m ≥ 0, the congruence
δ generated by ρ ∈ Relr(A) is δ(m) ◦ ρ, provided A has a difference term. Since
congruence modular varieties have difference terms, cf. Freese and McKenzie [12]
or Gumm [17], we infer that p2(~α) generates the congruence p(~α)(m) ◦ p2(~α). This
proves Lemma 2. �

Now we are in the position to prove Theorem 5.

Proof. An easy induction on the length of p shows that

p[d](x1, . . . , xk) ≤ p(x1, . . . , xk)

holds in all lattices. This implies the ⊇ part of the theorem. In virtue of Lemma 2,
the reverse inclusion will follow if we show that there is an m with p(~α)(m) ≤ p[d](~α).
This will be proved inductively. Since ~α plays no specific role, it will not be indicated
in the sequel.

If p is a variable, take m = 0.
Now let p = r ∨ s, with r(h) ≤ r[d] and s(k) ≤ s[d] for some h and k. Then the

afore-mentioned property of solvable series gives

p(h+k) = (r ∨ s)(h+k) ≤ r(h) ∨ s(k) ≤ r[d] ∨ s[d] = p[d].

So m = h + k works for p.
Now suppose that p = r ∧ s with r(h) ≤ r[d] and s(k) ≤ s[d]. Let m = max{h, k}+

1. We have

(2) p(m−1) = (r ∧ s)(m−1) ≤ r(m−1) ∧ s(m−1) ≤ r(h) ∧ s(k) ≤ r[d] ∧ s[d].

By definitions, r[d] =
∨

i∈I γi and s[d] =
∨

j∈J δj where the γi and the δj are meets

of some of the congruences α1, . . . , αk. Using (2) we can compute:

p(m) = [p(m−1), p(m−1)] ≤ [r[d] ∧ s[d], r[d] ∧ s[d]] ≤ [r[d], s[d]] =
[

∨

i∈I

γi,
∨

j∈J

δj

]

=
∨

i∈I, j∈J

[γi, δj ] ≤
∨

i∈I, j∈J

(γi ∧ δj) = p[d],

completing the proof.
�
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[13] E. Gedeonová: A characterization of p-modularity for congruence lattices of algebras, Acta

Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99–106.
[14] G. Grätzer: Two Mal’cev-type theorems in universal algebra, J. Combinatorial Theory 8

(1970), 334–342.
[15] G. Grätzer: Universal algebra (Second edition), Springer-Verlag, New York-Heidelberg, 1979.
[16] H. P. Gumm: Congruence modularity is permutability composed with distributivity. Arch.

Math. (Basel) 36 (1981), 569–576.
[17] H. P. Gumm: Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc.

45 (1983) no. 286, viii+79 pp.
[18] M. Haiman: Arguesian lattices which are not type-1. Algebra Universalis 28 (1991), 128–137.
[19] G. Hutchinson and G. Czédli: A test for identities satisfied in lattices of submodules, Algebra

Universalis 8 (1978), 269–309.
[20] B. Jónsson: Algebras whose congruence lattices are distributive, Math. Scandinavica 21

(1967), 110–121.
[21] B. Jónsson: Congruence varieties, Algebra Universalis 10 (1980), 355–394.
[22] K. A. Kearnes, Communication via e-mails, 2001.
[23] P. Lipparini: Commutator theory without join-distributivity, Trans. Amer. Math. Soc. 346

(1994), 177–202.
[24] P. Lipparini: Congruence modularity implies the Arguesian law for single algebras with a

difference term, J. Algebra 219 (1999), 658–681.
[25] A. I. Mal’tsev: On the general theory of algebraic systems (Russian), Mat. Sb. (N. S.) 35

(77) (1954), 3–20.
[26] P. Mederly: Three Mal’cev type theorems and their application, Mat. Časopis Sloven. Akad.

Vied 25 (1975), 83–95.
[27] J. B. Nation: Varieties whose congruences satisfy certain lattice identities, Algebra Universalis

4 (1974), 78–88.
[28] W. D. Neumann: On Malcev conditions, J. Austral. Math. Soc. 17 (1974), 376–384.
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