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Horn sentences with (W) and weak Mal’cev conditions

GABOR CZEDLI* AND ALAN DaY*

1. Introduction

In [14, Problem 2.18] J4nsson asks whether for any universal lattice Horn
sentence x there exists a countably weak Mal’cev condition which holds in a
variety V of algebras iff x is satisfied in congruence lattices of members of V. We
adopt the definition of Mal’cev conditions from Taylor’s paper [18] (i.e., any
disjunction of strong Mal’cev conditions U,, n=1,2,..., where U, implies U, ,,
for all n, is called a Mal’cev condition). By countably (continuously, resp.) weak
Mal’cev condition we will mean a conjunction of countably (at most continuously,
resp.) many Mal’cev conditions. (Note that, up to equivalence, there are at most
¢ = continuously many Mal’cév conditions, whence any irredundant conjunction
of them consists of at most ¢ members.) We say that a (universal lattice) Horn
sentence x satisfies (W), the Whitman condition, if the lattice finitely presented by
x (i.e., which is freely generated by the variables subjected to the premise
equations of y) satisfies (W). This condition on x will be reduced to the Whitman
condition on a suitable finite partial lattice associated with .

Our aim is to give an algorithm which associates appropriate continuously
weak Mal’cev conditions with Horn sentences satisfying (W). The algorithm
combines the ideas of McKenzie’s limit table concept [15], the algorithm of Wille
[21] and Pixley [17], and the methods of [1] and [2]. Note that another algorithm
yields Mal’cev conditions for any lattice Horn sentence in case of n-permutable
varieties (cf. [3]).

2. Horn sentences satisfying (W)

By a (universal lattice) Horn sentence we mean a first order sentence x:

Vay, .- ., at)((i/:\ p: =qi) > psca)
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where p,, g;, p, and q are lattice terms of the variables a, . . ., o, and k =0. (Note
that having p=gq instead of p=gq does not hurt the generality.) This Horn
sentence is said to satisfy (W) if the finitely presented lattice FL ({ay, ..., a};
pilag, . .., ) =aiag, ..., &), ..., plag, ..., &) =qlay, ..., a)) satisfies (W).
(Observe that whether x satisfies (W) depends only on its premises.) For example,
the semidistributive laws, SD, :aAB=ary>ar(Bvy)=aaB and its dual,
are Horn sentences satisfying (W).

Since x in the above form is not appropriate to our algorithm, we consider a
(seemingly) restricted class of Horn sentences. A Horn sentence will be called

normal if it is of the form (Vay, ..., a) (A{aocq; = o0 €{n, v}, a;o0; is defined
and equal to a; in L}Y=> p=gq), shortly L > p=gq or L > p(L)=gq(L), where
L=(a,,...,a}, A V) is a partial lattice. The concept of partial lattices can be

found in Gratzer [8, pages 40-44] (cf. also Funayama [7]), but what we only need
from it is the following: by defining a =<8 by av =8 L becomes a poset with
partially defined monotone operations A, v. Furthermore, v =sup{a, 8} and
a A B =inf {«, B} hold whenever the left-hand sides are defined.

Now we observe that any lattice Horn sentence

x:(Vay, ... ,at)(_ﬁxl pi=q; :>qu>

is equivalent (modulo lattice theory) to a normal one. Let B={8,, ..., B,} be the
set of all subterms occurring in the premises p;=q; and put @ ={B;°B, =B;:
either B; = B; = p,, and B, = q,, for some n =m or the term B, is B;°B;}. Let L=L,
be the set of free generators in the free lattice FL({B,, ..., B}, ?), then L, as a
subset of a lattice, is a partial lattice by its own right. (Note that generally |L|<s,
because free generators can collapse.) Now it is easy to see that x and L = p=gq
are equivalent.

A partial lattice L is said to satisfy (W), the Whitman condition (cf. Whitman
[19]), if whenever «, B, v, €L, aAB, yv 8 are defined, and a AB=vyv$§ then
a=yvéorB=yvéoravB=vyoravp=3 A normal Hornsentence L > p=
q is said to satisfy (W) if L, as a partial lattice, satisfies (W). The following
assertion ensures that to accomplish our aim it is sufficient to deal with normal
Horn sentences satisfying (W).

PROPOSITION 2.1. A Homn sentence

X:(ili\lpi=qi):>qu
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satisfies (W) if and only if the corresponding (and therefore equivalent) normal
Horn sentence L, = p =gq satisfies (W).

Proof. By definitions we have to show that a finite partial lattice A satisfies
(W) if and only if FL (A), the free lattice generated by A, satisfies (W). If FL(A)
satisfies (W) then obviously so does A. To prove the converse we need the
solution for the word problem of FL(A), due to Dean [6], and a result from
Gritzer, Huhn, and Lakser’s paper [10], but we cite only as much as very
necessary. Suppose a Ab =cvd holds for a, b, ¢, dc FL (A) and we need to show
that at least one of a, b, ¢, d can be omitted from a Ab=c vd (preserving =, of
course). If anb=g=cvd holds for no e A then this follows from [10,
Proposition 2(iii)]. Otherwise, by [10, Proposition 1] and the description of joins
of (dual) ideals of A, A* (s AB)=V™*v,Vv§) holds for some «a; B;, v, § €A,
a=a, b=, v,=c, § =d. Here \*(g;€A stands for an appropriately bracketted
meet of finitely many €; = a; AB; € A, while \/* (y;v§;)€ A is understood dually.
(Note that a finitary meet need not be defined within A at any possible
bracketing.) by (W) one side of the inequality A* (o, AB)=V* (v;v§,) can be
shortened, and repeating this shortening as many times as possible either the
left-hand side or the right-hand side will be a single variable. If we get, say,
Ba=V* (v;v8) then b=B,=V*(v;v8)=V (cvd)=cvd, while the other cases
can be handled similarly. Q.E.D.

In the following statement, motivated by the limit table concept of McKenzie
[15], a lattice property (equivalent to (W) for finite lattices) will be presented.
This statement will be the key to exploit (W). For a set (or system) A =
{ag, @1, ..., ) and a (t + 1)-ary lattice term d we will often use the abbreviations
dla:acA), dla;:i<t), and d(A) for d(ay, ay, . . ., ). (Of course, a fixed linear
ordering of A will be supposed.)

PROPOSITION 2.2. A finite partial lattice A satisfies (W) if and only if there
exist |A|-ary lattice terms a;, i<w, a € A, such that

(@) forac A ay(A)=a;

(b) forac A and i<, 0,1 =V, With a suitable |Al-ary term p,;;

(c) whenever ¢: A — E(X) is a join-homomorphism (i.e., a map preserving all
the existing joins) into an arbitrary equivalence lattice E(X) then the map ¢: A —
E(X), ¢(a)=U {a(¢(B):Bc A):i<w} is a (both meet and join) homomorph-
ism; and

(d) if ¢ happens to be a homomorphism in the previous condition then ¢ and
coincide.

Proof. Suppose A satisfies (W) and let us define suitable terms «; (i> w,




220 GABOR CZEDLI AND ALAN DAY ALGEBRA UNIV

a € A) via induction. Put a,=a (projection),
Mai =V {BiAYi:BAY=a in A}

and o4, = a; V. (It is worth emphasizing that «; cen be given by a suitable
algorithm.) Now (a), (b), and (d) trivially hold. Consider a join-homomorphism
¢:A—E(X) as in (c) and let o, a“, and p*' stand for o;(d(B): B A), Yla),
and p.;(d(B): B € A), respectively. An easy induction shows that if a <@ in A
then o'=g' and a®=g" in E(X). We claim that if ev{=% in A then
‘v =n', whence £ v{® =7, in E(X). Really, by making use of (W), we have
the following induction step:

" =nivur=q'vV {BAY BAysn=ev{i}=
=n'vV{B:B=nlvV iy :y=nlv
vV {B'AY BAry=elvV {B Ay :BArys{=
znivMs,iVM{,i =eiviivusvubi=

=ity it

Therefore ¢ is join-preserving and, consequently, monotone. Now consider a
meet a A3 =+ in A. Since i is monotone, only a® A B3“ =<+y* has to be checked.
If (x,y)ca“AB® then (x,y)ea’ AB' for some i, j <w, and we can assume that
i =j. Hence we have (x, y)e " <y'*'=<+v*, indeed.

Conversely, suppose that although A fails to satisfy (W) via BAy=8ve,
there are lattice terms «; satisfying (a), (b), (c), and (d). Put K =FL(A), the free
lattice generated by A, and (without loss of generality, cf. Whitman [20]) let K be
a sublattice of an equivalence lattice E(X). We also need a lattice construction
found in [4, 5]. Let I denote the interval [BAy, 8ve] in K. Then a new lattice
K[I] can be constructed by letting K[I1=(K\I) U(Ix2) and defining w <v in
K[I] iff one of the following hold:

(1) w,veK\I and p=<v in K

2) w=(a, i), ve K\I and a=v in K,

3) weK\IL v=({j) and pu={ in K,

@D p=(a,i), v=(,j) and a={¢ in K and i=<j in 2. There is a natural
epimorphism « : K[I]— K with «{uw)=p for w e K\I and «(a,i)=a for acl
Moreover, the map ¢: K — K[I], ¢(u)=p for w e K\I and ¢(a)=(e,0) for
a eI, is known to be a join-homomorphism.

First observe that o (. :w € A) =« holds in K for all a € A, i <w (apply (d) to
the identity map of K). Let K[I] be considered as a sublattice of an equivalence
lattice E(Y), then the restriction of ¢ to A is a join-homomorphism A — E(Y).
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Consider the homomorphism ¢:A — E(Y), ¥(u)=U{w(d(a):acA):i<w}.
We claim that, for any e K\I, w;(d(a):ac A)=¢(r)=un, whence Y(pu)=pn €
K[I1=E(Y). Since k¢ is the identity map on K we obtain k(u;(d{a):ac A))=
wilk(d(a)):ae A)=p;(a:aec A)=u. But Ker « restricted to K\I is the equality
relation, whence w;(d(a): € A)=u, indeed. Since B, v, 6, e K\I and ¢ is a
homomorphism, we obtain BAyY=¢B)AG(Y) = (BAY)=¢Y(Bve)=yY(8)v
Yl(e)=8ve, ie. BAy=8ve holds in K[I]. But an easy calculation in K[I] shows
that BAy=(BAvy,1)£(8ve, 0)=8ve, a contradiction. The proof is complete.

Note that an easy modification of the above proof shows that Proposition 2.2
is true for countable partial lattices as well.

3. Mal’cev type conditions

Our Mal’cev type conditions will be given by certain graphs. First for any
lattice term p =p(a:a € L) and integer k =2 we define a graph G, (p) associated
with p. The edges of G, (p) will be coloured by the variables a €L, and two
distinguished vertices, the so-called left and right endpoints, will have special
roles. In figures these endpoints will be always placed on the left-hand side and on
the right-hand side, respectively. An a-coloured edge connecting the vertices x
and y will be often denoted by (x, a, y). Before defining G, (p) we introduce two
kinds of operations for graphs. We obtain the parallel connection of graphs G,
and G, by taking disjoint copies of G, and G, and identifying their left (right,
resp.) endpoints (Figure 1). By taking disjoint graphs H,, H,, ..., H, (k=2) such
that H; = G, for i odd and H, =G, for i even, and identifying the right endpoint
of H; and the left endpoint of H,,, for i=1,2,...,k—1 we obtain the serial
connection of length k of the graphs G, and G,. (The left endpoint of H; and the
right one of H are the endpoints of the serial connection, cf. Figure 2.)

Figure 1
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Figure 2

Now, if p is a variable then, for any k =2, let G,(p) be the following graph

o—L2—o0

which consists of a single edge coloured by p. Let Gi(p,;Ap,) (Gi(p,VvP2), resp.)
be the parallel connection (serial connection of length k) of the graphs G (p,) and
Gi(py).

For an algebra A, a lattice term p(c:a € L), congruences & of A (a€L), ay,
a; € A, and k =2 we say that a, and a, can be connected by G, (p) in A if there is
a map ¢ (referred to as connecting map) from the vertex set of Gy (p) into A such
that a, and a, are the images of the left and right endpoint, respectively, and for
any acL and a-coloured edge (x,a,y) we have (¢(x), d(y)ea. If it is
necessary, we can emphasize that the colour a is represented by the congruence
.

The following statement follows by a straightforward induction from defini-

tions, therefore its proof will be omitted (cf. also [2]).

PROPOSITION 3.1. Consider an algebra A, a,, a,€A, a lattice term
pla:acL), and congruences & of A for ac L. Then (ay, a;)ep(@: acL) iff ao
and a, can be connected by G, (p) in A for some k =2 iff there exists ko =2 such
that a, and a, can be connected by G, (p) in A for all k = k.

Now, motivated by Proposition 3.2, we intend to find a stronger version of
Proposition 3.1 for the case when L — Con (A), a —> & is a join-homomorphism.
Let us consider a finite partial lattice L, a lattice term p=p(L)=p(a:aclL), a
non-negative integer m and a sequence of integers s = (s, 51, S,, . . .) where s, =2
for i<w. We define the graphs G(p, L, sg, S1,...,5,) and G(p,L,s) via the
following induction. Let G(p,L,s,) be G,(p). Assume that G, =
G(p, L,s,, sy, ..., S,) has already been defined and to obtain G,,.; we “ferment”
G,, in the following way. First for any proper join av 8 =+ in L (proper means
l{a, B, v}| = 3) for which a precedes B (according to a fixed linear ordering of L)
and for any y-coloured edge (x, v, y) whose vertices x and y cannot be connected
by a path (in G,,) coloured by « and B8 only we add s,,,;—1 new vertices, say
21,295 .+-52 -1, and s, ° new edges, namely the edges (x,z,),
(z1,22), ..., (25, -2, 25, ,-1)s (2s,.,-1, V), tO G,,. The first, third, fifth, ... edge in
the above sequence of new edges are coloured by « while the others are coloured
by B (cf. Figure 3).
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Figure 3

(All the newly adopted edges and vertices are pairwise distinct.) Let G, 412
denote the graph we have obtained. For any pair of elements 8 <¢ in L and for
any 8-coloured edge of G,,,, if the two vertices of this edge are not connected
with an g-coloured edge yet, then let us add a new g-coloured edge connecting
them. Thus we have obtained the graph G,,,., = G(p, L, sg, sy, ..., Sm+1). Finally
let G(p, L,s) be the (directed) union of G(p, L, 53, 51, ..., Sm), M <w.

For example, if L =({a, B,7v, 8}, « <8, B<8, vy<§, avB=Bva=3§) (where
only the proper meets and joins are indicated) and p =y then G(p, L, 8,4) and
G(p, L, 8,4, 3) are given in Figures 4 and 5. Connectivity of two elements in an
algebra by G(L, p, s) is defined similarly as in case of Gy (p). (The only difference
is that now the vertex set can be infinite.)

PROPOSITION 3.2. Suppose p: L — Con (A) is a join-homomorphism from a
finite partial lattice L into the congruence lattice of an algebra A, p=p(a: acL) is
a lattice term and ay, a; € A. Then (ay, a,)ep(p(a): acL) if and only if there is

Figure 4 Figure 5
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an s =(sy, 81, S, . . .) (5, =2) such that a, and a, can be connected by G(p, L,s) in
A, representing the colours a by the congruences p(a).

Proof. 1If a, and a, can be connected by G{(p, L, s) then they can be connected
by G, (p), which is a subgraph of G(p, L,s), as well. Hence (ao, a,) € p(p(a):
ac L) follows from Proposition 3.1. Conversely, by Proposition 3.1 again, if
(ag, a) eplpla):acL) then a, and a; can be connected by G,(p)=G(p, L, k)
for some k=2. Choose s, to be the smallest possible k and let ¢, be the
connecting map. If a v =1v in L and (x, v, y) is an edge in G(p, L, s,) then from
(bo(x), do(y)) € p(y) we conclude (¢o(x), do(y)) € pla)op(B)ep(a)e- - - (n factors)
for some n=2. By finiteness we can choose a smallest n which is appropriate for
any choice of «, 8, v, x, y. By letting s, be equal to this smallest common n ¢, can
be extended to a map ¢, under which G(p, L, s,, $;) connects a, and a;. And so
on, finally ¢ =J; -, ¢; will be the required connecting map. Q.E.D.

Now with any pair of finite graphs G, and G, we associate a strong Mal’cev
condition U(G;=G,) in the following way. Let L be the set of all colours that
occur on edges of G, and G,, and let X and F be the vertex sets of G; and G,
respectively, with x,, x;€ X and f,, f; € F the endpoints. For a € L let & denote
the smallest equivalence relation of X which contains {(x, y):(x, «, y) is an edge of
G,}. Choose a linear ordering of X and let x, denote the smallest (according to the
linear ordering) member of X for which (x,, x) € & (In other words, x, is the first
vertex of G, which can be connected with x by an a-coloured path.) Now
U(G,=G,) is defined to be the following condition:

“There exist | X|-ary terms f(x :x € X), fe F, which satisfy (1) the “endpoint”
identities f;(x: xe X)=x; (i=0,1) and (2) for any edge, say (f,«, g), in G, the
corresponding identity f(x,: x € X)=g(x,: x€ X).”

‘We should note that U(G, = G,) depends on the fixed orderings of L and X,
but arbitrary other linear orderings would yield equivalent conditions. Although it
would be possible to define unique orderings of, say, the vertex sets of our graphs
Gy (p), it is not worth doing so (cf. [1], where only the simplest graphs are
handled).

For example, if G, and G, are the graphs given in Figures 6 and 7 then
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U(G,=G)) is the following condition:
“There are quaternary terms f;(xo, X, X5, X3), 0=<i=2, which satisfy the
identities
(1) fi(xg, x1,%2,x3)=x; (i=0,1) (endpoint identities) and
(2) folxo, X1, X0, Xo) = f2(x0, X1, Xo, Xo),
fo(xo, X1, X1, X1) = f2(x0, X1, X1, X1),
fa(xo, X1, Xo, X1) = f1(Xo, X1, Xo, X1,
fa(xo0, X1, X1, X0) = f1(xq, X1, X1, Xo).”

Note that this condition is clearly equivalent to the following one:
“There is a quaternary term f, which satisfies the identities

069, %, x)=F(x,y, ¥, ¥) =f2(3, X, y, X) = fo(y, x, x, y) = x.”
Now we can formulate our main result.

THEOREM. Let L = p =q be an arbitrary normal Horn sentence satisfying the
Whitman condition (i.e., L is a finite partial lattice with (W), p=p(L), q=q(L) are
arbitrary). Let o; (i <, a € L) denote the lattice terms provided by Proposition 2.2,
and let q(L;) stand for q(e;(L): acL). Then for any variety V of algebras the
following three conditions are equivalent.

() L=> p(L)=gq(L) holds in the congruence lattice of any member of V;

(ii) For any sequence s=(Sy, $1, S, ...), S; =2, there exist integers m =1 and
n=2 such that Uim, n)= U(G(p, L, so, Sy, - .., Sm)=G,(q(L,))) holds in V;

(iii) For any s=(sq, S,...), §;=2, there exists an integer n=2 such that
U(n, n) from (i) holds in V.

Further, for a fixed s “(An)U(n, n)” is a Mal’cev condition in Taylor’s sense
[18].

4. The proof of Theorem

(i) implies (ii) and (iii). (Although (iii) implies (ii) trivially, for the sake of a
later reference we handle (ii) separately.) Assume (i) and let s = (s¢, 54, .. .) be an
arbitrary sequence of integers greater than 1. Let X be the vertex set of
G(p, L, s), with x, and x, the endpoints, and for a € L let & be the equivalence of
X generated by {(x, y): (x, a, y) is an edge of G(p, L,s)}. Let A = Fy(X) denote
the free V-algebra generated by X, and let con (&) be the congruence of A
generated by the relation &. We claim that the map L — Con (A), a — con (&) is
a join-homomorphism into the congruence lattice of A. Since G(p, L, s) has been
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defined in such a way that the map L — E(X), a — & is a join-homomorphism, it
is sufficient to show that con (a v 8)=con (a)vcon (8) for any equivalences «,
B € E(X). But this follows easily from Mal’cev’s lemma describing congruences
generated by relations (cf. Gritzer [9, p. 55]).

Now consider the map ¢: L — Con (A), () = {e; (con (B):BeL): i<w}.
It is a homomorphism by Proposition 2.2, whence p(¢(a): aeL)=q(P(a):
a € L). From Proposition 3.2 (by letting the connecting map be the identity map
of X) we obtain (x,, x;)ep(con(&): acL)sp(y(a): ac L)z q(P(a): a<L).
Therefore, by Proposition 3.1, x, and x; can be connected by G,{(q) in A for
some n, representing a colour a by the congruence () and using a connecting
map ¢. If (f,a, g) is an edge of G,(q) then (¢(f), ¢(2)) € Y(a), whence (d(f),
#(2)) € a,, (con (B): BeL) for some 0<m<w. Thus ¢(f) and ¢(g) can be
connected by Gy(a,,) in A (representing a colour B by con (B)) for some k =2,
Since any of n, m, k can be enlarged (and, by reflexivity, n can be enlarged
without enlarging the codomain of ¢) we can assume that m does not depend on
(f, @, g) and k =n for all (f, «, g). (im =n is also available for (iii).) What we have
obtained is that x, and x, can be connected by G, (q(a,.(B:BeL): acL)=
G, (q(L,,)) in A, representing a colour 8 by con (é). Let X, be the vertex set of
G(p,L,so,...,S,). Then X, = X. For a €L let &(m) be the equivalance of X,
generated by {(x, y): (x, «, y) is an edge of G(p,L,s,, ..., Ss,)}. We can assume
(via enlarging m if necessary) that all the elements of A associated with the
vertices of G(m, n) = G,(q(L,,)) belong to the (free) subalgebra generated by X,,.
At this point is is worth stating two assertions separately.

CLAIM 4.1. For acL &(m) and the restriction of & to X, coincide.

Proof. Suppose the claim is false. Choose x, y, «, and m for the smallest
possible k so that (x, y)¢ &(m) but x and y can be connected by an a-coloured
path of length k in G(p,L,s). Then any inner vertex of this path lies in
G, L, so,...,5m+1)\G(, L, So,...,Sm). By the construction of G,,,; from G,
this path goes through the same vertices as some path adopted to G,, for a proper
join 8vB =+ in L. We obtain a=8 and a=f (in L). Hence a =+, which is "
impossible by the construction of G,, from G,,_;.

Let us fix a well-ordering of X such that x,, x, € X,,, ={x € X : x precedes z} for
some z€ X. For xe X, and a € L x,,, will denote the first member of X, for
which (X, (), x)€ &(m). (For xe X x, has been defined similarly.) Let A,, =
Fy(X,,) be the free V-algebra generated by X,,.

CLAIM 4.2 (cf. also Wille [21] and Pixley [17]). Consider f, ge A, i.e.,
f=f(x:xeX,) and g=g(x:xeX,,) for some terms denoted by the same way.
Then, for acL, (f, g)econ(d)eCon(A) implies that the identity f(Xqm):Xx€
X)) = g(Xy(my: x€ X,,) holds in V.
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Proof. Consider the map X — X, x — x, and extent it to an endomorphism 7
of A. Since con (&)<=Ker 7 and, by Claim 4.1, x, = X, for x € X,,, we obtain
FXaomy: X€X,)=f(x:xeX,) =f(r(x):xe X,,) =7(f(x: x€ X,,))) = 7(g(x: x € X,,))
=g(t(x): xe X,,) = g(x,: x€X,,)) = g(Xam): X € X,,,), from which the assertion
follows.

Now, returning to the proof, there are |X,.|-ary terms f(x:x € X,,,) associated
with the vertices fe G(n, m), where f, and f, are the endpoints. Thus f;(x: x €
X,)=x; (in A), i=0, 1, whence the endpoint identities hold in V. The satisfac-
tion of the remaining identities follows from Claim 4.2,

(ii) implies (i). Assume (ii) and let ¢ : L. — Con (A) be an arbitrary homomorph-
ism where A eV. Suppose (ag, a;)ep(dp(a):acL). We have to show that
(ao, ay) € q(d(a): a € L). By Proposition 3.2 there exists a sequence s = (sg, Sy, . . .)
such that a, and a, can be connected by G(p, L,s) in A, using a connecting map
p: X — A and representing the colours a by ¢(a). Consider the integers m and n
for this s provided by (ii) and with any vertex f of G(n, m)=G,(q(L,,)) let us
associate f(p(x):xe X, )e A (where f also denotes the corresponding term from
U(m, n)). We claim that this way a, and a, are connected by G(n, m). From the
endpoint identities we have f,(p(x): xe LY=p(x;)=a;, i =0, 1. If (f, @, g) is an edge
of G(n, m) then, by making use of the corresponding identity from U(m, n) and
(p(x), p(x.))edla) (acL), we obtain f(p(x): xe€X,)dla)f(p(x,): xeX,,)=
glp(x.): xe X, )p(a)g(p(x): xeX,,).

Now we have (ay, a,) € q(a,,(¢(x): x € L) by Proposition 3.1, whence Proposi-
tion 2.2 yields (ag, a,) e q(¥(a): acL)=q(¢d(a): acL).

Now suppose that, for a fixed s, U(n, n) holds in a variety V via the terms
f(x:xeX,,). As it follows from Claim 4.1, by adding irrelevant variables to these
f(x:xeX,) UG(p,L,so,...,S,.1)=G.(q(L,))) also holds in V via the same
terms. Since ;.1 =0 V., G.(q(L,)) can be found (though it is a little bit
scattered about) in G,{(q(L,.,)). Hence U(G(p,L,sq,. .., spi1) =G, (q(L,.1))
holds in V via assigning the earlier terms to the vertices of G, (q(L,.,)) approp-
riately. (E.g., to any vertex of a particular copy of G,(u,;) we assign the same
term.) Similarly, assigning the earlier terms only, U(n+1, n+1)=
U(G(p, L, so, . .. 84+1) = Gni1(q(L.s1) holds in V as well. Our theorem has been
proved.

5. Concluding remarks and corollaries

First we mention some examples when our Theorem applies. If x is a lattice
identity, i.e. a Horn sentence without premise, then L, is an antichain,
G(p, L, s¢, 51,...,8,) coincides with G(p,L,s,), and o, (L,)=a (projection).
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Hence we obtain:

COROLLARY 5.1 (Wille [21], Pixley [17]). The congruence lattices of mem-
bers of a variety V satisfy a given lattice identity x :p(e:acL )=q(a:acL,) if
and only if for all s,=2 there exists n=2 such that U(G(p, L,, s,) = G.(q)) holds
inV.

Note that U(G(p, L, so) = G,(q)) is the same strong Mal’cev condition which
occurs in [21] and [17]. Similarly, for a Horn sentence x with join-free premise
G(p,L,, s, - - - » 8,) coincides with G(p, L,, so, 2), whence our algorithm yields a
countably weak Mal’cev condition. An example for this case is SD, (cf. also [2]).
Our algorithm applies for SD,, the dual of SD,, too, but yields a continuously
weak Mal’cev condition only (cf. also [1]). Further, Herrmann’s paper [11]
indicates that the case of

x:(arB=yAd&avB=yv8)>p=q,

which satisfies (W), might be of some interest. We also mention that if L is a finite
subdirectly irreducible lattice satisfying (W) and o/B is a critical quotient in L
then L>a=<fB, a Horn sentence with (W), is equivalent to “L is not
embeddable”.

A variety V is said to be congruence n-permutable if a vB =acBeacBeo- - (n
factors) holds for any «, B € Con (A), A €V. Congruence 2-permutable varieties
seem to be hopeful candidates for our algorithm to be applied. (Compare, e.g.,
with [13], where the Wille-Pixley algorithm is applied for lattice identities.
Moreover, as a result of Hutchinson [12] states, the classification [13] of rings via
lattice identities holding in the congruence lattices of the corresponding module
varieties can be refined by using Horn sentences instead of lattice identities.) Thus
it is worth formulating the following.

COROLLARY 5.2. Let L = p=gq be a Horn sentence with (W) and let V be
an n-permutable variety, n=2. Then L = p = q holds in the congruence lattices of
members of V if and only if U(G(p, L, n,...,n)=G,(q(L,))), where n,n,...,n
consists of m+1 members, holds in 'V for some m=1.

The proof is involved in the previous section. This corollary is not surprising in
itself, since the existence of the Mal’cev condition occurring in it follows from the
Taylor-Neumann characterization [16, 18] (cf. J6nsson [14, Theorem 2.16]). Even
a concrete form of an appropriate Mal’cev condition is known for any Horn
sentence (cf. [3]). However Corollary 5.2 gives simpler Mal’cev conditions than
those in [3]. This can be demonstrated by the following.
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COROLLARY 5.3. For any Horn sentence L. = p <gq satisfying (W) there is
an infinite sequence of lattice identities (kq, K1, K2, . . .) such that for any n=2 and
for any n-permutable variety V L = p =gq holds in the congruence lattices of V if
and only if there exists an integer m <w such that k,, holds in the congruence
lattices of V.

Proof. Let p,, denote the lattice term for which G(p, L, n, . . ., n) (n occurring
m + 1 times) coincides with G, (p,.). (If we modify the definition of G(p, L, s) such
that, for all m, we add an appropriate a-B-coloured new path of length s,,.,(=n)
to any y-coloured edge of G,, (y = a v 8) then all the previous statements remain
valid but the existence of p,, and its independence from n can be seen more
easily. Really, the substitution of yA(avB) to vy corresponds to the above
mentioned new paths.) Now we can define «,, to be the identity p,, =q(L,.), and
apply Corollary 5.2 (both to L > p=gq and to «,,).
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