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MAL’TSEV FUNCTIONS ON SMALL ALGEBRAS

I. CHAJDA and G. CZEDLI

Abstract

The following problem is considered. Given an n-element set A and a set L of permut-
ing equivalences on A, does there exist a Mal’tsev function A3 — A which is compatible
with all members of L? The answer is negative in general when n = 25, it remains open
for 9 <n £ 24, and it is shown to be affirmative for n < 8. Moreover, there is even a
commutative Mal’tsev function when n < 8. o

Introduction and r‘esult

Given a set A, a function p: A% — A is called a Mal’tsev function if
p(z,9,y)=p(y, ¥, 2) =z holds for any z,y € A. If an algebra A has a Mal’tsev
function p: A3 — A which is compatible with all congruences of A then A
is congruence permutable. However, the converse is not true in general (cf.
Gumm ([3]). The purpose of the present paper is to furnish the converse
statement under the additional condition |A| £ 8. In order to obtain a some-
what stronger statement we formulate our result not only for algebras. Then
it may be of some interest in studying intersections of certain maximal clones
on a finite set with less than nine elements. A Mal’tsev function p: A% —
— A is called commutative if p(z1r,Z2x, Tar) = P(21, T2, 23) holds for any
(z1,22,23) € A% and any permutation 7: {1,2,3} — {1,2,3}.

THEOREM. - Let A be a set with |A| £ 8 and let L be a sublattice of the
lattice of equivalences on A. Then the following three conditions are equiva-
lent:

(a) the equivalences belonging to L permute, i.e., for any p,v€ L, pov =
=vop;. o -

(b) there exists a Mal’tsev function A® — A which is compatible with any
member of L; . :

1980 Mathematics Subject Classification (1985 Revision). Primary 08B0S5.
Key words and phrases. Congruence permutability, Mal’tsev term, finite algebra.

The second author’s work was partially supported by the Hungarian Foundation for
Scientific Research Grant No. 1813. , ' o

Akadémiai Kiadd, Budapest



340 1. CHAIDA and G. CZEDLI

(c) there is a commutative Mal’tsev function A® — A which is compatible
with (any member of) L.

Our method yielding the equivalence of (a) and (b) for | A| < 8 is possibly
applicable for |A| =9 or |A| = 10 or even more. However, the length of
the proof would grow rather fast with |A| and we do not want to make it
astronomically long. Another excuse for stopping at eight is that for |4|=9
(a) and (c) are not equivalent. Really, if A is the square of the three element
group and L is its congruence lattice then (a) holds but (c) does not (cf.
Gumm [4, Thm. 3.2)).

While the equivalence of (a) and (b) is an open problem for |4] € {9, 10,
.-+, 24}, they are not equivalent for |A| 2 25. Moreover, we have the following

OBSERVATION. For any natural number n > 25 there is an n-element
algebra A such that A has permutable congruences but no Mal’tsev function
A3 — A is compatible with all congruences of A.

PRrOOF. Starting from a five-element non-associative loop (cf. Gumm
[4, Fig. 2.4]) Gumm constructed a twentyfive-element A with the required
property in [3]. Suppose we already have an n-element algebra A = (A, F)
as required, then we construct an (n+ 1)-element algebra B in the following

way. Put B = AU{w} where w ¢ A. For f: A* — Ain F define fg: B* — B,

f(b1y. . bk)  ifby,...,0r€A
w otherwise.

fB(b1y..., b)) = {

Further, for any c € A, define g.: B— B by

ge(z)= {

Now put B=(B,{fp:f€ F}U{g.: ¢ € A}). Then for any nontrivial congru-
ence o of B the block [w]a is a singleton and a4 is a congruence of A. Thus
the congruences of B permute. We can observe that any congruence of A4 is
the restriction of a (unique) congruence of B. In particular, B has a congru-
ence x with exactly two blocks: A and {w}. Suppose B permits a compatible
Mal’tsev function p: B® — B. Then, for z,y,z € 4, p(z, v, 2)kp(z,z,2) =2
whence p(z,y,2) € A. Therefore the restriction of p to A is a compatible
Mal’tsev function on A, contradicting the induction hypothesis. Q.e.d.

ProOF OF THE THEOREM. The implication (b) = (a) follows from the
classical argument of Mal’tsev [5]. Namely, if u,v € A, a,f € L and (u,v)€
€ a o (3 then there is an element w € A with uawfv. If p is a compatible
Mal’tsev function then

z fz#w
¢ ifz=w.

u =p(u, v, 'l)) ﬂp(ua w, ’0) ap(u, u, v) =v

whence (u,v) € Boa. The implication (c) = (b) being trivial we have to
show only that (a) implies (c). This will need several preliminaries.
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We will often consider diamonds (five-element non-distributive modular
sublattices) in L; their elements will be denoted by w,a,f,7,¢ such that
w—< a—< b, w— <ﬂ <ty w—< y—< . The bottom and the top of L is
denoted by 0 and 1, respectively.

Let » <8 and assume that (a) = (c) for sets consisting of less than =
elements. We fix an n-element set A and a permutable sublattice L of the
equivalence lattice of A. We have to show the existence of a commutative
Mal’tsev function which is compatible with L. A particular case is settled
by the following

LeEMMA 1. If there ezists a p € L\{0} such that p S w holds for every dia-
mond {w, a, B,7,t} in L then we are done. (Le., then there is a commutatwe
Mal’tsev functwn which is compatible with L.)

ProoF. The proof of this lemma borrows a lot of ideas from Pixley
[6, p. 183]. By the induction hypothesis, there is a commutative Mal’tsev
function P,: (A/pu)® — A/p preserving all v/p where pSv € L. For each A €
€L we mtend to define a commutative Mal’tsev function py : (4/A)% — A/ A
preserving all /A (A Sv € L) such that for any A; S A2 €L

) P[]0, (9121, [2120) € pag ([2]h2, [4]A2, [2]22)

for any z,y,z € A. Then we will be ready as po: A3 — A is what Wé are
looking for.
Let ‘us fix a linear order on A. First we define py for A2 u as follows:

pa(lz]h [yI\ [Z]0) = {t € A: ([tlp, pullelm [9]ps [2]0) € A/}

Roughly speaking, this is [pu([z]u, [v]u, [2]u))A /1 apart from the canonical
correspondence between A/) and (A/p)/(A/p). Then for A= p p) is just the
previously defined p,. A routine calculation shows that p) is a commutative
Mal’tsev function preserving all /A (v 2 A) and (1) holds for £ A1 £ Aa.

Now we define py for A Z p via a downward induction on the height of
A. (Note that L is a modular lattice, for its members permute.) Assume
that A Z p and py is already defined for each A’ > A such that the required
properties, including (1), are satisfied for these A’. Let v4,...,u% be the
upper covers of A and define p) as follows.

Let pa([z]A, [y]/\ z)A) = [a]A where if two of the blocks [z]A, [y]A and [2]A
coincide then a is the first element in the remaining block. Otherw1se let a
be the first element in the intersection

@ Ym0,

=1

(This will be shown nonempty later.)
Now if, e.g., [z]A = [y]A then [z]v; = [y]v; yields that [2]) is a subset of (2).
Therefore a always belongs to the intersection (2). Thus py is a commutative
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Mal’tsev function. The property (1) extends to A easily. Indeed, if X <
< Az then A=< y; £ Ay for some ¢ and py([z]A, [y]A, [2]A) = [¢]A € [a]y; =
= py; ([x]vi, [Y]vi, [2]vi) € pag ([2]A2, [¥]A2, [2]A2). Using a routine calculation
or referring to Pixley’s proof [6, p. 183] we can see that p) is compatible with
all /A, v2 A

Now we set off to prove that (2) is not empty. We claim that

Jj-1
(3) H(Vj-i-ll,'):l/j for2<j<k.
i=1

(Here and in the sequel + and - stand for the lattice operations join and
meet, respectively.) Since the role of the 1y (151 < k; is symmetric, it
suffices to deal with j=3. Then (3) turns into (v3+v1)(vs+v2)=vs. It
belongs to the folklore of lattice theory that if (z3 + z1)(z3 + z2) > 23 for
distinct atoms 21,72, 23 in a modular lattice M then {21,z 23} generates
a diamond with bottom Opr and top z3 + z;. Indeed, by the properties of
the height function (cf., e.g., Gritzer [2]), 23 + 21 and z3 + 2, are of height
two and so is their meet by the assumption. Thus z3 + z1 = z3 + 2. Since
1 + 27 is of height two either and z; + 22 £ (25 + 21) + (23 + 22) = 23 + 21,
€1+ 22 =23+ 1. Since L is modular (cf., e.g., Gritzer [2, Thm. IV.4.10
and the remark after its proof]), we can apply the above observation for the
interval [A,1]. Therefore (v3 + 11)(v3 + v2) = 13 as otherwise A would be the
bottom of a diamond in spite of A ¥ p.

The next step is to show

If a;€ A and for all 4,5 S k (ai,a;) €vi+v;
(4) then there exists an element b € A such that
(ai,b) € v; for all i < k.

Indeed, this says nothing for k¥ =1 and follows from vy 4+ v = 14 o v, for
k=2. If we have found an element b already such that (a;,b) € v; for i =
=1,2,...,5 (255 <k) then (b,a;41) €vio (Vi +vj41) =V +vj4 forall i< j
and (3) yields (b, aj41) € [ (¥j41+ i) = vj41. Therefore (a;, b) € v; holds for

iy
al i < k. ‘ ‘
Now, returning to (2), pick an element a; in p,,([z]v;, [y]ui, [2]w:), & =
=1,2,...,k. By the induction hypothesis made on ), for 7, j < k we have
a; € pu([e]vs, [ylws, [2]w) €
€ Puit; ([el(vi + v5), [yl (wi + v5), [2](vi + v5)),
and a; belongs there, too. Hence (a;, a;) € v; +v;. Now (4) supplies us with

an element b such that by;a; for all i. Ie., b€ [a;]v; = p,,([z]v;, [y]vi, [2]vs)-
This b belongs to the intersection (2). Q.e.d.

Let us call an element y € L semicentral if pov = pUv (set theoretic
union) holds for every v € L. (Note that pov=p+ v by permutability.)
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LEMMA 2. If there exists a semicentral p € L\{0,1} then we are done.

ProorF. Let By, Bs,...,B; be the u-blocks. Since p is not in {0,1}, we
have t < n and |B;| < n for all i. Observe that the restrictions of members
of L to B; permute. Indeed, if p,v€ L, a,b,c€ B, apc and cvb then there
is a d € A with avdpb. If d ¢ B; then (c,d) € pov=pUv yields cvd, whence
avb by transitivity. Therefore avbpb, showing that the restrictions of v and
p to B; permute. By the induction hypothesis on |A| there is a commutative
Mal’tsev function p;: B} — B; preserving the restrictions of members of L
for each i, 1 <4 < ¢. Similarly, there is a Mal’tsev function pj,: (4/ pB—Alu
preserving all the p/p, p < p € L. Now let us fix an element’ b; € B; for each 1,
1<i<t. For z,y,2€ A let B = Bi(,9, z) be pu([z], [ylu, [2]p) and define
u=p(z,y,z) as follows:

(o) if 2, y, z belong to the same p-block B; then u =p;(z,y, z) (note that
(8 if |{2, 2} N Byl =1 then u € {z,3,2} N By;

(7) if {z,y,2} N Bx =0 then u=by.

Since p, is a commutative Mal’tsev function, |{z,y,2}N By| =2 is impossible
and it is easy to see that p: A3 — A is a commutative Mal’tsev function. We
do not have to use semicentrality to check that p preserves p if u < p or
p < p; the trivial details will be omitted. Now let p € L, pllp, z, ' y,z€ A
and zpz'. We have to show that p(z,y, #)pp(z’, y, z). Suppose this is not the -
case. Since p preserves po u € L, we have (p(z,¥,2),p(2',y,2)) Epop=pU
U p whence p(,y,z)up(z’,y, z). Therefore By in the definition of »(z,y, z)
and p(z',y,2) is the same. If the same of (a), (4) and (7) applies to both
o(z,y, z) and p(z', v, 2) then p(z,y, 2)pp(z’, ¥, z). Moreover, if (@) applies to
one of p(z,y,z) and p(z',y, z) then it applies to the other as well. Thus we
may assume that (3) applies to p(z,y, z) and (7) applies to p(z', ¥, z). Then
p(z,y,2) ==, p(z',y,z) = b and ¢’ ¢ Bi. From bruzpz' and pop=pUp we
conclude (bg,z') € p. Then we obtain p(z’,y, z) = bkpz = p(z,y,2) from z'pz
and transitivity; this is a contradiction. Q.e.d. .

Whatever it is evident the following lemma offers a comfortable way to
exploit the permutability of L.

LEMMA 3. Let p,p€ L, let B and C be distinct p-blocks and suppose
that zpy for some z € B, y€C. Then

- SP(p,p): (YbeB)(Ace C)(bpc) and (Ve € C)(3b e B)(bpc).

(The notation SP stands for “shifting principle” and gives an economic
way of referring to the lemma.)

The proof is a trivial application of the fact that p 0 p=popu.

We say that an equivalence is of pattern 4y +14 +- - - +1; if it has ¢ blocks
and these blocks consists of iy, g,...,%; elements.
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LEMMA 4. If L has a member of pattern j+1+1+-+-+1 where 1< j <
<ng80r3+241+1+---41 where 5 <n<8 then we are done.

Proor. We will show that Lemma 2 is applicable. Assume that pLeEL
is of pattern j+1+---41 and let B be the j-element block of . We claim
that 4 is semicentral. Indeed, if (z,y) € pop=pop but (z,y) ¢ 4 then, e.g.,
z ¢ B and zpzuy holds for some z € A. Since [z]u is a singleton, SP(u,p)
yields (z,y) € p.

Now let p be of pattern 3+2+1+-..4+1. Assume that u is not semi-
central. Let B = {a,b,c} and C = {d,e} be the nontrivial p-blocks. We
can consider a v € L and z,y € A with (z,y) € (uov)\(pUv). If [{z,3} N
N(BUC)| =1, say z € B, then SP(u,v) yields (z,9)e(BU{y})?Cv, a
contradiction. Therefore z € B and y € C (or conversely). If v|¢ = 1¢ then
(z,9) € (BUC)? Cv by SP(u,v). Therefore (d,e) ¢ v. Using SP(u,v) we
have B={z€ B:2vd}U{z€ B :zve} and we conclude that u N is of pat-
tern 2+ 1+ .-+ 1. Therefore uNv € L is semicentral and Lemma 2 applies.

LEMMA 5. If there are p,v € L such that
<y,
v has ezactly two blocks B and C,
|B|>1, |C]>1,
C is a block of u and
there is a b€ B with [blu = {b}
then we are done.

PrOOF. We intend to show that v is semicentral. Assume that vop #
=vUp for some p € L. Then there are z,y € A with (z,y) € p\v. By SP(v, p)s
there is a ¢ € C with bpc. From SP(u, p) we conclude that bpz holds for all
z€C. Le., C2C p. Therefore SP(v, p) yields p =1, a contradiction. Q.e.d.

LEMMA 6. Let M3z={w,a,B,v,.} be a diamond in L. Then every non-
trivial block of /w consists of four elements. The restriction of any of afw,
B/w and v/w to a four-element block of 1/w has two two-element blocks.
If t/w has only one nontrivial block (in particular, if |A/w| < 8) then the
interval [w, 1] of L coincides with Ms.

Proor. Since the p/w (where w < p € L) permute, we can assume that
w=0. Let B be a nontrivial +/w-block. Since M3 is simple and the restric-
tion map of M; to the equivalence lattice of B is a lattice homomorphism,
{0B,¢|B,0|B,7|B,18 =|} is a diamond, too. It follows from Gumm (3,
Lemma 3.2] and |4/w| £ 8 that |B| =4 and any of a|p, | and 7|p has two
two-element blocks. We infer from Lemma 3 that beside a|g, B|B and 7| no
nontrivial equivalence on B permute with ¢|p, §|p and v|p simultaneously.
Thus [0, ¢] = M3, provided B is the only nontrivial block of tfw. Q.ed.

In virtue of Lemma 1 we have to prove our theorem only for those cases
when L includes a diamond Mj; = {w, a, B,7,t}. L can include more than
one diamond but M3 = {w, @, 8,,:} will always denote a fixed diamond for
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which w is minimal. It is well-known in the theory of modular lattices that
if a modular lattice M has a diamond whose bottom is # € M then there is
an interval [z, y] of length two which includes a diamond. (Having no simple
reference at hand we refer to the far more general Freese [1, Thm. 1.7].)
Therefore we always assume that our fixed diamond M3 with minimal w
also satisfiles w—< a—< ¢, w—< f—< ¢ and w—< v—-< . By Lemma 6 we do
not have too many possibilities for M3. Moreover, if Lemma 4 or Lemma 5
applies for w and/or ¢ then we are done. Now it is easy to check that we
are left with ten cases only; they are depicted on Figs. 1-10. On these
figures, the nontrivial ¢-blocks are denoted by rectangles while the nontrivial
w-blocks, if there is any, are encircled. When some or all of the elements of
A are labelled, we always assume that (a,d),(b,¢) € a, (b,d),(a,c) € 8 and
(e,d),(a,b) € v; this convention generally determines @, 8 and v in virtue of
Lemma 6. Sometimes ¢-blocks are labelled with capital letters.

In Case 1 (cf. Fig. 1) we can equip A with an Abelian group structure
so that A be of exponent two and Con (A) = L. Then p(z,y,2)=2+y+zis -
a commutative Mal’tsev function compatible with L.

In Cases 2, 3, 7, 8 and 9 we are going to show that for any other diamond
{',o/,B',9',¢} in L we have w Sw'. (Then Lemma 1 is applicable with u=
=w.) Suppose this is not the case, i.e., w||w’. We intend to show that
w’ must have less than four blocks, which contradicts Lemma 6. Take an
(z,y) € w'\w. Using SP(y,w’) or SP(B,w’) we may assume that z =d. If
y € [a]w then SP(w,w’) yields ([a]lwU {d})? Cw’ and, by using SP(B,w'), we
can see that'w’ has at most |[c]w| £2 further blocks beside [a]w’. Similarly,
if y € [b]w then SP(w,w’) yields ([blwU{d})?Cw’ and, by SP(y,w'), o' has
at most |[cJw|+ 1 £ 3 blocks. Now suppose z € [c]w. Then, by SP(w,w’),
{d} U[cw C [dlw'. If |[a]w]| < 3 or |[b]w| < 3 then, by SP(B,w’), ' has at
most three blocks. Therefore w’ may have four blocks only in Case 8 and,
apart from labelling, these blocks are {a,b}, {e, ¢}, {f,h} and {c,d}. By
Lemma 6, p = abeg; fhed € [w',/] € L. (Here and often in the sequel an
equivalence relation is denoted by the list of its nontrivial blocks separated
by semicolons.) Hence SP(p,w) leads to a contradiction.

To settle Case 4, assume that ¢ is not semicentral. Then there is a p €
€ L\{1} such that (z,y) € p\¢. If pC B2U(CUD)? then Lemma 2 applies for
t+p = abed;efgh, which is semicentral. Indeed, if we had, e.g., (a,e) € v\(¢+
+ p) for some v € L\{1} then SP(w,v) would give [a]v 2 {a, e, f}, SP(s,v)
would yield [a]v 2 BUC and SP(v,p) would lead to a contradiction since
[g]loNC #0 and [h]pNC # 0 by SP(w, p). Therefore (z,y) =(a,e) € p can be
assumed. Then [a]p 2 BUC like in case of v before. Hence [a]p=BUC as
otherwise SP(¢, p) would lead to p=1. Now either Lemma 4 applies for p or
Lemma 5 applies for w < p.

The treatment for Case 5 starts with assuming that ¢ is not semicentral.
Then pot# pU. for some p € L\{0,1}. If [h]p={h} then BUC is the
only nontrivial block of p+ ¢ and Lemmd 4 applies. Observe that [A]p N
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A B # 0 implies (BU{A})?> < p and [hlpNC # B implies (CU {r})*Cp by
SP(¢,p), but only one of these two possibilities can occur as p # 1. Therefore
if [h]p # {h} then Lemma 5 applies for ¢ and ¢ + p.

In Case 6 we may assume by Lemma 1 that there exists another diamond
ML ={u',a,f,7',+'} with w £w’. We choose this M} so that o' be minimal.
Like in case of M3 we may assume that w'—< a'—< ¢/, w'—< /=< ¢/ and
w'—< 4'=< ¢/. Since w'||w and the previous cases have been handled, we
may suppose that w' is also of pattern 2+4+2+4242. As o' ||w, they can
have 0, 1 or 2 blocks in common. However, if they had exactly one block in
common then Lemma 4 would apply to w' Nwj if they had two blocks, say
{a,e} and {b, f}, in common then SP(e,w') would lead to a contradiction.
Therefore, by SP(w,w’), we may assume that the situation is as depicted
on Figure 11, where the horizontal lines indicate w'. Since the role of o/,
B’ and 4/ is symmetric, we assume that o' = abed; efgh, B = abef;edgh and
~' = abgh;cdef. Let Zy ={0,1} denote the two-element Abelian group. We
consider A the (support of) Z3 as indicated on Figure 11. Since Con (Z3)
admits a commutative Mal’tsev function p(z,y, 2) =z +y + 2, it suffices to
. show that LS Con(Z3). If 0 < p Sw for p € L then p=w by SP(a’,p). Le.,
w is an atom in L. So is «', for the role of M3 and M} is symmetric. If
peLisin [w,¢=[w,1]or [w,]=[w',1] then p€ Con (Z3) by Lemma 6 and
M3, M5 C Con (Z3). Suppose p € L\{0} but w £ p, w' €p. Then pNw=pnN
Nw’=0. If p Sw+w' then a standard argument with the height function of L
yields that {0,w,w’, p,w+w'} is a diamond, which contradicts the minimality
of w. Hence p € w +w', whence zpy holds for some z € {a,b,¢, f} and y €
€ {c,d,g,h}. We can suppose z = a by SP(w,p) and SP(w',p). Since the
possibilities apd, apc, apg and aph are quite analogous, we detail the case
apd only. Then using SP(w,p) and SP(w', p) we derive p 2 ad;be; fg;eh. If
p = ad;bc; fg;eh then p € Con (Z3). So suppose p D ad; bc; fg;eh. Since pN
Nw=pNw' =0, it follows either apf or bpe. By SP(w, p) both hold. Hence
p 2 adfg; beeh. Since p# 1, p= adfg; beeh € Con(Z3).

In Case 10, the restriction map to any block of ¢ is injective, for it
does not collapse w =0 and ¢. Therefore a = ad;bc; eh; fg, 8 = bd; ac; eg; fh
and v = cd;ab;ef;gh can be assumed. We consider A as Z3 exactly the
same way as before. We intend to show L & Con (Z3). Evidently, Mz =
={0,a,0,7,¢} € Con (Z3). To show [0,:]= M; assume that 0 < p <y, p€
IL\Ms. Applying Lemma 6 to {u|s : # € [0,¢]} and {ulc : p € [0, ]} we derive
that the restriction of p to either block of ¢ coincides with the restriction
of a member of Mz. E.g., plp = a|s but plc # a|c. Then p|c # t|c implies
0< pNa< o while p|g=t|¢ yields a < p <, both contradicting 0—< a—<.
Having seen that [0,:] € Con (Z3) let us assume that p ¢, p € L\{1}. Then,
e.g., ape. Now SP(v,p) gives bpf and SP(a,p) gives ae;bf;cg;dh S p. If
we have equality then p € Con (Z3). If ae;bf;cg;dh C p then pNa#0 or
pNB#0o0r pny#0. E.g.,suppose pNe#0. As e is an atom, p 2 . Hence
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d=(01.1) G\ c={1.11)
b=(10,1)
a=(0,0,1) /W
u (v e / g=(1,1,0)
h=(0,1,0)
e=(0,0,0} \ & e/ £=(1,00)
Fig. 11

p2aedh;bfcg. Le., p=1 or p=aedh;bfcg, whence p € Con(Z3). Q.e.d.
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