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An extension of the Levi-Weckesser method to the stabilization of the
inverted pendulum under gravity
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Abstract Sufficient conditions are given for the stability of
the upper equilibrium of the mathematical pendulum (in-
verted pendulum) when the suspension point is vibrating
vertically with high frequency. The equation of the motion
is of the form

θ̈ − 1
l
(g+ a(t))θ = 0,

where l,g are constants and a is a periodic step function. M.
Levi and W. Weckesser gave a simple geometrical explana-
tion for the stability effect provided that the frequency is so
high that the gravity g can be neglected. They also obtained a
lower estimate for the stabilizing frequency. This method is
improved and extended to the arbitrary inverted pendulum
not assuming even symmetricity between the upward and
downward phases in the vibration of the suspension point.
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1 Introduction

The mathematical pendulum has two equilibria: the lower
one is stable, the upper one is unstable. It was a surprising
discovery [1, 11] that the unstable upper equilibrium can be
stabilized by vibrating of the point of suspension vertically
with sufficiently high frequency. (One can directly experi-
ence this phenomenon by the simulation on the instructive
web site [18].) Many papers (see, e.g., [2–4, 6–8, 12–16, 20,
22, 24] and the references in them) have been devoted to
the description of this phenomenon (see also [1, 5, 9, 17])
and related problems in physics [19,21,23]. M. Levi and W.
Weckesser [15] gave a simple geometrical explanation for
the stability effect provided that the frequency is so high that
the gravity can be neglected, and the two half-periods of the
periodic excitation of the parameter is symmetric. They ob-
tained also a lower estimate for the frequency in this gravity-
free case. In its original form, the Levi-Weckesser method
does not work in the case when there acts gravitation, so it
is a very natural challenge to find an extension of the method
to this more natural case. On the other hand, in applications
(e.g., in control theory) it is also important to consider cases
when the excitation is not symmetric [10, 12, 17].

In this paper we extend the Levi-Weckesser method to
the arbitrary inverted pendulum not assuming even sym-
metricity between the upward and downward phases in the
vibration of the suspension point. Meanwhile we can im-
prove the method and give a sharper estimate for the fre-
quency in the gravity-free case, too.

In Section 2 we set up the model and review some defini-
tions and facts from the theory of periodic linear differential
equations. In Section 3 we establish our method for analyz-
ing the phase plane of non-autonomous second order differ-
ential equation with step function coefficient describing the
motion of the inverted pendulum, and estimate the angles of
rotations during the different phases of motions. In Section
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4 we deduce a sufficient condition for the stabilization of the
inverted pendulum and compare the result and its corollaries
with the earlier conditions.

2 Theoretical background

As is well-known [1, 5, 17] the mathematical pendulum is
a particle of mass m connected by an absolute rigid and
weightless rod to a base by means of a pin joint so that the
particle can move in a plane. If the friction at the pin joint
and the drag is neglected, and the particle is only subject
to gravity, then motions of the mathematical pendulum are
described by the second order differential equation

ψ̈ +
g
l

sinψ = 0, (1)

where the state variable ψ denotes the angle between the
rod of the pendulum and the direction downward measured
counter-clockwise; g and l are the gravity acceleration and
the length of the rod, respectively. The lower equilibrium
position ψ = 0 is stable, and the upper one ψ = π is un-
stable. We want to stabilize the upper equilibrium position,
so we use the new angle variable θ = ψ −π . Rewriting the
equation of motion (1) with this state variable, and setting θ
instead of sinθ , we obtain the linear second order differen-
tial equation

θ̈ − g
l

θ = 0,

which describes the small oscillations of the pendulum
around the upper equilibrium position θ = 0.

Suppose now that the suspension point is vibrating ver-
tically with the T -periodic acceleration

a(t) :=

⎧⎨
⎩

Ah if kT ≤ t < kT +Th,
−Ae if kT +Th ≤ t < (kT +Th)+Te,

(k = 0,1, . . .) ;

(2)

Ah,Ae,Th,Te are positive constants (Ae > g, Th +Te = T ) so
that the motion of the suspension point is T -periodic. (Here,
and in what follows, indices h and e point to the hyperbolic
and the elliptic phase of the motion, respectively; for the
attributives see (10) and (13) later.) If Q and P denote the
amplitude and the velocity in the vibration of the suspen-
sion point respectively, and Q(0) = 0, P(0) < 0, then it can
be seen that the motion of the point is represented by the
function

Q(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

Ah(t − kT )(t − kT −Th)

if kT ≤ t < kT +Th,

−1
2

Ae(t − kT −Th)
2 +

1
2

AeTe(t − kT −Th)

if kT +Th ≤ t < (k+ 1)T,

(k = 0,1, . . . ).

Q(t)

g

m

lθ

Fig. 1 Vertically excited inverted pendulum

The maximum amplitudes of the vibration in the first and
second phase within one period Th + Te = T are expressed
by the formulae

Dh =
1
8

AhTh
2, De =

1
8

AeTe
2,

and, presuming the natural condition that the velocity of the
point of suspension is continuous, the six parameters of the
vibration satisfy the following two assumptions:

Ah

Ae
=

Te

Th
,

Dh

De
=

Th

Te
. (3)

Since the suspending rod is rigid, the acceleration of the vi-
bration is continuously added to the gravity, and the equation
of motion of the pendulum is

θ̈ − 1
l
(g+ a(t))θ = 0 (4)

(see Figure 1). For this linear equation we use the stability
notions accepted in [1, 15]. Equation (4) is called stable if
(x(t), ẋ(t)) is bounded on (−∞,∞) for every solution x. (4)
is called strongly stable if it is stable together with all of
its sufficiently small perturbation, i.e., there exists an ε > 0
such that θ̈ − ((g+ ã(t))/l)θ = 0 is stable if (Ãh −Ah)

2 +

(Ãe −Ae)
2 +(T̃h −Th)

2 < ε2, where the step function ã be-
longs to Ãh, Ãe, T̃h in the sense of the definition (2), provided
that T̃e = T − T̃h, and the first equality in (3) is satisfied for
the parameters with .̃

Let θ1, θ2 denote the solutions of (4) satisfying the initial
conditions

θ1(0) = 1, θ̇1(0) = 0; θ2(0) = 0, θ̇2(0) = 1.

The matrix

M := ((θ1(T ), θ̇1(T ))
T ,(θ2(T ), θ̇2(T ))

T ), (5)
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where (., .)T denotes the column vector in R
2 transposed to

the row vector (., .), is called the monodromy matrix of equa-
tion (4). By the Liouville Theorem [1,5,9], det(M) = 1, i.e.,
the linear transformation x �→ Mx preserves the area on the
plane R

2. Such a matrix M is called stable if
(
Mk
)

k∈Z have
a uniform bound in norm. Such a matrix is called strongly
stable if all area preserving matrices near M are stable. It
follows from the Floquet Theory [1, 5, 9] that (4) is strongly
stable if and only if its monodromy matrix M is strongly sta-
ble. It can be seen that M is strongly stable if M has no real
eigenvalues.

Levi’s and Weckesser’s method is based upon the geo-
metrical observation that the linear transformation M has no
real eigenvalues if it turns every non-zero vector of R 2 with
a non-zero angle (mod π). In the next section we estimate
this angle for an arbitrary vector of R2.

3 The method

Every motion of (4) has two phases during every period,
a hyperbolic and an elliptic one, that are described by the
equations

θ̈ −ω2
h θ = 0 (kT ≤ t < kT +Th) (6)

and

θ̈ +ω2
e θ = 0 (kT +Th ≤ t < (kT +Th)+Te), (7)

where

ωh :=

√
Ah + g

l
, ωe :=

√
Ae − g

l

denotes the hyperbolic and the elliptic frequency of the pen-
dulum, respectively.

Now we introduce two different phase planes for the two
different phases of the motions. Starting with the hyperbolic
case, we introduce the new phase variables

xh = θ , yh =
θ̇
ωh

, (8)

in which (6) has the following symmetric form:

ẋh = ωhyh, ẏh = ωhxh. (9)

Using polar coordinates rh,ϕh and the transformation rules

xh = rh cosϕh, yh = rh sinϕh (rh > 0, −∞ < ϕh < ∞),

the second order differential equation (6) can be rewritten
into the system

ṙh = rhωh sin2ϕh, ϕ̇h = ωh cos2ϕh. (10)

The derivative of Hh(x,y) := x2
h − y2

h with respect to system
(9) equals identically zero, i.e., Hh is a first integral of (9), so

the trajectories of the system are hyperbolae; (10) describes
“hyperbolic rotations” (see Figure 2).

Let us repeat the same procedure for the second phase of
the period with the new phase variables

xe = θ , ye =
θ̇
ωe

. (11)

Then we get systems

ẋe = ωeye, ẏe =−ωexe, (12)

ṙe = 0, ϕ̇e =−ωe. (13)

Now He(x,y) := x2
e +y2

e is a first integral, and the trajectories
of (12) are circles around the origin; (13) describes uniform
“elliptic (ordinary) rotations”.

The second differential equation in (10) is separable,
consequently, it is integrable. If cos2ϕh(0) = 0, then

cos2ϕh(t)≡ 0 (t ∈ [0,Th));

the phase point (rh(0),ϕh(0)) does not turn. If cos2ϕh(0) �=
0, then

∫ Th

0

ϕ̇h(t)
cos2ϕh(t)

dt =
∫ ϕh(Th−0)

ϕh(0)

dτ
cos2τ

= ωhTh.

To estimate |ϕh(Th−0)−ϕh(0)| we can assume without loss
of generality that |ϕh(0)| < π/4 (see Figure 2, (a)). If we
introduce the notation f (ξ − 0) for the left-hand side limit
limu→ξ−0 f (u), then

ϕh(Th − 0) = G−1[ωhTh +G(ϕh(0))],

where G−1 : R→ (−π
4
,

π
4
) denotes the inverse function of

G(ϕ) :=
∫ ϕ

0

dτ
cos2τ

= ln

√
1+ tanϕ
1− tanϕ

(
−π

4
< ϕ <

π
4

)
,

so we get

ϕh(Th − 0) = arctan
e2ωhTh

1+ tanϕh(0)
1− tanϕh(0)

− 1

e2ωhTh
1+ tanϕh(0)
1− tanϕh(0)

+ 1
.

G−1 is an odd function, which is concave in [0,∞]; therefore,

max
−

π
4
≤ϕh(0)≤

π
4

|ϕh(Th−0)−ϕh(0)|= 2arctan
eωhTh − 1
eωhTh + 1

, (14)

and we have obtained the desired upper estimate for the hy-
perbolic turn. By the second equation in (13), for the elliptic
turn we have

ϕe(Th +Te − 0)−ϕe(Th) =−ωeTe. (15)
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yh

xh

ye

xe

ϕh
rh ϕe

re

Fig. 2 (a) Hyperbolic rotation; (b) Elliptic rotation

Besides the hyperbolic and elliptic phases, two impul-
sive effects, so called “jumps” happen to the phase point
during the interval [0,T ] at t = Th and t = T . Now we es-
timate the turns

ϕe(Th)−ϕh(Th − 0), ϕh(Th +Te)−ϕe(Th +Te − 0)

during these jumps.
Equation (4) has a piecewise continuous coefficient, so

we have to modify the standard definition of a solution of a
continuous second order differential equation. A function θ :
R→R is a solution of (4) if it is continuously differentiable
on R, it is twice differentiable on the set

S := R\ ({kT}k∈Z∪{kT −Te}k∈Z),

and it satisfies equation (4) on the set S. Any solution θ
consists of solutions xh : [kT,kT + Th) → R and xe : [kT +

Th,(k+ 1)T ) → R of (9) and (12) respectively (k ∈ Z). To
guarantee the continuity of θ̇ on R we have to require the
“connecting conditions”

xe(kT +Th) = lim
t→kT+Th−0

xh(t),

xh((k+ 1)T) = lim
t→(k+1)T−0

xe(t);

ωeye(kT +Th) = lim
t→kT+Th−0

ωhyh(t),

ωhyh((k+ 1)T) = lim
t→(k+1)T−0

ωeye(t).

(16)

Geometrically this means that at the ends of the hyperbolic
and elliptic phases there acts on the phase point (x,y) a linear
transformation (a contraction or a dilatation)

(x,y) �→ (x,qy) =: (x, ŷ) (0 < q = const., q �= 1)

x

y

(x(T −0) ,y(T −0))
(x(0) ,y(0))

(x(T ) ,y(T ))

(x(Th −0) ,y(Th −0))

(x(Th) ,y(Th))

Fig. 3 A piece of a trajectory during a period

in the direction of y-axis (see Figure 3). Now we estimate
the turn of the phase point during this “jump”.

If ϕ ∈ (−π/2,π/2), then ϕ̂ ∈ (−π/2,π/2), where ϕ̂ de-
notes the polar angle of the point (x, ŷ), and

fq(ϕ) := Δϕ = ϕ̂ −ϕ = arctan(q
y
x
)− arctan

y
x

= arctan(q tanϕ)−ϕ ;

f ′q(ϕ) = q
1+ tan2 ϕ

1+ q2 tan2 ϕ
− 1.
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Therefore,

max
−

π
2
<ϕ<

π
2

| fq(ϕ)|= |arctan
√

q− arctan
1√
q
|.

Obviously, the same estimate is true also for
ϕ ∈ (π/2,3π/2), and consequently

max
0≤ϕ≤2π

|Δϕ | ≤ |arctan
√

q− arctan
1√
q
|.

By the use of the trigonometric additional theorems, there
can be proved the identity

arctanx− arctan
1
x
= 2arctanx− π

2
(x > 0);

therefore,

max
0≤ϕ≤2π

|Δϕ | ≤ 2|arctan
√

q− π
4
|. (17)

Remark Jumps are mathematical tools needed by the dif-
ference between the two transformations (8) and (11), i.e.,
between the two corresponding phase planes xh,yh and
xe,ye. The size of jumps can be expressed by

q− 1=
ωh

ωe
− 1 =

(Ah −Ae)+ 2g√
(Ae − g)(Ah+ g)+ (Ae − g)

,

so we can say that it measures the deviation from the case
when the vibration is symmetric and there acts no gravita-
tion (this case was considered by Levi and Weckesser). If
the vibration is symmetric (Ah = Ae = A), then

q− 1=
g
A
+ o(

g
A
) (A → ∞)

asymptotically equals the proportion of the accelerations g
and A.

4 The results

The main result is concerned with the general case of the
excited inverted pendulum when the particle is objected to
gravity and the vibration of the suspension point is not sup-
posed to be symmetric.

Theorem 1 Let Rem(ϕ ;π) denote the reminder of the real
number ϕ ∈R modulo π (0 ≤ Rem(ϕ ;π)< π).

If

2arctan
eωhTh − 1
eωhTh + 1

+ 4

∣∣∣∣arctan

√
ωh

ωe
− π

4

∣∣∣∣
< min{Rem(ωeTe;π); π −Rem(ωeTe;π)},

(18)

then equation (4) is strongly stable.

Proof We formalize the geometrical thoughts of the previ-
ous section. Let Rh(ωh,Th), and Re(ωe,Te), denote the ma-
trix of the rotation

(xh(0),yh(0)) �→ (xh(Th − 0),yh(Th − 0)),

and

(xe(Th),ye(Th)) �→ (xe(Th +Te − 0),ye(Th +Te − 0)),

defined by (9), and (12), respectively, and introduce the no-
tation

C(λ ) =
(

1 0
0 λ

)
(λ > 0, λ �= 1).

Then we can represent the monodromy matrix M (see (5))
in the form of the product

M = C−1
(

1
ωe

)
Re(ωe,Te)C

(
1

ωe

)
C−1

(
1

ωh

)

×Rh(ωh,Th)C

(
1

ωh

)

= C−1
(

1
ωh

)
C

(
ωe

ωh

)
Re(ωe,Te)C

(
ωh

ωe

)

×Rh(ωh,Th)C

(
1

ωh

)
=C−1

(
1

ωh

)
M̃C

(
1

ωh

)
.

Since
(
Mk
)

k∈Z is bounded if and only if
(
M̃k
)

k∈Z is
bounded, it is enough to prove that M̃ has no real eigenval-
ues, i.e., M̃ turns every non-zero vector in R

2 with a nonzero
angle (mod π). But Re(ωe,Te) turns every vector exactly

with −ωeTe (see (13)), and the turns of Rh(ωh,Th), C(
ωh

ωe
),

and C(
ωe

ωh
) are estimated by (14) and (17), so condition (18)

guarantees that M̃ turns every vector in R
2 trough an angle

different from 0 (mod π). ��

Now let us compare Theorem 1 with earlier results. Levi
and Weckesser established their method for the very special
case ωh = ωe in (6)-(7), i.e., when g = 0 and Ah = Ae in (4),
and proved the following theorem.

Theorem A (M.Levi and W.Weckesser [15]) Consider the
inverted pendulum (4) in the gravitation-free case (g = 0)
provided that the suspension point is vibrated symmetrically
(Ah = Ae = A >> 1; consequently, Th = Te = T/2). If

ωT < π

(
ω :=

√
A
l

)
, (19)

then (4) is strongly stable.

Applying Theorem 1 to this case, we get the following
extension and approvement of Levi’s and Weckesser’s re-
sult:
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y = 4arctan
eωT/2 −1

eωT/2 +1
y = ωT

y

π

π 3.75 2π 9.38 9.46 4π ωT

Fig. 4 Stability intervals for ωT

Corollary 1 Suppose that g = 0 and Ah = Ae = A in (4). If

4arctan
eωT/2 − 1

eωT/2 + 1
<

< min{Rem(ωT ;2π); 2π −Rem(ωT ;2π)},
(20)

then (4) is strongly stable.

We have to admit that condition (20) in our corollary is
essentially more complicated than condition (19) in Levi’s
and Weckesser’s theorem. The reason is that Corollary 1 es-
sentially improves Theorem A. In fact,

4arctan
eωT/2 − 1

eωT/2 + 1
< ωT (0 < ωT < π),

so the first stability interval on the ωT -axis satisfying (20) is
(0,3.75 . . .) (see Figure 4) instead of (0,π) yielded by (19);
this is an improvement of 19%. Besides, Corollary 1 also ex-
tends Theorem A finding stability intervals on ωT -axis after
2π (see the thickened intervals on Figure 4). This can be in-
terpreted mechanically that stabilization is possible with ar-
bitrarily large ωT = T

√
A/l, which cannot be deduced from

(19).
Investigating the symmetric case Ah =Ae =A, Th = Te =

T/2, V. Arnold [1] introduced the parameters

ε :=

√
D
l
, μ :=

√
g
A
,

and supposed that these parameters were small (ε << 1,
μ << 1). Using series expansion for the trace of the mon-
odromy matrix, one can prove that μ < ε/3 is sufficient
for the strong stability [1]. Let us apply Theorem 1 to get
a global stability map on the ε − μ plane.

Corollary 2 Suppose Ah = Ae = A, Th = Te = T/2. If

2arctan
e2

√
2ε
√

1+μ2 − 1

e2
√

2ε
√

1+μ2
+ 1

+ 4

∣∣∣∣∣∣arctan 4

√
1+ μ2

1− μ2 −
π
4

∣∣∣∣∣∣<
< min{Rem(2

√
2ε
√

1− μ2; π);

π −Rem(2
√

2ε
√

1− μ2; π)},

(21)

then (4) is strongly stable.

Obviously, the stability region on the ε − μ plane has
infinitely many components separated by the curves 2

√
2ε√

1− μ2 = kπ (k = 0,1,2, . . .). Since the first term on the
left-hand side of (21) tends to π/2, as ε → ∞, and the sec-
ond term tends to π , as μ → 1− 0, the stability region has
no point close to the line μ = 1, and the “heights” and the
“width” of the components tend to zero, as k → ∞ (see Fig-
ure 5).

The right-hand side of (21) takes its maximal value π/2
along the curves

Gk : 2
√

2ε
√

1− μ2 = (2k+ 1)
π
2

(k = 0,1, . . .), (22)
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π
4
√

2
3

π
4
√

2
5

π
4
√

2

G0 G1 G2

1

ε

μ

Fig. 5 Solution set S to inequality (21).

so the kth component of the solution set S ⊂ R
2
+ of the in-

equality (21) is located along Gk. In fact, let us denote by
Sμ=0 the intersection of S and the ε-axis. Then the points of
Sμ=0 satisfy the inequality

2arctan
e2

√
2ε − 1

e2
√

2ε + 1

< min{Rem(2
√

2ε;π); π −Rem(2
√

2ε;π)},

which is fulfilled at ε = (2k+1)π/4
√

2 (k = 0,1, . . .). Since
S is open, it has a component along Gk for every k near the ε-
axis. On the other hand, since the function x �→ (x−1)/(x+
1) (x ≥ 0) is increasing, every component of S μ=0 has to
contain the endpoint of Gk for some k. Furthermore, it can
be seen that every component of S contains points on axis
ε , i.e., in Sμ=0. This completes the proof of the fact that S is
located along Gk. In other words, we can say that curves Gk

are the “backbones” of S (see Figure 5).
The larger ε is the harder to stabilize (4). Since D = ε 2l,

we can practically say that the larger maximum amplitudes
of the vibration of the suspension point is the harder to stabi-
lize the inverted pendulum. Nevertheless, there exist critical
values of maximum amplitudes

D(k) =
(2k+ 1)2π2

32
l (k = 0,1, . . .), (23)

tending to ∞ as k → ∞ such that the pendulum can be stabi-
lized by appropriate accelerations A(k). Of course, A(k) → ∞
as k → ∞; see (21).

Now let us turn to the general (asymmetric) case choos-
ing Arnold’s parameters:

εh :=

√
Dh

l
, μh :=

√
g
Ah

; εe :=

√
De

l
, μe :=

√
g
Ae

.

They are not independent (see (3)). Introducing the new pa-
rameter

d :=
εh

εe
=

μh

μe
=

√
Ae

Ah
=

√
Th

Te
=

√
Dh

De
,

which measures the “ratio” of the hyperbolic phase to the el-
liptic one in the vibration of the suspension point, we elimi-
nate εh,μh and use the independent parameters εe,μe,d (the
symmetric case is characterized by d = 1). Theorem 1 has
the following form:

Corollary 3 If

2arctan
exp
[
2
√

2dεe

√
1+ d2μ2

e

]
− 1

exp
[
2
√

2dεe
√

1+ d2μ2
e

]
+ 1

+

+ 4

∣∣∣∣∣∣∣∣∣∣
arctan

√
1+ d2μ2

e

1− μ2
e

d
− π

4

∣∣∣∣∣∣∣∣∣∣
<

< min{Rem(2
√

2εe

√
1− μ2

e ; π);

π −Rem(2
√

2εe

√
1− μ2

e ; π)},

(24)

then equation (4) is strongly stable.

A part of the stability region yielded by this corollary can be
seen on Figure 6. The section d = 1 of the body on Figure 6
corresponds to the first component of the stability region on
Figure 5.

Condition (24) offers the stabilization an essentially
greater chance than (21). It is a good situation from the point
of stability when the second member of the left-hand side in
(24) equals zero and the right-hand side takes its maximal
value π/2, i.e. if

1+ d2μ2
e = d2(1− μ2

e ),

2
√

2εe

√
1− μ2

e = (2k+ 1)
π
2

(k = 0,1,2, . . .).

These define the εe − μe − d-space curves

Ck : d �→
(
(2k+ 1)π

4
d√

d2 + 1
,

√
d2 − 1√

2d
,d

)
(d ≥ 1)

(k = 0,1,2, . . .).

(25)

Equation (4) is strongly stable along these curves be-
cause the first member of the left-hand side in (24) is always
less than π/2. The components of the stability region in the



8

d

εe

μe

Fig. 6 A part of stability region.

C0

C1

0.56

Fig. 7 Stability region in the εe-μe-d-space.

εe −μe −d-space are located ”along” these curves (see Fig-
ure 7).

As we mentioned in the symmetric case, the inverted
pendulum can be stabilized even if the maximum amplitudes
of the vibration of the suspension point is arbitrarily large
(see the critical values (23)). However, the appropriate val-
ues A(k) of the acceleration had to tend to infinity as k → ∞,
what is hard to realize. Now the stabilizer has much more
chance; namely, the acceleration can be a prescribed fixed
value. Mathematically formulating, for every μ̄e (0≤ μ̄e <√

2/2) there exist d̄ ≥ 1 and ε̄(k)e (ε̄(k)e → ∞ as k→∞) such

that equations (4) with parameters ε̄(k)e , μ̄e, d̄ are strongly
stable. What is more, the rule of the appropriate device of
the parameters is known:

d̄ =
1√

1− 2μ̄2
e

, ε̄(k)e =
(2k+ 1)π

4
√

2
√

1− μ̄2
e

(k = 0,1, . . .).

5 Conclusions

The Levi-Weckesser geometric method for the stabilization
of the upper equilibrium position of the linearized mathe-
matical pendulum (linearized inverted pendulum) by verti-
cal vibration of the suspension point with high frequency is
generalized to the case when the gravity is not neglected.
By the use of appropriate coordinates the hyperbolic, and
the elliptic pieces of trajectories are transformed into regular
hyperbolae, and circles, respectively. The presence of grav-
ity results in impulsive effects (“jumps”) in the dynamics
on the new phase plane. The method handling these effects
is suitable also to handle the asymmetric vibration of the
suspension point without any new difficulties, so we con-
sidered this more general case. The main result (Theorem
1) gives the new sufficient condition for the stability in the
form of an inequality with the parameters. The analysis and
application of this result yields, among others, the following
conclusions:

– Levi’s and Wickesser’s condition is improved with 19 %.
– The inverted pendulum can be stabilized by symmet-

ric vibration with arbitrarily large maximum amplitudes
choosing sufficiently large acceleration.

– Allowing asymmetric vibration gives the stabilizer much
more chance; namely, the inverted pendulum can be sta-
bilized by vibration with arbitrarily large maximum am-
plitudes and fixed acceleration.
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