ALGEBRA UNIV.

0002-5240/93/030337-08\$01.50 + 0.20/0 © 1993 Birkhäuser Verlag, Basel

- [8] MARČENKOV, S. S., Homogeneous algebras. Problemy Kibernetiki 39 (1982), 85-106.
- [9] MARCZEWSKI, E., Homogeneous algebras and homogeneous operations. Fund. Math. 56 (1964), 81-103.
- [10] McKenzie, R. N., McNulty, G. F. and Taylor, W. F., Algebras, lattices, varieties, Vol. I. Wadsworth & Brooks/Cole, Monterey, California, 1987.
- [11] PIXLEY, A. F., Functionally complete algebras generating distributive and permutable classes. Math. Z. 114 (1970), 361-372.
- [12] SZENDREI, Á., Clones in universal algebra. SMS, vol. 99. Univ. Montréal, 1986.

Teacher's Training College Szeged Hungary Bolyai Institute Szeged Hungary

Varieties generated by finite homogeneous algebras*

B. CSÁKÁNY AND A. SZEDERKÉNYI

Algebra Universalis, 30 (1993) 337-344

Given an algebra A, any subvariety of $\mathscr{V}(A)$ is generated by the subdirectly irreducible algebras it contains. Knoebel [7] observed that this version of Birkhoff's subdirect representation theorem facilitates determining the lattice of subvarieties of $\mathscr{V}(A)$, and applied it to the description of the subvariety lattice of $\mathscr{V}(A)$ for finite preprimal algebras A. Here we shall use it to determine the subvariety lattices of varieties generated by finite homogeneous algebras. We adopt the terminology and notations of [10].

An algebra A is called *homogeneous* if every permutation of A is an automorphism of A. This notion was introduced by Marczewski [9], and a complete description of homogeneous algebras up to equivalence was first given by Marčenkov [8]. For a survey of homogeneous algebras, including a streamlined proof of Marčenkov's theorem, see Ágnes Szendrei [12]. These results imply a simple classification of finite homogeneous algebras which will be stated here as it is necessary for our further considerations. As a preparation, we recall the most important homogeneous operations, i.e. operations of homogeneous algebras: the dual discriminator d, the switching function s, and the k-ary near-projection l_k , defined on an arbitrary set A by

$$d(a, b, c) = c$$
 if $a \neq b$, $d(a, b, c) = a$ otherwise;
 $s(a, b, c) = c$ if $a = b$, $s(a, b, c) = b$ if $a = c$, $s(a, b, c) = a$ otherwise;
 $l_k(a_1, \ldots, a_k) = a_1$ if $|\{a_1, \ldots, a_k\}| < k$, $l_k(a_1, \ldots, a_k) = a_k$ otherwise;

further, the (k-1)-ary operation r_k , defined on A iff $|A| \le k$ by

$$r_k(a_1, \ldots, a_{k-1}) = a_k$$
 if $|A| = k$ and $A = \{a_1, \ldots, a_{k-1}, a_k\}$, $r_k(a_1, \ldots, a_{k-1}) = a_1$ otherwise.

Presented by A. F. Pixlev.

Received September 9, 1991; accepted in final form January 8, 1992.

^{*}Research was supported by HNFSR (OTKA) grant No. 1903.

ALGEBRA UNIV.

Notice that d and s are projections only if |A| = 1, while l_k and r_k are projections (namely they equal p_0^k) iff |A| < k. We usually suppose $A = \mathbf{n} = \{0, 1, \dots, n-1\}$.

The classification of finite homogeneous algebras we shall need is the following (cf. [8], [12]):

PROPOSITION 1. Any finite homogeneous algebra with universe n is equivalent to a unique member of the following six disjoint families of homogeneous algebras:

- (1) the dual discriminator algebras, i.e. those algebras in which d is a term operation:
- (2) the algebras $\langle \mathbf{n}; s \rangle$ with $n \geq 2$, and $\langle \mathbf{n}; s, r_n \rangle$ with n = 2 or $n \geq 4$; we call them switching algebras (note that there are also dual discriminator algebras with s as a term operation);
- (3) the near-trivial algebras $\langle \mathbf{n}; l_k \rangle$ with $n \geq 3$ and $3 \leq k \leq n$;
- (4) the trivial algebras whose basic operations are projections; for simplicity, we denote them by n:
- (5) the algebras $\langle \mathbf{n}; r_n \rangle$ with $n \geq 2$, and $\langle \mathbf{n}; r_n, l_k \rangle$ with $n \geq 5$ and $3 \leq k \leq n-2$;
- (6) $\langle \mathbf{2}; s \rangle^2$.

We shall also use the following fact (Ganter, Płonka, Werner [5]):

PROPOSITION 2. All homogeneous algebras but $\langle 2; s \rangle^2$ and $n \ (n > 2)$ are simple.

Our purpose is to prove the following:

THEOREM. The subvarieties of a variety generated by a finite homogeneous algebra form a chain under inclusion.

After Clark and Krauss [2], an arbitrary finite algebra A is called a direct Stone generator if every finite member of $\mathcal{V}(\mathbf{A})$ belongs to $\mathscr{PS}(\mathbf{A})$; an algebra A is a subdirect Stone generator if $\mathcal{V}(A) = \mathcal{P}_s \mathcal{S}(A) (= \mathcal{SP}(A))$. Recall that a direct Stone generator is always a subdirect Stone generator (see Astromoff [1] and Pixley [11]).

The key of the proof of our theorem is the following.

LEMMA. Every finite homogeneous algebra but $\langle 2; r_2 \rangle$ is a subdirect Stone generator.

We prove this lemma for the families (1)-(6) in Proposition 1.

CASE (1). If A is a finite dual discriminator algebra, then d is a majority term on $\mathcal{V}(\mathbf{A})$, hence $\mathcal{V}(\mathbf{A})$ is congruence distributive and $\mathcal{V}(\mathbf{A}) = \mathcal{P}_{\mathbf{c}}\mathcal{H}\mathcal{S}(A)$ ([6], [4]). By Proposition 2, we can omit \mathcal{H} here; hence $\mathcal{V}(A) = \mathcal{P}_s \mathcal{S}(A)$, as asserted.

CASE (2). In switching algebras, s is a Maltsev term operation. Observe that subalgebras of switching algebras are switching algebras, too; hence by Proposition 2 they are simple. Thus, switching algebras are para primal, and taking into account that they have one-element subalgebras, they are (direct, and hence) subdirect Stone generators ([2], Theorem 2.3.), which was needed.

CASE (3). Let $L_{n,k}$ stand for $\langle \mathbf{n}; l_k \rangle$. The subalgebras of $L_{n,k}$ are, up to isomorphism, $L_{n,k}, L_{n-1,k}, \ldots, L_{k,k}, k-1, \ldots, 2, 1$. Denote by $\mathcal{P}_{n,k}$ the class of finite algebras isomorphic to direct products whose factors are non-trivial subalgebras (i.e. subalgebras being non-trivial algebras) of $L_{n,k}$ and write $\mathcal{Q}_{n,k}$ for the class of algebras isomorphic to direct products of form $\mathbf{m} \times \mathbf{P}$ with $m \ge 1$ and $\mathbf{P} \in \mathscr{P}_{n,k}$. We shall prove that every finite member of $\mathscr{V}(\mathbf{L}_{n,k})$ is in $\mathscr{Q}_{n,k}$. As **m** is a subdirect power of 2, this implies that all finite algebras of $\mathscr{V}(\mathbf{L}_{n,k})$ are in $\mathscr{P}_s\mathscr{S}(\mathbf{L}_{n,k})$. Taking into account that finitely generated homogeneous algebras are finite, we can apply Pixley's result ([11], Theorem 2.3.) asserting that, for any finite A, if all finite algebras of $\mathscr{V}(\mathbf{A})$ are in $\mathscr{P}_s\mathscr{H}\mathscr{S}(A)$, then $\mathscr{V}(\mathbf{A})=\mathscr{P}_s\mathscr{H}\mathscr{S}(\mathbf{A})$. Now $\mathscr{H}\mathscr{S}(\mathbf{L}_{n,k})=$ $\mathscr{S}(\mathbf{L}_{n,k})$ by Proposition 2. Hence $\mathscr{V}(\mathbf{L}_{n,k}) = \mathscr{P}_s\mathscr{S}(\mathbf{L}_{n,k})$, i.e. $\mathbf{L}_{n,k}$ is a subdirect Stone generator.

We split the assertion to be proved into three claims:

CLAIM 1. If P is a finite subdirect product whose factors are non-trivial subalgebras of $\mathbf{L}_{n,k}$, then $\mathbf{P} \in \mathscr{P}_{n,k}$.

Let **P** be a subdirect product of $\langle \mathbf{r}_i; l_k \rangle$ $(i = 1, ..., t; k \le r_1 \le r_2 \le \cdots \le r_t \le n)$. Without loss of generality, we can suppose that P is irredundant, i.e., for $1 \le i < j \le t$, $pr_{i,j}P$ is not a bijection between $\langle \mathbf{r}_i; l_k \rangle$ and $\langle \mathbf{r}_j; l_k \rangle$, else we can omit the subdirect factor $\langle \mathbf{r}_i; l_k \rangle$, obtaining a subdirect product \mathbf{P}' with $\mathbf{P}' \simeq \mathbf{P}$. First put t=2. Fix $a_1 \in \mathbf{r}_1$, let $\mathbf{r}_2 = \{b_1, \ldots, b_r, \}$, and suppose $\langle a_1, b_1 \rangle \in P$. It is enough to show that $\langle a_1, b_i \rangle \in P$ for $i = 2, \ldots, r_2$. Choose $a_2, \ldots, a_{r_2} \in \mathbf{r}_1$ with

$$\langle a_2, b_2 \rangle, \dots, \langle a_{r_2}, b_{r_2} \rangle \in P.$$
 (*)

If $a_1, a_2, \ldots, a_{r_2}$ are not pairwise distinct, we have two possibilities:

(1) There is a $j \neq i$ such that $a_i = a_i$. If j = 1, we are done: otherwise, choose $b'_{2}, \ldots, b'_{k-2} \in \mathbf{r}_{2}$ and $a'_{2}, \ldots, a'_{k-2} \in \mathbf{r}_{1}$ so that $b_{1}, b'_{2}, \ldots, b'_{k-2}, b_{i}, b_{j}$ are distinct, and $\langle a'_2, b'_2 \rangle, \ldots, \langle a'_{k-2}, b'_{k-2} \rangle \in P$. Then

$$l_k(\langle a_1, b_1 \rangle, \langle a'_2, b'_2 \rangle, \dots, \langle a'_{k-2}, b'_{k-2} \rangle, \langle a_j, b_j \rangle, \langle a_i, b_i \rangle) = \langle a_1, b_i \rangle \in P.$$

(2) Such a j does not exist. Then there are $u, v(\neq i)$ with $1 \leq u < v \leq r_2$ such that $a_u = a_v$. Choose again $b'_2, \ldots, b'_{k-2} \in \mathbf{r}_2$ and $a'_2, \ldots, a'_{k-2} \in \mathbf{r}_1$ so that $b_i, b'_2, \ldots, b'_{k-2}, b_u, b_v$ are distinct and $\langle a'_2, b'_2 \rangle, \ldots, \langle a'_{k-2}, b'_{k-2} \rangle \in P$. Then

$$l_k(\langle a_u, b_u \rangle, \langle a_v, b_v \rangle, \langle a_2', b_2' \rangle, \dots, \langle a_{k-2}', b_{k-2}' \rangle, \langle a_i, b_i \rangle) = \langle a_u, b_i \rangle \in P.$$

This means that if we replace a_i by a_u in (*) then (1) holds and thus (2) can be avoided.

Now let (*) imply that $a_1, a_2, \ldots, a_{r_2}$ are distinct. Then there exists $a_j \in \mathbf{r}_1$ with $a_j \neq a_1$ and $\langle a_j, b_1 \rangle \in P$ otherwise $pr_{1,2}P$ is a bijection, contradicting the assumption. If $j \neq i$, take, for a_1, a_i, a_j , the elements $a'_2, \ldots, a'_{k-2}, b'_2, \ldots, b'_{k-2}$ as in the case (1); then $l_k(\langle a_i, b_i \rangle, \langle a'_2, b'_2 \rangle, \ldots, \langle a'_{k-2}, b'_{k-2} \rangle, \langle a_j, b_1 \rangle, \langle a_1, b_1 \rangle) = \langle a_1, b_i \rangle \in P$, and, finally,

$$\langle a_1, b_j \rangle = l_k(\langle a_j, b_j \rangle, \langle a_2', b_2' \rangle, \dots, \langle a_{k-2}', b_{k-2}' \rangle, \langle a_i, b_i \rangle, \langle a_1, b_i \rangle) \in P.$$

Let t>2 and suppose that subdirect products of less than t factors of form $\langle \mathbf{r}_i; l_k \rangle$ are direct. For $j=1,\ldots,t-1$, let $a_j \in \mathbf{r}_j$. As $pr_{1,\ldots,t-1}P$ is a direct product, there exists $b_1 \in \mathbf{r}_t$ with $\langle a_1,\ldots,a_{t-1},b_1 \rangle \in P$. We have to prove $\langle a_1,\ldots,a_{t-1},b \rangle \in P$, whenever $b \in \mathbf{r}_t, b \neq b_1$. Let b_1,b_2,\ldots,b_{k-2},b be k distinct elements of \mathbf{r}_t . As we have seen, $pr_{t-1,t}P$ is a direct product, hence there are $b_1 \in \mathbf{r}_1$ and $b_i \in \mathbf{r}_i$ ($i=1,\ldots,t-2$) such that $\langle b_1,b_2,\ldots,b_{t-2},a_{t-1},b \rangle \in P$. Again by induction, $pr_{1,\ldots,t-2,t}P$ is also a direct product, which implies, for $j=2,\ldots,k-1$, the existence of $a_j \in \mathbf{r}_{t-1}$ with $\langle a_1,\ldots,a_{t-2},a_j',b_j' \rangle \in P$. Now

$$\langle a_1, \dots, a_{t-2}, a_{t-1}, b \rangle = l_k(\langle a_1, \dots, a_{t-2}, a_{t-1}, b_1 \rangle,$$

$$\langle a_1, \dots, a_{t-2}, a'_2, b'_2 \rangle, \dots,$$

$$\langle a_1, \dots, a_{t-2}, a'_{k-1}, b'_{k-1} \rangle,$$

$$\langle b'_1, b_2, \dots, b_{t-2}, a_{t-1}, b \rangle) \in P,$$

as required.

CLAIM 2. A subdirect product of **m** and $P \in \mathcal{P}_{n,k}$ is a direct product.

Let \mathbf{Q} be a subdirect product of \mathbf{m} and $\mathbf{P} = \prod_{i=1}^t \left\langle \mathbf{r}_i; l_k \right\rangle$ ($\in \mathcal{P}_{n,k}$). Suppose $\left\langle a, \left\langle a_1, \ldots, a_t \right\rangle \right\rangle \in Q$ ($a \in \mathbf{m}, \left\langle a_1, \ldots, a_t \right\rangle \in P$). Take an arbitrary $\left\langle b_1, \ldots, b_t \right\rangle \in P$; we have to show $\left\langle a, \left\langle b_1, \ldots, b_t \right\rangle \right\rangle \in Q$. For $i = 1, \ldots, k-2$, we can choose $\left\langle c_{i1}, \ldots, c_{it} \right\rangle \in P$ in such a way that, for $j = 1, \ldots, t, c_{1j}, \ldots, c_{k-2,j}$ are distinct from each other as well as from a_j and b_j . Now there are $b, c_1, \ldots, c_{k-2} \in \mathbf{m}$ such that $\left\langle b, \left\langle b_1, \ldots, b_t \right\rangle \right\rangle, \left\langle c_i, \left\langle c_{i1}, \ldots, c_{it} \right\rangle \right\rangle \in Q$ ($i = 1, \ldots, k-2$). We have

$$l_{k}(\langle a, \langle a_{1}, \ldots, a_{t} \rangle), \langle c_{1}, \langle c_{11}, \ldots, c_{1t} \rangle), \ldots, \langle c_{k-2}, \langle c_{k-2,1}, \ldots, c_{k-2,t} \rangle),$$

$$\langle b, \langle b_{1}, \ldots, b_{t} \rangle\rangle)$$

$$= \langle a, \langle b_{1}, \ldots, b_{t} \rangle\rangle,$$

as l_k is the first projection on **m**. Hence $\langle a, \langle b_1, \dots, b_t \rangle \rangle \in Q$, which was needed.

CLAIM 3. The class $2_{n,k}$ is closed under forming homomorphic images.

It is enough to prove that quotient algebras of members of $\mathcal{Q}_{n,k}$ under principal congruences are in $\mathcal{Q}_{n,k}$, too. Let \mathbf{Q} be the same as in Claim 2, and let $a,b\in\mathbf{Q}$, $a=\langle a',a_1,\ldots,a_t\rangle,\ b=\langle b',b_1,\ldots,b_t\rangle;\ a',b'\in\mathbf{m},\ a_i,b_i\in\mathbf{r}_i$ for $i=1,\ldots,t$. We examine $\theta=Cg^{\mathbf{Q}}(a,b)$, in particular, we shall establish when, for an arbitrary $c\in Q,\ c\in a/\theta$ does hold.

$$d_2 = l_k(a, b, d_{k-1}, \dots, d_3, d_2) \equiv l_k(a, a, d_{k-1}, \dots, d_3, d_2) = a \quad (\theta)$$

and

$$c = l_k(d_2, a, d'_{k-1}, \dots, d'_3, d'_1) \equiv l_k(a, a, d'_{k-1}, \dots, d'_3, d'_1) = a$$
 (θ),

ALGEBRA UNIV. Vol. 30, 1993

i.e. $c \in a/\theta$. In the case $c' = b' \neq 0$ we have

$$d'_2 = l_k(b, a, d_{k-1}, \dots, d_3, d_2) \equiv l_k(a, a, d_{k-1}, \dots, d_3, d_2) = a \quad (\theta),$$

$$d^*_2 = l_k(d'_2, a, d'_{k-1}, \dots, d'_3, d'_1) = l_k(a, a, d'_{k-1}, \dots, d'_3, d'_1) = a \quad (\theta),$$

and

$$c = l_k(d_2^*, d_{k-1}^{"}, \dots, d_2^{"}, a) = l_k(a, d_{k-1}^{"}, \dots, d_2^{"}, a) = a \quad (\theta),$$

whence $c \in a/\theta$.

It follows $\mathbf{Q}/\theta \simeq \mathbf{m} \times \prod_{i=1}^{q} \left\langle \mathbf{r}_{i}; l_{k} \right\rangle$ or $\mathbf{Q}/\theta \simeq \mathbf{m} - \mathbf{1} \times \prod_{i=1}^{q} \left\langle \mathbf{r}_{i}; l_{k} \right\rangle$ according to c_{1} equals 0 or b_{1} .

Consequently, $\mathbf{Q}/\theta \in \mathcal{Q}_{n,k}$. Case (3) is settled.

CASE (4) is trivial.

CASE (5). $2 \in \mathcal{V}(\langle 2; r_2 \rangle)$ but $2 \notin \mathcal{SP}(\langle 2; r_2 \rangle)$, hence $\langle 2; r_2 \rangle$ is not a subdirect Stone generator. $\langle 3; r_3 \rangle$ is the one-dimensional (free) affine space over GF(3), and all finite members of $\mathcal{V}(\langle 3; r_3 \rangle)$ are direct powers of $\langle 3; r_3 \rangle$.

For $n \ge 4$, first consider an algebra of form $\mathbf{A}_{n,k} = \langle \mathbf{n}; r_n, l_k \rangle$ $(n \ge 5, 3 \le k \le 1)$ n-2). It has the following non-isomorphic subalgebras: $\mathbf{A}_{n,k} = \langle \mathbf{n}; r_n, l_k \rangle$, $\mathbf{A}_{n-2,k} = \langle \mathbf{n}; r_n, l_k \rangle$ $\langle \mathbf{n} - \mathbf{2}; p_0^n, l_k \rangle, \dots, \mathbf{A}_{k,k} = \langle \mathbf{k}; p_0^n, l_k \rangle, \mathbf{k} - \mathbf{1}, \dots, \mathbf{2}, \mathbf{1}$. Thus, for $k \le j \le n, \langle \mathbf{j}; l_k \rangle$ is a reduct of $A_{j,k}$ in the sense that the clone of term operations of $A_{i,k}$ contains that of $\langle \mathbf{j}; l_k \rangle$. Take into account the following fact: if, for $i = 1, \ldots, t, \langle A_i; G \rangle$ is a reduct of $\langle A_i; F \rangle$, and any irredundant subdirect product $\langle B; G \rangle$ of $\langle \langle A_i; G \rangle$: $1 \le i \le t$ is a direct product, then any irredundant subdirect product $\langle B; F \rangle$ of $\langle\langle A_i; F \rangle: 1 \le i \le t \rangle$ is direct, too. Together with Claim 1 of Case (3), this implies: if **P** is a finite subdirect product whose factors are non-trivial subalgebras of A_{nk} , then P is a direct product of non-trivial subalgebras of $A_{n,k}$. Also, from Claim 2 we infer that a subdirect product of a trivial algebra and a direct product of non-trivial subalgebras of $A_{n,k}$ is always a direct product. Further, a congruence of an algebra is a congruence of any reduct of that algebra, implying together with Claim 3 that the class of all finite direct product of a trivial algebra and non-trivial subalgebras of $A_{n,k}$ is closed under forming homomorphic images. These versions of Claims 1-3 enable us to repeat the consideration concerning Case (3) in order to prove that $A_{n,k}$ is a subdirect Stone generator.

As for $\langle \mathbf{n}; r_n \rangle$ $(n \ge 4)$, it has no non-trivial proper subalgebras and $\langle \mathbf{n}; b_{k-1} \rangle$ is a reduct of $\langle \mathbf{n}; r_n \rangle$ because the equation

$$r_n(x_1,\ldots,x_{n-2},r_n(x_1,\ldots,x_{n-1}))=l_{n-1}(x_1,\ldots,x_{n-1})$$

holds identically (cf. [3], Lemma 1, (3)). Thus, the above consideration works again, showing that $\langle \mathbf{n}; r_n \rangle$ is a subdirect Stone generator.

CASE (6). $\langle 2; s \rangle$ is the one-dimensional affine space over GF(2); it is embedded into $\langle 2; s \rangle^2$. Thus, $\langle 2; s \rangle^2$ is a direct (and hence a subdirect) Stone generator. This concludes the proof of the Lemma.

Proof of the Theorem. First observe that the subvarieties of $\mathcal{V}(\langle 2; r_2 \rangle)$ form a chain of length 2, as it has a unique non-trivial subvariety, namely the variety of trivial algebras. By the Lemma, any other finite homogeneous algebra A is a subdirect Stone generator, and the subalgebras of A are subdirect Stone generators, too, they are homogeneous and not isomorphic with $\langle 2; r_2 \rangle$. Note that subalgebras of A with universes of the same power are isomorphic by the homogeneity of A, hence we can let A_i stand for any subalgebra of A with and i-element universe. Further, if A_i and A_j are subalgebras of A with $i \leq j$, then A_i can be embedded in A_i , and thus we have $\mathcal{V}(A_i) \subseteq \mathcal{V}(A_i)$.

Now, Birkhoff's subdirect representation theorem and our lemma together imply that $\mathscr{V}(\mathbf{A}_i)$ is a proper subvariety of $\mathscr{V}(A_j)$ if and only if i < j and \mathbf{A}_j is subdirectly irreducible. Let \mathscr{W} be an arbitrary subvariety of $\mathscr{V}(\mathbf{A}_n)$; we have $\mathscr{W} = \mathscr{V}(\mathbf{A}_j)$ where \mathbf{A}_j is the largest subdirectly irreducible subalgebra of \mathbf{A} with $\mathbf{A}_j \in \mathscr{W}$. Hence the subvarieties of $\mathscr{V}(A_n)$ form a chain, which is isomorphic with the chain of all subdirectly irreducible subalgebras of \mathbf{A} under embeddability. Theorem is proved.

REFERENCES

- [1] ASTROMOFF, A., Some structure theorems for primal and categorical algebras. Math. Z. 87 (1965), 365-377
- [2] CLARK, D. M. and KRAUSS, P. H., Para primal algebras. Algebra Universalis 6 (1967), 165-192.
- [3] CSÁKÁNY, B. and GAVALCOVÁ, T., Finite homogeneous algebras. Acta Sci. Math. (Szeged) 42 (1980), 57-65.
- [4] FRIED, E. and PIXLEY, A. F., The dual discriminator function in universal algebra. Acta Sci. Math. (Szeged) 41 (1979), 83-100.
- [5] GANTER, B., PLONKA, J. and WERNER, H., Homogeneous algebras are simple. Fund. Math. 79 (1973), 217-220.
- [6] JÓNSSON, B., Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121.
- [7] KNOEBEL, A., The equational classes generated by single functionally precomplete algebras. Memoirs Amer. Math. Soc. 332 (1985), 1-83.