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Varieties generated by finite homogeneous algebras*

B. CSAKANY AND A. SZEDERKENYI

Given an algebra A, any subvariety of ¥°(A) is generated by the subdirectly
irreducible algebras it contains. Knoebel [7] observed that this version of Birkhoff’s
subdirect representation theorem facilitates determining the lattice of subvarieties of
¥°(A), and applied it to the description of the subvariety lattice of #7(4) for finite
preprimal algebras A. Here we shall use it to determine the subvariety lattices of
varieties generated by finite homogeneous algebras. We adopt the terminology and
notations of [10].

An algebra A is called homogeneous if every permutation of 4 is an automor-
phism of A. This notion was introduced by Marczewski [9], and a complete
description of homogeneous algebras up to equivalence was first given by
Marcenkov [8]. For a survey of homogeneous algebras, including a streamlined

‘proof of Maréenkov’s theorem, see Agnes Szendrei [12]. These results imply a

simple classification of finite homogeneous algebras which will be stated here as it
is necessary for our further considerations. As a preparation, we recall the most
important homogeneous operations, i.e. operations of homogeneous algebras: the
dual discriminator d, the switching function s, and the k-ary near-projection I,
defined on an arbitrary set 4 by

dla,b,c)=c if a#b, d(a, b,c) =a otherwise;
s(a,b,c)=c ifa=5b, s(a,b,c)=b ifa= c,v s(a, b, c) =a otherwise;

ia,...,a)=a, if[{a,....a} <k La,...,a)=a, otherwise;
further, the (k — 1)-ary operation ry, defined on 4 iff |[A| <k by

re@, .. .,a_y)=a if|[d|l=kand A={a,,...,a_,,a},

@

re(@y,...,a,_,) =a; otherwise.
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Notice that 4 and s are projections only if |A| =1, while /, and ¥, are projections
(namely they equal p§) iff |4| < k. We usually suppose 4 =n={0,1,,...,n— 1}.
The classification of finite homogeneous algebras we shall need is the following

(cf. [8], [12]):

PROPOSITION 1. Any finite homogeneous algebra with universe n is equivalent

to a unique member of the following six disjoint families of homogeneous algebras:

(1) the dual discriminator algebras, i.e. those algebras in which d is a term
operation;

(2) the algebras {m;s) with n 22, and {m;s,r,) withn=2 or n>4; we call
them switching algebras (note that there are also dual discriminator algebras
with s as a term operation);

(3) the near-trivial algebras (m; [, ) withn >3 and 3 <k <n;

(4) the trivial algebras whose basic operations are projections; for simplicity, we
denote them by m;

(5) the algebras (n;r, ) withn 22, and {n; r,, I, ) withn =5 and 3<k <n —2;

(6) (2;5)%

We shall also use the following fact (Ganter, Plonka, Werner [5]):

PROPOSITION 2. All homogeneous algebras but {2; s)? and n (n>2) are
simple.

Our purpose is to prove the following:

THEOREM. The subvarieties of a variety generated by a finite homogeneous
algebra form a chain under inclusion.

After Clark and Krauss [2], an arbitrary finite algebra A is called a direct Stone
generator if every finite member of 77(A) belongs to £5(A); an algebra A is a
subdirect Stone generator if V' (4) = 2L (A) (=S P(A)). Recall that a direct Stone
generator is always a subdirect Stone generator (see Astromoff [1] and Pixley [11]).

The key of the proof of our theorem is the following.

LEMMA. Every finite homogeneous algebra but (2;r,) is a subdirect Stone
' generator.

We prove this lemma for the families (1)—(6) in Proposition 1.
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CASE (1). If A is a finite dual discriminator algebra, then d is a majority term
on 7 (A), hence 7°(A) is congruence distributive and ¥'(A) = Z# 5 (4) (6], [4D.
By Proposition 2, we can omit s here; hence ¥'(4) = ZF(4), as asserted.

CASE (2). In switching algebras, s is a Maltsev term operation. Observe that
subalgebras of switching algebras are switching algebras, too; hence by Proposition
2 they are simple. Thus, switching algebras are para primal, and taking into account
that they have one-element subalgebras, they are (direct, and hence) subdirect Stone
generators ([2], Theorem 2.3.), which was needed.

CASE (3). Let Ln,}c stand for {(m;/, ). The subalgebras of L,, are, up to
isomorphism, L, 4, L,_ 14, - > Lge, k—1,...,2, 1. Denote by %, the class of
finite algebras isomorphic to direct products whose factors are non-trivial subalge-
bras (i.e. subalgebras being non-trivial algebras) of L, , and write 2, for the class
of algebras isomorphic to direct products of form m x P with m = 1 and Pe Z,;.
We shall prove that every finite member of ¥"(L,y) is in 2,,. Asm is a subdirect
power of 2, this implies that all finite algebras of ¥"(L,) are in 2F(L,,). Taking
into account that finitely generated homogeneous algebras are finite, we can apply
Pixley’s result ([11], Theorem 2.3.) asserting that, for any finite A, if all finite
algebras of ¥°(A) are in Z# F(A), then V' (A) = BAHF(A). Now # F(Lyy)=

~F(L,z) by Propos1t10n 2. Hence ¥"(L,,) = ZF (L), ie. L,z « is a subdirect Stone

generator.
We split the assertion to be proved into three claims:

CLAIM 1. If P is a finite subdirect product whose factors are non-trivial
subalgebras of L, ., then Pe 2, .

Let P be a subdirect product of (r;; L,y (i=1,..., k' <r<r<---<r,<n).
Without loss of generality, we can suppose that P is irredundant, ie., for
1<i<j<tpr,Pis not a bijection between (r;; L, Y and {r;; [ ), else we can omit
the subdirect factor (x;; [, ), obtaining a subdirect product P’ with P’ ~ P. First put
t=2. Fix a;ery, let r,={b,,...,b,,}, and suppose {a,, b;) € P. It is enough to
show that {a,,b;yeP fori=2,...,r,. Choose a,,...,a,,€r ‘with

(ay,b2),...,{a,,,b,,)€P. (*)

If ), a, .. .,a,, are not pairwise distinct, we have two possibilities:
(1) There is a j (1) such that a; = a;. If j = 1, we are done: otherwise, choose
ty...,br_ser,and aj,...,ak_,€r; so that by, b3, ..., bi_,, by, b; are distinct,
and (a3, b5, ...,{ak_2,bi_>)€P. Then
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lk(<a17 bl >> <a£, bé>, ceey <a;c_2, b;c_2>, <aj, bj>9 <ai? b1>) = Zal’ bz> EP'

(2) Such ajdoes not exist. Then there are u, v( #i)with 1 <u <v < r, such that
a,: = a,. Choose again b3,...,b;_,€r, and a5,..., ay_,€r, so that b,, b5, .
b2, b,, b, are distinct and (a3, b3), ..., {ak_,, by_,) € P. Then

.« ey

lk(<a“’ b. >’ <av’ b, >’ <a£’ b§>’ R <a1,c—2: bl/c—2>: <ai: bi>) = <au: bi> eP.

This means that if we replace a; by a, in () then (1) holds and thus (2) can be
avoided. :

Now let (*) imply that a,, a, . . ., a,, are distinct. Then there exists a; exr, with
a{» #a a1.1d '<aj, b,y € P otherwise pri2P is a bijection, contradicting the ‘assump-
t;:)n. If j #1i, take, for a,,a;, a;, the elements a3, . .. s Ar_ay b5, ..., b_, as in
the case (1); then L({a;,b;), a3, b%) {aj_2, b a,,

H > Yi /> E] I | k—2» - 9a'7b 9a9b =

{a,,b;) € P, and, finally, . o B2 (B (o 017)

»

<als b]> = lk(<aj’ b}>’ <a%, bé>, ceey <a//€_2, b;€_2>, <a,~, bi>: <a1’ bt>) EP_

Let #>2 and suppose that subdirect products of less than ¢ factors of
f<.>rm {r;; Iy are direct. For j=1,...,t— 1, let g;er,. As pry , P is a
direct product, there exists b, ex, with {ay,...,a,_;, b )€ P. We have to prove
{ay,...,a,_1, b) e P, whenever ber,, b # b,.Let by, b5,...,b}_,, b be k distinct
elements of r,. As we have seen, pr,_, P is a direct product, hence there are bier;
and b;ex; (i=1,...,¢—2) such that {b1,b,,...,b,_,,a,_;,b)cP. Again by

.....

. , )
the existence of a} erx,_, with {ay, .., a,_,, a}, b} Y e P. Now

<a15 LR :at—Za at—l’b>=lk(<a1= o 3at—2) at—l: bl>9
<a1> v Qp 2, aé: b§>7 ey
<a19 Ly at—-Z: al,c—i9 bl/c—1>’

(b1, by by a1, b)) EP,

as required.

CLAIM 2. A4 subdirect product of m and P P, is a direct product.
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Let Q be a subdirect product of m and P=[[i_, (r;; ) (€Z.s)- Suppose
(a,{ar,...,a,))€Q (aem, {a,...,a,yeP). Take an arbitrary (by,....b,)
e P; we have to show {(a,{b,,...,b,yyeQ. Fori=1,...,k—2, we can choose
ey enns ¢y y€ P in such a way that, for j=1,...,5 ¢y, .., Ce_z, are distinct
from each other as well as from a; and b;. Now there are b, ¢;, ..., C_2€M such
that (b, (b1, ... b0, (e {Car---»Cup)€Q (i=1,...,k=2). We have

L({a,{ays s apy, (e, {eirs oo s CL Do s (ere2s{Chongs s Chmi))s
RGN Y)
={a,{by, ..., b))
as [, is the first projection on m. Hence {a, (b, ..., b,)) € Q, which was needed.
CLAIM 3. The class 2, is closed under forming homomorphic images.
It is enough to prove that quotient algebras of members of 2, , under principal
congruences are in 2,, too. Let Q be the same as in Claim 2, and let a,b €Q,

a={a’,ay,...,a), b={b',by,...,b,);a,b’em,a,berfori=1,...,1 We
examine 6 = Cg(a, b), in particular, we shall establish when, for an arbitrary

“ceQ,cealf does hold.

It may happen a; = b;; we can assume that a; = b; for i < g, where 0 < ¢ < ¢, and
a;#b;, for i>q. For c={c",¢1,.. 1 Cp---5 ¢,y from cea/f we infer ¢; =g
whenever i < g, and we can admit ¢; =a, for g <i<r, ¢;=b; for r <i<s, and
¢ #a;,b; for s<i<t with ¢ <r<s<t Also, as the direct factors of Q are

“homogeneous, we do not violate generality by supposing @’ =a, =---=a,=0 and

b,,1=-+-=b,=1. Further, by the same reason, we can put ¢ ={c’,0,...,0,
0,...,0,1,...,1,2,..., 2> with w —r 1’s and ¢ — s 2°s. Finally, in order to simp-
lify our notations, we can suppose ¢ =1,7 =2,5=3,¢=4. Thus, a =(0,0,0,0,0),
b={b",0,1,1,1),¢={c’,0,0,1, 2). We show that ¢ € ¢/8 if and only if ¢ =0 or
¢’=b’. As I, is trivial on m, the only if part is clear. For the converse, put
d;={0,0,0,i,iy (i=3,....,k—1), d;=40,0,0,i,0) (i=1,3,...,k—1), di=
{0,0,4,0,0) (i=2,...,k—1), and d, = {¢’,0,0,2,2), d5= {c',0,1,2,2), d=
{¢’,0,1,1,2). Now, if ¢’ =0, then

d2= lk(a, b, dk—l’ e ey d;, dz) = Ik(a, a, dk——-l’ ey da, dz) =a (0)
and

c=lk(d2>a:d;c—l’-"= ;:d/l)Elk(asa9d}/c—1:“-: ’3:d’1)=a (0)7
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i.e. cea/f. In the case ¢’ = b’ # 0 we have

d£=lk(b, a, dk—l’ ce ,d3, dz) Elk(a, a, dk—l: e ,d3, dz) =a (9),

Ay =lL(d5, a,d_y,...,d35,d}) =l(a,a,df_1,...,d5,d})=a (6),
and
c=0d3,di_y,...,d5,a) =L (a,d}_,,...,d5,a) =a (6),

whence ¢ € a/6.

It follows Q/6 ~m x [ /-, {ri; L) or Q/§ ~m—1x[[{, {(r;; L) according
to ¢; equals 0 or b,.

Consequently, Q/f € 2, ;.. Case (3) is settled.

CASE (4) is trivial.

CASE (5). 2e€¥7({2;r,)) but 2¢ SP({2; r,)), hence (2; r,) is not a subdirect
Stone.generator. (3; r3 ) is the one-dimensional (free) affine space over GF (3), and
all finite members of 7°((3; r;)) are direct powers of (3;r; ).

For n >4, first consider an algebra of form A=mr, Ly m253<k<
n —2). It has the following non-isomorphic subalgebras: A, , ={m; 7, [ ), A, _,, =
=208, 4), - Are =& Pl 1), k—1,...,2,1 Thus, for k <j<n, (j; 4
is a reduct of A;, in the sense that the clone of term operations of A,, contains
that of (j; /. ). Take into account the following fact: if, for i =1, . .., t,J’<A,-; G)is
a reduct of {4;; F), and any irredundant subdirect product (B; G) of {{4,; G):
1<i<r)is a direct product, then any irredundant subdirect product {(B; F) of
({4;; F):1<i <t} is direct, too. Together with Claim 1 of Case (3), this implies:
if P is a finite subdirect product whose factors are non-trivial subalgebras of A, L,
then P is a direct product of non-trivial subalgebras of A, . Also, from Claim 2 v,ve
infer that a subdirect product of a trivial algebra and a direct product of non-trivial
subalgebras of A, is always a direct product. Further, a congruence of an algebra
is a congruence of any reduct of that algebra, implying together with Claim 3 that
the class of all finite direct product of a trivial algebra and non-trivial subalgebras
of A, is closed under forming homomorphic images. These versions of Claims 1-3
enable us to repeat the consideration concerning Case (3) in order to prove that A, ,
is a subdirect Stone generator. ’
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As for {m; 1,y (n = 4), it has no non-trivial proper subalgebras and (n; by ) is
a reduct of (m; r, ) because the equation

rn(xla .- ~9xn—29rn(x1a >xn——l)) =Zn—1(xlﬂ e axn—l)

holds identically (cf. [3], Lemma 1, (3)). Thus, the above consideration works
again, showing that {n; r, ) is a subdirect Stone generator.

CASE (6). {2;s) is the one-dimensional affine space over GF(2); it is embed-
ded into (2; s)2 Thus, {(2;s)? is a direct (and hence a subdirect) Stone generator.
This concludes the proof of the Lemma.

Proof of the Theorem. First observe that the subvarieties of ¥~ ({2; r,)) form a
chain of length 2, as it has a unique non-trivial subvariety, namely the variety of
trivial algebras. By the Lemma, any other finite homogeneous algebra A is a
subdirect Stone generator, and the subalgebras of A are subdirect Stone generators,
too, they are homogeneous and not isomorphic with (2; r, ). Note that subalgebras
of A with universes of the same power are isomorphic by the homogeneity of A,
hence we can let A, stand for any subalgebra of A with and i-element universe.
Further, if A; and A; are subalgebras of A with i <j, then A, can be embedded in

'A;, and thus we have ¥7(A;) € ¥'(4)).

Now, Birkhoff’s subdirect representation theorem and our lemma together
imply that ¥°(A,) is a proper subvariety of ¥°(4;) if and only if i <j and A, is
subdirectly irreducible. Let #" be an arbitrary subvariety of ¥°(A,); we have
W =7(A;) where A, is the largest subdirectly irreducible subalgebra of A with
A, e . Hence the subvarieties of 77(4,) form a chain, which is isomorphic with
the chain of all subdirectly irreducible subalgebras of A under embeddability.
Theorem is proved.
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