150 Mailbox ## Life is functionally complete BÉLA CSÁKÁNY Life, the popular no-player game invented by J. H. Conway (see [1], Ch. 25), is played on an infinite squared board. At any time t (a non-negative integer), the state of each cell can be 1 (live) or 0 (dead). Let the states of the cells of a solid 3×3 square at time t be s_8 s_1 s_2 s_7 s_0 s_3 S₆ S₅ S₄ $(s_i \in 2 = \{0, 1\}; i = 0, \dots, 8)$, then the state of the middle cell at time t + 1 is 1 if $$s_0 = 1$$ and $2 \le \sum_{i=1}^8 s_i \le 3$, (1) ٥r $$s_0 = 0$$ and $\sum_{i=1}^{8} s_i = 3$, (2) and it is 0 otherwise Observe that the state of the middle cell at t+1 is a Boolean function $f = f(x_0, x_1, \ldots, x_8)$ with the states of cells of the whole square at t as variables; hence we have an algebra $\underline{L} = \langle 2, f \rangle$, providing a description of Life. The algebra \underline{L} is functionally complete; indeed, by definition, $$f(0, 0, 0, x, x, x, y, y, y) = x + y \mod 2,$$ $f(0, 0, 0, 0, 0, 0, x, x, y) = xy \mod 2,$ Presented by A. F. Pixley. Received September 9, 1991; accepted in final form November 15, 1991. i.e., the basic operations of GF(2) – which is functionally complete – are polynomial operations of \underline{L} . BÉLA CSÁKÁNY Following C. Bays, the rules of Life can be generalized by postulating $a \leq \sum_{i=1}^8 s_i \leq b$ in (1) and $c \leq \sum_{i=1}^8 s_i \leq d$ in (2) with 0 < a, b, c, d < 8 (see [2]; these constraints mirror the principles of "death by exposure or overcrowding", emphasized in [1]). The corresponding Boolean functions f_{abcd} give rise to algebras $\underline{L}_{abcd} = \langle \underline{2}, f_{abcd} \rangle$. Our remark on the functional completeness of \underline{L} extends to all \underline{L}_{abcd} . By Post's classical result, we have to show only that f_{abcd} is neither monotonic, nor linear. We have $f_{abcd}(1, \ldots, 1, 0, \ldots, 0) = 1 > f_{abcd}(1, \ldots, 1) = 0$, whenever the number of units on the left side is between a + 1 and b + 1; hence f_{abcd} is not monotonic. It is not linear, either: if $$f_{abcd}(x_0, x_1, \dots, x_8) = t_0 x_0 + t_1 x_1 + \dots + t_8 x_8 + t \qquad (t_i, t \in \underline{2}), \tag{3}$$ then $t=f_{abcd}(0,\ldots,0)=0$, $t_0=f_{abcd}(1,0,\ldots,0)=0$; further, $t_1=\cdots=t_8$ by symmetry, and hence $f_{abcd}(x_0,x_1,\ldots,x_8)=x_1+\cdots+x_8$, as f_{abcd} does not vanish identically. Now, $f_{abcd}(1,1,0,\ldots,0)=f_{abcd}(1,1,1,0,\ldots,0)=1$, whence a=1, $b\geq 3$, implying $f_{abcd}(1,1,1,0,\ldots,0)=1$; however, $f_{abcd}(1,1,1,0,\ldots,0)=0$ by (3), a contradiction. Notice that a further generalization is possible, namely the use of non-trivial threshold conditions of the form $u\leq \sum \gamma_i s_i \leq v$ (with u,v,γ_i positive real and $0< u,v<\sum \gamma_i$) instead of (1) and (2), yet providing all functionally complete algebras. It must be said that our result is exactly what could be expected a priori. Indeed, for any n-ary Boolean functions, the proportion of non-monotonic non-linear functions tends to 1 rapidly as n increases and, on the other hand, it seems unlikely that a cellular automaton with quite simple local behavior would have very complex global behavior. ## REFERENCES - [1] BERLEKAMP, E. R., CONWAY, J. H. and GUY, R. K., Winning ways for your mathematical plays I-II, Academic Press, 1982. - [2] DEWNDEY, A. K., The game Life acquires some successors in three dimensions, Scientific American 256, 2 (1987), 8-13. Bolyai Institute Szeged, Hungary