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FUNCTIONAL COMPLETENESS OF ALGEBRAS

An algebra A is a pair (A; F) with A a non-empty set and F' a set of finitary operations
(i. e., mappings of form f : AF - A, ke N) on A

The projections (or trivial operations) are the mappings (ai,...,ar) — a; (this is the
i-th k-ary projection). The constants are the mappings (a1,...,ar) — c ( afixed element
of A). The k-ary polynomials-of (A; F') are those mappings of A* into A which arise from
projections and constants by finitely many applications of the operations in F' (we apply
them pointwise, i. e. if, e. g., f1,f2 € F are k-ary and + € F' is binary (=2-ary) then, for
a; € Aa (fl + f2>(d1: v 7a‘l€) = fl(a’la s aa‘k) + fZ(a’la cee ,CLk))-

Notation: x; is the i-th (k-ary) projection, c is the above constant. E. g., the unary
(=1-ary) polynomials of a field K = (K; {-,-}) are of form

enZ® +...+cix+co (¢ € K),
and the k-ary polynomials of a vector space V over a field K are of form
czit...+eprr+u (€K, ueV).

Polynomials constructed from projections only (i. e. without use of constants) are called
term functions; e. g., the unary term functions of K are dp,z™ + ...+ diz with all d;
integers, and the k-ary term functions of V are c1z1 + ... + CkZTk-

An algebra A is called functionally complete if all the mappings of A* into A (i. e,
all possible finitary operations on A) are polynomials of A. The algebra A is
said to be primal if all possible operations on A are term functions of A.

Ezamples: Finite fields GF(g) are functionally complete (f. c¢. in the sequel): any
possible k-ary f on GF(qg) is a polynomial, as the following equation shows:

k

f(z1,...,2%) = Z flai,...,ak) H(l— (z; — a;)T1).

ai,...,ax €GF(q) i=1



The two-element Boolean algebra B = (B(= {0,1});{V,,"}) ( (2;V,-,”) in a less fussy
notation; in general, n denotes the set 0,...,n — 1) is f. c., too. In fact, it is primal: any
f: B*¥ — B is a term function of B, as for arbitrary z; € B we have

k
f(xl,'“)mk)= \/ f(a'la"wa'lc)l—_[jia
i=1

a1, ,ak€B

where Z; means z; if a; = 1 and Z; if a; = 0 (observe that the constants are term functions
of B).
These examples are special cases of the following more general fact:

Werner-Wille Theorem: A finite algebra A = (A; F) is f. c. iff there are elements
0,1 € A and binary polynomials +,- of A such that z+0=04+z=2, z-0=0,z-1=<z
hold for any z € 4, and the characteristic function x, of each a € A is a polynomial of A.

Proof: Necessity is obvious. If the conditions are fulfilled, every f : A* — A has an
expansion of form

k
f(wl;“')mk:): Z f(ala"‘aak)HXai(mi)a

a1,...,ag€EA

where parentheses for addition as well as multiplication should be placed rightwards:
(((--.)...)...); no associativity etc. are required! Hence (4;{+,-,{x. : a € A}}) is
f. c.; however, if (4;G) is f. c., and every g € G is a polynomial of (A; F), then (4; F)
is — a fortiori — f. c., concluding the proof.

If, for a given algebra we can prove that all constants are term functions (as we could
in the case of B), then, using this theorem, we can establish even the primality of that
algebra. We shall prove several classical results in such a way.

Foster’s Theorem: Let (G; ) be the extension of a finite group by an outer zero element
0, and let g be a cyclic permutation of G. Then (G;-, g) is primal.

Proof: Apply the Werner—Wille Theorem. Let |G| = n; then z-g(z)-...-g" }(z) =0,
and {0, g(0),...,g" *(0)} = G. Suppose k is such that g*(0) = 1 and let ¢ be such that
g*(c) = 0. Then we can define

z+y=g""("@) W), zy=z-y [, xpr@) =g (g &)")
and check that they meet the requirements of the Werner-Wille Theorem.

Foster Type Theorem for Semilattices: Let (S;A) be the extension of a finite semilat-
tice with unit 1 and zero ¢ by an outer zero element 0, and let g be a cyclic permutation
of S with g(1) = 0 and g(0) = ¢ . Then (S;A,g) is primal.

Proof: Let |G| =n; then z- g(z) A... A g™ (z) =0, and {0, g(0),...,9""1(0)} = G.
Define

c+y=g(@" ") Ag" (W), zy=zAY, Xgr)(®)=g""HcA(g" (),
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and apply the Werner—Wille Theorem.
If the finite semilattice is the chain 1 < ... < m — 1, then this theorem asserts that

the algebra (n;min, /) with ' =z +1 (mod n) — the n-element Post algebra — is primal.

Consider the operation zoy = min(z,y)+1(mod n) on n. Then squaring zoy n—1
times (in the sense of o ) we obtain min(z,y), while z 0oz = z + 1(mod n). Hence we get:

Sheffer—Webb Theorem: (n;o) is primal.

Usually, if (A; f) is primal, f is called a Sheffer operation.

Another consequence of the Werner-Wille Theorem is the finite case of the classical

Theorem of Sierpinski: Every operation can be composed from (at most) binary op-
erations.

In our terminology this means: if O, stands for the set of all (at most) binary opera-
tions on A, then (A4; O,) is primal.

The operation

z fz=9y
t(:c.y,z):{m if:v;éz

waas introduced (on any set) by Pixley; it is called the ternary discriminator.

Werner’s Theorem: If the ternary discriminator is a polynomial of an algebra A, then

A is functionally complete.
Proof: Choose 0,1 € A arbitrarily. Put

m'y:t(yaLw): m+y=t(x,0)y)

and
(z) = t(0,z,1) ifa=0
Xel®) =1 £(0,(a, 7,0),1) if a #0,

and apply the Werner—Wille Theorem.

If, for an operation f on A, say binary, there are a,b,c € A such that f(a,c) # f(b,c)
then we say that f depends upon its first variable. An operation f on A is called essential
if f depends on at least two variables, and f is surjective (i. e., for every d € A there are
a,b € A such that d = f(a,b)).

Let T4 denote the set of all selfmaps of A.

The Stupecki Criterion: If 2 < |A] < oo then (A;T4, f) is primal, whenever -f is
essential.

For simplicity, we prove this for binary f only. In the proof we shall apply the following

Improved Version of the Werner—Wille Theorem: Let A = (A; F) be finite; 0,1 € B C
A. All finitary operations on A whose range is contained in B are polynomials of A iff
there are binary polynomials -, + of A suchthat z4+0=0+z=2, 2-0=0, z-l=2
if z € B, and the characteristic function of each element of A is a polynomial of A. (The
above proof works without change.)



Call a subset of A% a square (more accurately: a t-square) if it is of form A; x A,
where Al,Az Q A, |A1| = ’A2| =t.

Yablonski Lemma: Let o be a binary operation on A4, depending on both variables,
whose range contains at least three elements. There exists a 2-square on which o takes on
at least three distinct values.

Consequences of the Yablonski Lemma: 1. In the Y. Lemma, we can write ¢ and
t—1 (3 <t<|A]) instead of 3 and 2.

2. Under the conditions of the Y. Lemma, there exists a 2-square S and an element
c € A such that o takes on the value c on S exactly once.

Proof of the Stupecki Criterion: Suppose A = (A4;T4,0) with 2 < |A| < oo and o
essential. Let g : Ay — A have a t-element range. By induction on ¢, we show that gisa
term function of A. Let 0,1,...,% — 1 denote the elements of the range of g.

t = 2. By the second consequence of the Yablonski Lemma. we have a 2-square
{a0,a1} x {bo,b1} and ¢ € A such that o takes on ¢ on that 2-square exactly once: say,
a10by = cbut a;0b; # cif (4,5) # (1,1). If, for 1,92 : A — A4, (i) = ai, Yo (i) =
bi (i =0,1), then, for -y = xc(¥1(z) 0 ¥2(y)), and = +y = x0(z) - x0(v)) [De Morgan
formulal] we have 0+z=2+0=2, z-1=21, z-0=0 whenever z € (t =){0,1}, and
the improved Werner-Wille-Theorem applies.

t—1 —t. By the first consequence of the Yablonski Lemma, there is a (¢t — 1)-square
C x D on which o takes on all the ¢ values of the range of g [!]. For each i € ¢, choose
elements ¢; € C,d; € D with ¢; o d; = 4. Define the k-ary operations go, g1 as follows: if
g(u1,...,uk) = i, then let go(us,... ux) = ¢, g1(us,...,ux) = di. Now g(uy,...,ux) =
go(u, ..., ux) 0 g1(us,...,ux), and go, g1 are term functions of A by inductive hypothesis
as their ranges consist of (at most) ¢ — 1 elements. Thus, g is a term function of A, too,
which was needed.

Yablonski’s Improvement: Instead of T4, the set of all non-invertible self-maps of A
is sufficient. (Indeed, the unary operations used in the proof can be chosen to be non-
invertible.)

Salomaa’s Improvement: If |A| > 4 then, instead of T, the set of all permutations of
A is sufficient. (The reasoning is similar.)

It is natural to ask whether statements analogous to the Stupecki Criterion are valid
for more sophisticated mathematical structures, e. g., for topological spaces and ordered
sets (instead of finite sets). A sample: if M stands for the set of all monotonic continuous
selfmaps of I (the interval [0,1] of the real line), and f is an arbitrary, monotonic, con-
tinuous, essential operation on I, does the set of term functions of (I; My, f) comprise all
monotonic, continuous operations on I? (It is known that for I and also for other compact
spaces there exists a binary operation o —e. g., z oy = min(l,z + y) in the case of I —
such that all continuous operations on I are term functions of the algebra (I; Cy, o), where
C7 is the set of all continuous selfmaps of I. This was proved by A. A. Malcev (Jr.) on
the base of results of Arnold and Kolmogorov.)

Next we give some applications of the Stupecki Criterion. First we prove that the
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stone-scissors-paper algebra is functionally complete (a result of Quackenbush). This is
(3;0) with Cayley table

OO
R )
ORI )

Clearly, o is essential. As for the selfmaps of 3, it is enough to represent by polynomials
1) all transpositions, and
2) a selfmap of defect 1 (i. e., with 2-element range)
as they together generate the semigroup of all selfmaps of 3; the same is true for any finite
set m. The cycle (012) is an automorphism of (3;0), hence it suffices to represent (01) as
a polynomial of (3;0). Here it is:

(zolo200)o(xo2)o(xolo20001).

(You can try to find a shorter polynomial for (01)). Finally, z 0 0 is a selfmap of 3 with
defect 1.

The dual discriminator (introduced by Pixley and Fried) is defined by
_Jz z=y
Hey,2) = { z fz#uy.

(Cf. the terna,ry discriminator.) For m > 3, the algebra (m; d) is functionally complete.
First, d(z,z,z) =z (i. e., d is idempotent), hence its range is m. Observe

d(2,1,2) # d(1,1,2) # d(1,2,2) # d(1,2,1).

This shows that d depends on each variable; thus, d is essential. Note that all permutations
of m are automorphisms of (m;d), hence it suffices to represent — as a polynomial — (01)
only. Define the polynomials gi(z) by

g1(z) =d(1,d(2,d(0,z,2),1),0),

and
| | gi(z) = d(k, 2, gr—1(x))-
Then gy,—1(z) = (01), and — as a bonus — gm—2(x) is a selfmap of m with defect 1.
The n-ary near-projections (n > 3) (introduced by Marczewski) are defined for
1<j,k<n, j#k by

ll-“(ccl o z) = z; if z1,...,%, are pairwise different,
VA ) otherwise.
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For arbitrary 1 < j,k <n <m, j #k, the algebra (m; lf) is functionally complete.

‘The proof is tedious, hence we restrict ourselves to the case | = [}, where the trick is
similar to that for the dual discriminator. First, ! is essential; this can be established in
the same way as we did it for d. Again — by the same reason — we need only polynomial
representations for both (01) and a selfmap of m with defect 1. Define the polynomials
gk(z) by

g2(z) = 1(1(2,z,0),z,(x, 2,1))

and
gk(z) = Uz, k, gg-1(x)).

Then gm—1(z) = (01), and, for m > 3, gm_2(2) is a selfmap of m with defect 1 (find an
appropriate g; for m = 3 !)

The two discriminators and the near-projections are pattern functions in the following

sense. Two n-tuples (a1,...,an), (b1,...,b,) € A™ are said to be of the same pattern if,
for 1 <1< j < n, a; = a; implies b; = b; and vice versa, or, equivalently, if there exists
a permutation 7 of A with b; = w(a31),...,b, = 7(a,). After Quackenbush, we call an

operation f: A™ — A a pattern function, if

1) f(a1,...,an) € {a1,...,a,} for arbitrary a; € A (operations with this property are
called quasi-projections), and

2) if f(a1,...,an) = a4, and (a1,...,an), (b1,...,by) are of the same pattern, then
f(b1,...,b,) =10;.

If a pattern function is not a projection then it is at least ternary. The set of all
pattern functions is infinite on any set consisting of at least two elements.

Theorem: If m > 3 and f is a pattern function on m then (m; f) is functionally
complete.

Proof: Given an arbitrary operation g : A™ — A, we can obtain a new operation
g : A"t — A by identifying two arbitrary variables of g (say, the first two variables):

g/(al,az, cee 7an—1) = g(a'l,a'la cee >a"n,—1)

for any (ai,...,an-1) € A" 1. Now

g’ is a pattern function whenever g is a pattern function, and

g’ is a term function of (4;9): ¢' = g(z1,21,2Z2,...,Zn-1), Where z1,...,2,_1 are
the first etc. (n — 1)-ary projections.

Note that if ¢’ is a polynomial of (4,g) and (4;¢’) is f. c¢. then (4;g) is f. c., too.
Hence the proof will be concluded if we find a set S of operations on m such that

1) for any pattern function f on m there exists a fg € S which can be obtained from
f by successive identifications of two variables, and

2) if h € S then (m;h) is functionally complete.

We claim that we can choose the union of the set of all non-trivial ternary pattern
functions and the set of all non-trivial near-projections on m for S. First we show that
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this 5’ satisfies 2). We have proved that, for non-trivial near-projections h, (m;h)isf. c.;
thus, it remains to show that (m;p) is f. c. for every non-trivial ternary pattern function
.

Here is the list of the 24 non-trivial ternary pattern functions p; (i=1,...,24) (on
any m with m > 3:

Pi P2 P3 P4 Ps D DPr P8 P9 Pio Pil P12
pilz,z,y) = =z z = =z z x T = T = T 1
pifzy,z) = = z = z =z T Yy y y y y oy
pi(zy,y) = ¢ =z = y y y z z =z y y vy
pi(y,2) = =z y 2z =z y z =z y z =x Yy 2
and
P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 D23 P
pilmz,y) = v Yy v v ¥y oy ¥y Yy y y y oy
pi(z,y,z) = =z = T T =T T Yy Yy y y y vy
pifzyy) = = =z = Yy y y =z =z x Yy y oy
pi(z,9,2) = = vy z T y 2z = y =z x y z
Observe:

p1 =1, P11 = T2, P1g = Z3 are the ternary projections;
P13 = t is the ternary discriminator, and pr,ps, p1s, P23, p2s can be obtained from ¢ by
permutations of variables (we say that they are permutable from t), and hence they are
term functions of (m;¢);
ps = d is the dual discriminator, and py, ps are permutable from d;
p3 =13, pra =13, po =1, pir =13, p1o = 12, p1g = I8 are the non-trivial ternary
near-projections; they are permutable from each other;
8 = P19, P20, P21 are minority functions permutable from each other;
€ = P22, P9, P14 are permutable from each other.

We have proved the functional completeness of (1mm;p;) for i = 3, 6, 13 whence the same
follows for ¢ = 12,2,17,10,16,4,5,7,8, 15,23, 24. Finally,

s(z,s(x,y,2),2) = Z%(x, Y, 2),
e(z, e(z,y, 2),2) = lg’(x, Y, 2),

hence (m;p;) are f. c. for 4 = 19,22, and, by the same reason as above, also for i =
20,21,9,14. Thus, our S satisfies 2).

As for 1), consider a pattern function f with at least four variables. There are two
possibilities:

a) By appropriate successive identifications of variables we get a sequence of operations

f = fo, f1,---, fx such that
al) every f; is non-trivial,



a2) each f; (i > 0) arises freom f;_; by identifying two variables,
a3) fr is a ternary non-trivial pattern function.
b) By arbitrary successive identifications of variables of f we reach an operation g
which is at least quaternary, and the identification of any two of its variables gives a
projection.

In the case a), (m; fx) is f. c. (as it was proved), hence (m; f) is f. c., too. For the
case b), we are going to prove that g is always a near-projection; hence (m;g) is f. c.,
implying that (m; f) is f. c., which concludes the proof.

Swierczkowski Lemma: If g is an at least quaternary operation which turns into a
projection under any identification of two variables then g turns always into the same
projection (i. e., there exists an ¢ such that g turns always into the ith projection).

We prove this for quaternary g, without loss of generality. Suppose that the Lemma,
is false. Then, up to a permutation of variables, we have one of the following four cases,
each of which leads to a contradiction (instead of g(a, b, ¢, d), we always write abcd here):

(1) TTUV = U = TTIV =T

TYTV =V = TTTV =V

(2) TTUV = U = TTVV = U => TYVV =V

xyxvzy@mymx:yﬁxyvv=y

(3) TTUV =T == TTVV =T

YV =V = TTVV =V

(4) TTUV = U = TTUT = U = TYUT = U

TYVV = Y = TYTT = Y =—> TYUL = .

By this Lemma, pattern functions fulfilling its assumptions are near-projections which was
needed.

Since now on, we shall use the notion of a clone. Given a set A, any set C of (finitary)
operations on A (i. e., mappings of form A™ — A, where n is not fixed) is called a clone
if C contains all the projections and it is closed under composition of operations (i. e.,
together with any operations f,g1,...,9n € C, f n-ary, g; k-ary, C contains also the
k-ary operation f(g1,...,9n), defined by

(f(gly v 7gn))<a’1) e aa'k) = f(gl(afla e )a'k), v )gn(afla e 7a'k))
for ai,...,ar € A — we apply f pointwise here).
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The trivial clones are the set O4 of all operations on A, and the set P4 of all pro-
jections of A. Clearly, all clones on a given set A form a (complete) lattice with zero and
unit elements P4 and @4, respectively. For any algebra A, the term functions of A form
a clone Clo A, in virtue of the definition of term functions. Similarly, all polynomials of
A form a clone, too. (Notation: Pol A.) An algebra A is primal iff Clo A = Oy;itis
functionally complete iff Pol A = Oa.

We say that a clone C is generated by a set F' of operations (in sign: C = [F]) if C is
the intersection of all clones containing F', or, equivalently, if every f € C can be obtained
from operations in F and projections by finitely many compositions Thus, (A4; F') is primal
means [F] = O4, and, similarly, (4; F') is f. c. iff [F U A] = O4, where on the left side A
stands for the set of all constant selfmaps of A.

Recall that there exists a Sheffer operation on any finite set A. The Zorn Lemma
implies that every clone C(# O4) on A can be extended to some maximal proper subclone
of @4 (shortly: to some mazimal clone on A). Furthermore, [F] = O4 if and only if for
each maximal clone M on A there exists an f € F with f # M. Hence it can be suspected
that the knowledge of maximal clones is a strong tool to decide primality and functional
completeness of algebras.

Next we reproduce Post’s result giving a full list of maximal clones on 2 (= {0,1}).
Elements of O are called Boolean functions. A Boolean function f is 0-preserving if
7(0,...,0) = 0 (L-preserving Boolean functions are defined analogously); it is mono-
tonic if f(ay,...,an) < f(by,...,by) whenever ay < b1,...,an < by it is self-dual if
flai,...,an) # f(bi,...,bn) Whenever a; # bi,...,an # bp; it is linear if there are
Ci,...,Cn,cC € 2 such that f(a1,...,a,) = c1a1 +...+cnanp +c for any a; € 2 with mod 2
addition and multiplication. It is easy to check that these properties of Boolean functions
define clones: all monotonic Boolean functions form a clone, etc.

Theorem of Post: The above five clones of Boolean functions and only they are max-
imal clones on 2.

Proof: Addition and multiplication are 0-preserving. If f is not O-preserving then
7(0,...,0) = 1; suppose f1,...,1) = 1, then we have that f(z,...,z) is the constant
1 function. As 0 preserves 0, we get that the O-preserving operations together with an
arbitrary operation which is not O-preserving generate a clone C on 2 containing +,-,0,1,
and — as (2;+,-) is a finite field and hence functionally complete — C = Oz. Now suppose
f(1,...,1) = 0; then f(z,...,z) = xo(z), and we can apply the Werner-Wille Theorem.
In both cases, the clone of all 0-preserving Boolean functions turns out to be maximal. By
symmetry, the 1-preserving functions form a maximal clone, too.

The functions max, min, 0,1 are monotonic. Assume f is not. Then there exist a; <
b,...,an < by with f(ai,...,an) =1, f(b1,...,bp) =0. W. 1L o. g., suppose a1 = ... =
a; = 0, b1 = ... = bi = ]., Ai41 = b7;+1,...,an = bn Then f(x,...,a:,ai+1,...,an) =
xo(z), and the Werner-~Wille Theorem applies.

The pattern function d as well as z + 1 (= xo(z)) are self-dual. Assume f is not. W.
1. o. g., suppose f(0,...,0,1,...,1) = f(1,...,1,0,...,0) = 1. Then f(z,...,z,2+ 1,
...,z +1) =1, and xo(1) = 0; i. e., we have both constants. Now, d(z,y, 0) =x-y and
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dx+1,y+1,0)+1=z+y, i. e., we also have the field operations. Thus, the clone of all
self-dual Boolean functions is maximal.

Addition and constants are linear. Assume f is not. By the functional completeness
of (2;+,:), we have f(z1,...,2Zn) = TiZTj... +..; w. L. o. g, suppose f(z1,...,Tn) =
z1Zs...zi+... . Now, f(z1,22,1,...,1,0,...,0) (withn—i 0’s) is in the clone generated
by the linear functions and f; it is of form g(z1,z2) = 122 + azy + bxe + ¢ (a,b,c € 2).
We have the following eight possibilities:

L @ B @ 6 6 (1) 8
a = 0 0 0 0 1 1 1 1
b = 0 0 1 1 0 0 1 1
c=0 1 0 1 0 1 0 1

Making use of = + 1 (which is also linear), in each case we obtain the z1zg, i. e., the
multiplication:

(1) q(z1,x2) (2) g(z1,22) +1

(3) Q(CC]_ +1, 1132) (4) Q(SE]_ +1, CL‘z) +1
(5) g(z1,22 +1) (6) gz, za+1)+1
(7) g(z1+1,z0+1)+1 ®) gl +1,zp+1)

Thus, again we have the field operations and we are done.

Now we prove that there are no further maximal clones on 2. Suppose there exists one,
say M. Then there is a function f € M, which is not 0-preserving, hence f (,...,xz)=1
or f(z,...,z) = z+ 1. Similarly, there is a g € M, which is not 1-preserving, and thus
g(z,...,z) = 0 or g(z,...,z) = x + 1. We see that either M contains both constants
or it contains x + 1. We have shown that from any non-monotonic function and the two
constants = + 1 (xo(z)) can be composed; as M contains a non-monotonic function, it
follows z + 1 € M. Moreover, M contains a non-self-dual function, from which, as above,
using = + 1 we get the constant 1, then 0. Now, if p € M is not linear, we can follow the
proof of the maximality of the clone of all linear functions in order to obtain a function of
form

z1Z2 + axy + bxe + ¢ (a,b,c € 2)

as well as to establish that multiplication belongs to M. We get max(z,y) as
(z+1)(y+1)+1 (this is one of the De Morgan formulas), and the Werner-Wille Theorem
applies: M = O, a contradiction.

From this theorem, a functional completeness criterion for two-element algebras fol-
lows: (2;F) is functionally complete iff F' contains both non-monotonic and non-linear
operations (they, of course, can happen to coincide). Indeed, no constant preserves (the)
other constant, and the constants are not self-dual. Thus, if the assumption holds for
F, then no maximal clone on 2 contains F U {0,1}, hence [F U {0,1}] = Oz, i. e.
(2, F)isf. c.

A bit later on, we shall show that almost all two-element algebras are functionally
complete in that sense that the proportion of the monotonic as well as the linear Boolean
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functions tends to 0 when the number of variables grows. Hence it is not surprising if for
some Boolean functions f occurring somewhere in mathematics the algebra (2; f) turns
out to be f. c., as this is the case, e. g., for the underlying Boolean function of the popular
computer game ”Life”, invented by J. H. Conway. Life is played (usually by a PC) on an
infinite squared board. At any time ¢ (an integer) the state of each square can beOorl
(dead or alive). If the states of the squares in a solid 3 x 3 block at time ¢ are

Sg S1 82
s7 So 83
S Sy 54

(s; € 2), then the state s of the middle square af time t + 1 is defined by

1, ifso=1and2<35 ;8 <3,
§=141, ifsp=0and Y ;8 =3,
0 otherwise.

The state of the middle square at £+ 1 is a Boolean function f = f(zo,z1,...,xs) with the
states of all squares of the 3 x 3 block at t as variables; in such a way, we have an algebra
(2; f) which can be considered as a description of Life. This algebra is f. c.; indeed, f is
neither monotonic, nor linear: ,

£(0,1,1,1,0,...,0) =1 > 0= £(0,1,1,1,1,0,...,0);

and if f(zo,z1,...,%8) = GoTo+a1T1+. .. +agrg+a (a;,a € 2), then ag = f(1,0,...,0) =
0, and similarly a3 = ... = ag = 0, implying also a = f(0,...,0) = 0, whence f =0, a
contradiction. :

An n-ary Boolean function is given by a table consisting of 2" rows and n+1 columus,

where the rows are all possible different n-tuples over 2 in lexicographic order, with the
value of the considered function on the actual n-tuple at the end of each row:

0...000 a1
0...001 a2
0...010 as
1...101 agn _9
1...110 aon —1
1...111  a2n

Let us denote by Brn, In, On, Mp, Sp, and Ln the number of all n-ary Boolean, 1-
preserving, O-preserving, monotonic, self-dual, and linear (Boolean) functions, respec-
tively. Apparently, B, = 92" Further, I, = Op = Bp/2, as, e. g. the functions in
I,, are characterized by agn = 1. Hence the number of n-ary non-1-preserving and non-0-
preserving functions is By /4. In order to define an n-ary self-dual function, we can choose
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ai,...,aon-1 arbitrarily, and then the values in the lower half of the table are determined
by the self-duality. Hence S, = 22"~ = /B,. Linear functions a1z + ... + anz, + a
are determined by the n + 1 co-efficients, whence L, = 2"*!, Finally, no usable formula
is known for M, (its determining is called ”Dedekind’s Problem”; M, is also the number
of elements of the free distributive lattice of rank n). However, Kleitman proved that

M,, asymptotically equals 9(in721) where [z] means the integer part of z. We see that
Sn/Bn, Ln/Bn, Mp/B, — 0 if n— oo.

Denote by P, the number of the n-ary Sheffer functions on 2 (i. e., P, = |{f € B, |
(2; f) is primal }|). Post’s Theorem shows that f is Sheffer iff none of the five maximal
clones on 2 does contain f. The previous considerations imply that P,/B, — 1/4 if
n — oo, i. e., for sufficiently large n, about a quarter of all n-ary Boolean functions
are Sheffer; they also show that almost all two-element algebras are f. c., a fact we have
mentioned earlier.

Post’s Theorem was generalized for arbitrary finite sets by I. G. Rosenberg in 1965.
For a three-element set (say, 3), the maximal clones were determined by Yablonski in the
fifties. Their number is 18; here we give a list of them (in parentheses we indicate the
number of maximal clones of the actual type), and also we relate them with the maximal
clones of Post:

Operations preserving a constant. Operations preserving a non-trivial
(2) subset. (6)

Self-dual operations (i. e., those Operations preserving the cycle
preserving the cycle (01). (1) (012) (or (021) ). (1)

Monotonic operations (i. e., those Operations preserving a linear or-
preserving the relation 0 < 1. (1) dering of 3 (or its inverse). (3)

Linear operations (of GF'(2) ). (1) Linear operations (of GF(3) ). (1)

Note that the clone of linear operations of GF'(3) does not depend upon the choice of the
zero and unity in 8 because the permutations of 3 are linear (under any choice of the zero
and unity).

There are further maximal clones on 3 which do not correspond to maximal clones of
Post, namely:

Operations preserving a non-trivial partition of 3. (3)

Operations preserving a non-trivial tolerance p on 3 with non-empty center ( a tol-
erance on M is a reflexive and symmetric relation; the center of p is the set {c € M|
(Vz € M) cpz }. (3)

Operations which are non-essential (their clone is called the Stupecki clone). (1)

Analogously to the case of two-element algebras, a functional completeness criterion
can be derived from Yablonski’s result for three-element algebras: (3;F) is f. c. iff, for
each maximal clone listed above except the subset-preserving and the cycle-preserving ones,
there is an f € F which is not contained in that maximal clone. (Reason: no maximal
clone of subset- or cycle-preserving operations does contain all the constants.)
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Remark that this functional completeness result can be expressed in more common
algebraic terms, namely: a three-element algebra is f. c. iff
it cannot be ordered, and
it is simple, and
it is tolerance-free, and
it has a non-linear operation, and
it has an essential operation.

Finally, we list all maximal clones on a finite (say, n-element) set; this is Rosenberg’s
mentioned result. They belong to six classes; two of them is empty when n = 2, and each
of them is non-empty for n > 2.

1. Operations preserving a given bounded partial order on n (bounded means that
there exist a least upper bound and a greatest lower bound of n).

IL.Operations of form f(z1, ..., %n) = €1(z1)+. . A+en(zn)+c, where + is an elementary
p-group operation on n (and thus case III occurs only if n = p* for some prime p), c € n,
and ¢ (i =1,...,n) are endomorphisms of (n;+). ‘

III. Operations preserving a given permutation of n which is of prime order and has
no invariant element.

IV.Operations preserving a given non-trivial partition of n.

V. Operations preserving a given k-ary central, reflexive, and symmetric relation on n
(k=1,2,...). Arelation p is reflexive if (a1,...,ar) € p whenever at least two of ay, ..., ax '
coincide; p is symmetric if (ai,...,ax) € p implies (a1ry...,ax) € p for any permutation
i+ i of {1,...,k}; pis central if it has a non-trivial center, and ¢ € n belongs to the
center of p if (a1,...,ax) € p Whenever ¢ OCCUrs among ai, .- ., ak-

These relations are exactly the non-trivial subsets if & = 1, and they are the non-trivial
central tolerances if k = 2. ‘

V1. Operations preserving a given k-regular relation on n (3 <k < n). Arelation pis
k-regular if there are partitions 71,..., 7 (t > 1) of n, such that each 7; consists of k (non-
empty) classes, and 71(a)N...N m4(az) # 0 for arbitrary ai,...,a; € n, which determine
p in the following way: for b1,...,bx € 1, (by,...,bk) € p iff, for each i € {1,...,t},
there exists at least one class of m; which contains at least two elements from b1,..., b..
Notice that for k =n, t =1, this clone is just the Stupecki clone.

This full list of maximal clones of operations on finite sets provides an efficient tool
to decide the primality of a finite algebra:

Rosenberg’s Theorem: A finite algebra (A; F) is primal iff none of the six classes of
operations I — VI does contain F.

We mention a quite surprising corollary of this theorem (due to Rousseau), which
asserts that for a finite algebra with one operation the classes III, IV, and the unary part
of V do the whole job instead of I — VI (we formulate it in a slightly weakened form):

A finite algebra (4; f) is primal iff it has '
no proper subalgebras,
only trivial congruences, and
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only trivial automorphisms.
(Warning: functional completeness cannot be handled by this result!)

We conclude this introduction to functional completeness by showing how to apply
Rosenberg’s Theorem to determine the functionally complete groups (a problem where,
e. g., the Stupecki Criterion seems to be useless).

Maurer-Rhodes Theorem: A finite group is functionally complete iff it is not Abelian
and it is simple.

Proof: We check that no maximal clone does contain the operations of a non-Abelian
simple group and the constants.

I. A finite group cannot be partially ordered.

II. A non-Abelian group of order p* has a non-trivial center and hence it cannot be
simple.

I1I. Constants do not preserve permutations.

IV. Simplicity means that no non-trivial partition is preserved by multiplication.

V. (k=1). Constants do not preserve subsets.

(k> 1). If ¢ is in the center of p then for arbitrary p,q,7s,...,7x €n

(pya,r—3,...,1%) = (c,qc“l,l,...,l) . (c*lp,c,rg,...,rk) € p.
Thus, p is trivial.
VI. A k-regular p is obviously reflexive, hence always

(p7Q)7'_3:'--77ﬂk) - (1917T3q—1717"‘71) ) (pa%%r‘la---a?"k) € p.
Thus, p is trivial, completing the proof.

Ezercise: Prove the corresponding theorem for rings: a finite ring is functionally
complete iff it is not a zero ring and it is simple. (This was proved by several people,
e. g., Kuznecov and Werner, independently.)
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