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Varieties whose algebras satisfy several conditions on congruences
and/or subalgebras were studied by many authors. E. g., such conditions
are: two congruences coincide provided they have a congruence class in
common [3]; every two subalgebras have an element in common. ([5],
Theorem 5.6.); every subalgebra is a class of some congruence [4]. In what
follows we shall consider the simplest such conditions and we charac-
terize the varieties whose algebras fulfil them. Among others, we obtain
some new Mal’cev-type theorems. o ‘

The basic terminology we use is that of [1]. Note, however, that we
shall write “term” instead of “polynomial symbol”. Furthermore, we
say that a term f is essentially n-ary (n=0) on the variety @, if the poly-
nomial f on the countably generated free (U-algebra depends on (exactly)
n variables. “Operation” means basic operation, and “trivial operation” -
(or “trivial term”) means projection. “Translation” is the same as “unary
algebraic function”. The set of all translations of the algebra % will be
denoted by T(¥), and P,(A) designates the set of all (formally) n-ary
polynomials of 9. . ‘ -

Consider a non-empty set M. We say that a subset S and an equi-
valence 4 of M are connected if S is a class of #. Let M be equipped with
an algebraic structure; then thé subsets and equivalences compatible
with this structure (i.e., the subalgebras and congruences) will be referred
to shortly as compatible subsets and equivalences. Observe that the above
conditions are, in fact, requiréements on' connectedness, compatibility
and equality of subsets and equivalences of the considered algebras
(e. g., the first of them can be formulated as “if a subset is connected
with two equivalences, which are compatible, then they are equal”.
It is not hard to construct a two-sorted first order logic with equality
suitable to express all such requirements.) Now we introduce a series
of very simple conditions (including also the above examples) based on
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the notions just introduced. For this purpose¢, let us agree in the follo-
wing notations: : o

1. « denotes anyone of the words “subset” and “equivalence”. If «
means “subset” in a given context, then a means “equivalence” and
vice versa. - ' :

2. Q denotes anyone of the expressions “at most one”, “at least one”
and “every”. . - ‘ ' :

. :The conditions.we shall treat of are of the following form:
() For any (compatible) «, Q o connected with it is compatible.

Performing all the meaningful substitutions for « and @, we get six -

~ distinct conditions if the word “compatible” in parentheses is negiected,
and six further ones if it is considered effective. We shall describe those
varieties whose members satisfy one particular (but arbitrary) condition.

" Denote the conditions of form () by (1)—(12) according to the follow-

ing table: . :
‘ Q ‘ at most at least © - | .
3 : k one one every
subéet - ‘ 1) 3) (5)
equivalence l 2 4 ®)
' The condition (i+6) for i = 1, ..., 6 arises from (7) by the requirement

- that « is compatible.

THEOREM 1. All algebras of the variety @O satisfy (1) iff there exists
a natural number n such that for some 5-ary, resp. ternary terms Py, < - -, Py

“and q ..., 4, :
' ql(X7XJY): =qn.(X7X7Y):y

. x=p;(6(x,2),2XY,2)
P (%6 (XY, 2, X, Y,2) = Pisy (q+.(%,¥,2),2,%,Y,2). ~ (=1,:.
Pn (Z: qr (X, Y, Z), X,V, z) =y

n—1)

hold identically in Q.

ProOF. As (1) means regularity [3] it is enough to notice that the
identities in the theorem are equivalent to the corresponding ones in [3],
and can be obtained by usimg Fichtner’s symmetrization technique [2],
which will be illustrated in the course of the proof of Theorem 6.

THEOREM 2. All algebras of the variety O satisfy (2) iff there exists an
at most unary term h which is essentially nullary in @. .
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PéOOF. 2) means that no disjoint subsets can be subalgebras simul-

taneously, i.e., every two subalgebras (of any algebra in @) have an
element in common. Hence, as Taylor proved ([5], Therorem 5.6), the
existence of the required h follows. The converse is obvious.

_ Note that (1) and (2) (in other words, regularity and Taylor’s con- .
“dition on subalgebras) are “dual” in the sense that they can be obtained

from each other by replacing “subset” and “equivalence” by each other.

THEOREM 3. For any variety @, the following four conditions are equi-
valent: - :

1. All algebras of U satisfy (3).
1. All algebras of © satisfy (5).
111. All aigebras of O satisfy (11).
IV. Each non-trivial operation in (0 is.nillary.

PROOF. Observe that IV —1I1-111 and IV —1 are trivial. Heﬁce we |

have to prove I -1V and 1111V only. .

' I-~1V. Let f be an n-ary (n=1) term which depends essentially on
its first variable in @. Denote by &, the @-free algebra freely generated
by Xg, Xi,. .., Xn. Then f(Xg, Xoy. .-y Xn) # (X Xao o5 Xn). Further, (3)

. implies that any subset of 5, is a class of some congruence on %, whence
P y : g

so does also the subset {x,, X, [(Xg) Xg- - -5 Xn)}. NOW we have f(X;, Xp,. . -,
Xn) = X, or x;. The first case implies that f depends on none of its variables,
a contradiction. Hence f(x, . . ., Xn) = Xy, i.e., f is trivial. Thus if an opera-

tion in (0 is nontrivial, it must be nullary. :

I111-1V. (11) means that in any algebra of @@ an equivalence having
a subalgebra among its classes is a congruence. Let %, be freely generated
in @ by {X,, X;, %,y and denote the subalgebra [x,, x;] by €. If (@ has an
essentially at least binary term f, then f(x,, X,)¢®. Define an equivalence
% on ¥, as follows: for u, vEF, let u=w@) if u=v or u, veéC. Then

{(11) implies that # is a congruence and from x,=x;(§) we have f(x;, X,) =

is essentially at most unary, a contradiction.

Suppose (@ has no essentially nullary operations. Then [x,] and
[x;, x,] are disjoint. As the equivalences having [x,] as a class are cong-
ruences by. (11), any equivalence on [x;, X,] is a congruence. For u,
velx, X] let u=v(y) if u=1x, v=1x or u=v. Now ¢ is a congruence
on [x, x;], and if f is an essentially unary operation there we have
fOo)=1(x) (w) and thus f(x;) = f(x,) holds. This means that f is essén-

=1(x;, %) (9). As (X, X)¢E, even f(x,, %) = f(x;, X) holds, whence f

_tially nullary, a contradiction showing that @@ has no non-trivial opera-

tions in this case. ,

- Now assume that @ has essentially nullary operations. Denote by
D the subalgebra of §, generated by their values. If @ has an essentially
unary (non-trivial) operation g, then x, #g(x,). 1f, moreover, g(g(x,)) =
= X,, 8(x,), then the equivalence on g, whose classes are D, {x,, g(x,)} and

‘the rest, is not a congruence there, which contradicts (11). If, finally,
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2(8(xp)) = X, or g(g(x,)) = g(x;), then the equivalence with classes D,
{%o, g(%,), .} and the rest furnishes’ a contradiction. Thus, IV is proved.-

THEOREM 4. All algebras of the variety O satisfy (4) iff @ has at most -
one at most nullary term (i. e., (0 is equivalent to the variety of sez‘s or pointed
sets).

ProOF. Consider the free (0- -algebra ¥ with the free generating set X =
3 Suppose that there exists a term f which depends essentially
on n(>1) variables in (0. Then f(x,,. . x2n DEX and f(xn, ..., X, 1)§
¢ [Xg» - - - X,_,]- Denote the set {x,, .. Xp—15 [(Xns « oy Xon_1)} by D. We
“have x,, .. ,x,n_le F\D and f(xs, - - >in 1) € F\D, whence -F\D is not
a subalgebra in. 5. As (4) means that among: the classes of any equiva-
lence there is a subalgebra, we may assert that™D is a subalgebra ing.
Hence either f(x,, ..., x,24) = x; O=i=n—1)%0t f(xp, ..., X,_q) =
= f(Xn,...; X3,_1)- Both possrbllltres contradict, however, to the assump-
tlon on the essential arity of f.
Let &, be the free (U-algebra with free generators x and y. 1% =
= {x, ¥}, then @ is equivalent to the variety of sets. In the remaining
case there exists an at most unary polynomial f of f,. with f(¥) # y. The
set {x, f(¥)} is a subalgebra in %,; indeed, its complement is not closed
‘under f, and we can apply (4). Hence the unique at most unary term in
@ is 1, and it identically fulfils f(x) = f(y). This means that @ is equiva-
lent to the variety of pointed sets.
On the other hand, sets and pointed sets satlsfy (4) obviously.

THEOREM 5. All algetras of the variety @ satisfy (6) iff @ is eqazvaient
to the variety of sets..

Proor. (6) means exactly that in any algebra of @ all subsets are®
subalgebras. Especrally, the free generatrng set of a countably generated

free (0-algebra is a subalgebra there, whence if follows that @ has no

non-trivial terms, i.e., it is equivalent to the.variety of sets.

THEOREM 6. All algebras of the varzety @ satzsfy(/) sz Jor some™fa-
[tural number n there exist terms Py, ..., Pn; Qys- - -, Qn; Ty,- - -,
nary and unary, respectively) for which the identities

®) XY = =g, X,y) =

(8o) : X =p; (4 (x ¥,2), 1, (2),%,y, ) :

By p(E@, 9%y, 2),%,y,2) = p,+1(q,+1<x y,zx ,+1(Z),x,y,Z)
. (i=1,...,n=1) P

(B5) Pn (. (2), 45 x y, 2) x, ¥ Z) =

hold in .

PRroOF. (7) means that.two congruences coincide provided’ they have
a congruence-class in common, which is a subalgebra. Especially, if an
' algebra U has the property (7) and ¢ is an idempotent element (i.e., an

N,

. (5- ary, fer- o

‘xo._x,xl,..
~ thdt fori =1,
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one-element subalgebra) in ¥, then ¢ is a class for the equality relation
only. Hence using an argument due to Mabcev [6], we get that if a, be¥
are such that for any translation = of %, the equallty 1(a) =cis equr-
valent to = (b) = ¢, then a = b.

Now let the algebras of (@ fulfil (7) and consider the free -algebra

- &, with free generators x, y, z. Call a congruence 4 on , good, if all ele-

ments of [z] are congruent under ¢, and whenever anyone of x and y is
translated into 2z by some translation = of &,, the other one is translated
by 7 into an element congruent with z under 4. The intersection of good
congruences is also good; hence the intersection of all good congruences
of %5 is good, too; denote it by y. The class Z of y containing 2z is a sub-
algebra in §,. Thus z is an idempotent element of ,/p. By the definition
of good congruences, the elements X and y of F,/y (containing x and.y, -
respectively) are such that for any. translation 7 of. {s/p, the equality
7(x) =2 is equivalent to 7(y) =2z Hence we get x =79, i.e., X=y{y).
Let o* be the congruence on ¥, generated by the relation

‘ | o = {(z [@)IfER G} U
U@ T @PITeT @) A7) = U (@ TONIreT @) A= () = 2.

This definition guarantees that ¢* is good and any, congruence of %q pro-
perly included in o* is not good Thus,_\ v 1/), whence x = y(c*). Con-
sequently, o has a finite subset * SRR

o ={@ f1(2)> - (@ fk (Z)> @7 () - "<Z 7, (N
@ e (V). (Z’ cm(y)>}(f, €P; Bt 06T (F2)

such that x=y (¢F) also holds, where al is the congruence generated by
oy in Fy.

Lett, (i=1,.,.,10).and I; (] =1, m) be such terms that for any
UEFs, 71 (u) =1 (u X, 95 2) and 0 (rz) =r;(u, x, y,2).- Furthermore, let
0 (% ¥, 2) = (%,X, ¥, 2) (t=1,...,0) and
(j=1,...,m). Now for the §’s ]ust 'defined Gx,y,2) =12 holds. Indeed,
for 1=i=l we have z=r7,(y)=1(y,x y,2). Then the identity z =
= t,(y, X,y, z) is satisfied in @, whence d; (x y,z) =t (X, X, X,2) =17 A

similar argument is valid for §uqp, - .., 4+

- Return to the formula x=1y (of). It 1mp ies the ex1stence of elements.
) Xp—1y Xn = VED, and translations y, . ,yneT(%z) such _

.., n the pair {x;_;,x;) drises-from a parr in oy (where the
ofder of components is now irrelevant) by the translation y;. For any
WEF,, let v, (w) g; (W, x,y,2), where g, is a suitable quaternary term.
Now, for i = 1 .., n, the texms p,, q,, £ will be defrned as follows:

If xi—l - 7)[ (Z, X =% (fj (Z)) then ‘
P. (yu.x V,X,¥,2) = €] (g,- (u, X, Y-> Z), ) qz (X, y’ Z) =1, f (z) = f (Z)

q/"j(x7 y,2) =1 ¥, X, y;2)
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If xl 1= ’yz (fj(’z)) x =7 (Z) then’
mm%xmﬂ—%@&wxm@)mKYJ%J,H@—fm

I X2 = 7)) x—%m@y@)mm
P (W, v, %, y,2) = et (i, g, (V,X,¥,2), 4XV¥2)=4§(X yyZ) f; (Z) =z

If %2y = :(3; 069 2), % = ,,(7), then
pz(u v, X, YJZ) - el(gl(u,x,y,z) V) qz(x Y;Z> - QJ(X y,Z), f (Z) - Z

© The validity of the identities ([3) (8,)— (Bn) may be checked im-
medlatey Thus the necessity of the above (Mal’cev type) condition is
proved..

To prove t‘le sufflclency, f1rst notice that (8,)— (6r) 1mply the vali
dity of the identical implication :

@ h@=...=L@=0&y=...=¢Xy)=2=>xX=y
in @. Now suppose.that for suitable terms f, and g; () and (§) hold
identically in 0. Let Ae@ and assume that 9 has a subal gebra € which
is a class of two different congruences ¢;, @, on 2A. We can also suppose

@, <@, The class C is an idempotent element in U/p,. Furthermore, ther
exist elements a, b€, such that a=b(p,) but a=b(p,). Thus the classes

4, b (containing a, resp. b) of the congruence g, are distinct; and the con-

gruence generated by the pair (g, b> on Ufp, is less than the congruence |

. induced by g, there. Hence the singleton {C} is a class of g,. Therefore any
translation of /yp,, translating one of the elements a, b into C transiates
the other one into C too.

Let us consider the translations #(i =1, ..., n) of %I/«pl, defined by
7, (W) = g; (@ w, C) (we/p,). Invirtue of (§), we have 7;{(@) = ¢;(@,a,C) =
= C, whence also ¢;(@,b,C) = 7;(b) = C. By the idempotency of C we

infer f,(C) = = fn(C) = C. Applying ("), we get a = b, which con-
tradicts the definition of @ and b. Hence all algebras of @ satlsfy (7).

THEOREM 7. All algebras of the varzety @ satisfy (8) iff for some natural
. ‘number n there exist terms py,. .., P Iy, . - -, Tn (6-ary, ard unary, respeczfz-
vely), for which the identities
X=P (fl (X), fl (y)’ XY X, Y) ‘
|\ (X’ y. & (X), f; (Y)r X, Y) = Pi+1 (fi+1 (X), fii1 ¥) X, ¥ %, y)
i=1,...,n-1)

P (X, Y, 5, (%), 5, (¥), %, Y) =¥ . ﬁ.

hold in @. SR M
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Proor. It is analogous to that of the preceding theorem, and there-
fore will be sketched only. (8) means that no distinct subalgebras may be
classes of the same congruence. If this condition is fulfilied by the algebra
%, €, freely generated by {x, ¥}, then the minimal congruence ¢ on g,
under Wthh any two elements of [x] as well as any two elements of [y]
are congruent, fulfils x=y(#), too. Hence there exists a finite set of unary .
terms § such that the set 9, of ali pairs of form (x, f (x)), (J,(x), x), {¥s )

and {f (y),y) generate a congruence #¥ for which x=y (#7). The further
steps-are left to the reader.

. THEOREM 8. All algebras of the varwty @ satisfy (9) szfor any n-ary
(n=1) term 1 there exists a ternary term by such that the identity :

(%5, - Xn) = B (%o, Xp, T (X0, Ky - - LX)
holds in @. '

As (9) is just the Hamiltonian property, Theorem 8 coincides with
Theorem 1 in KLukoviTs’ article [4].

THEOREM 9. All algebras of the variety (D satisfy (10) iff there exists

‘an at most unary term § such that for any n-ary (n=0) term g the identity

N g, ..., t®) =1®
holds in . '

Proor. (10) means ‘thaL among the classes of any congruence there
is at least one subalgebra. This is the case also for the free (U-algebra %,
freely generated by x, and for the equality relation. Thus there exists a -
one-element subalgebra in %, the unique element of which can be written
in the form.f(x). Obviously, we have g (f(x), . .., f (x)) = f (x) for any n-
ary g in ,, whence the identity in Theorem 9 holds in @.

On the other hand, if the term § with the above property exists in
@, then in an arbltrary algebra ¥ of @ any congruence admits classes
Wh1ch are subalgebras; any class containing :an element of form f(a)
(a€¥) will be such a subalgebra

THEOREM 10. All algebras of the variety @ satzsfy (12) iff for any
n-ary (nzO) term g the identity .

g, .. X)=X
holds in 0.

ProoF. It is enough to remark that both (12) and the considered
id entities characterize just the idempotent algebras.




