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ON CONSERVATIVE MINIMAL OPERATIONS
B. CSAKANY

1. INTRODUCTION

In this paper we use the terminology and notations
of [6] together with the common universal algebraic
language [3]. Thus, an operation f is minimal if the
clone [f] generated by f is minimal, and f is of minimal
arity among the nontrivial operations in [f]. After
QUACKENBUSH [5], we call an operation g on a set 4 con-
servative if every subset of 4 is closed under g.

‘ In [6] Rosenberg provided a classification of
minimal operation on finite sets. Namely, such an
operations is always of one of the following five types:

1) unary;

2) binary idempotent;

'3) ternary majority;

4) semiprojection;

5) x+y+z in a boolean group.

No nontrivial operations of type 1) or 5) are conservative
on at least three element sets. Hence for the study of

conservative minimal operations we have to consider the

~cases 2), 3), and 4) only. Here we settle the cases 2\

and 3), i.e. we determine all conservative minimal binary

This paper is in final form and no version of it will be submitted
for publication elsewhere.
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operations and all conservative minimal ternary majority
operations on finite sets.

‘ This research was supported by NSERC Canada grant
A-5407. The author is grateful to I.G. Rosenberg for
fruitful discussions.

2. PREPARATORY REMARKS

The operations we consider are defined on a finite
set n = {0,1,...,n=1} (n > 1). The sign ?,(n) stands for
the set of all k-element subsets of n. For ternary major-
ity operations (shortly: majority bperations) on 3 we
use the notation of [1]; i.e. mz denotes the majority
operatlon f with 35 +F(0,1, 2)+3 +f(0,2, 1)+3 «f(1,0,2)+
+3 *£(1,2,0)+3.£(2,0,1)+f(2,1,0) = <. The range of a
majority operation f is {f(Z,5,k): 2 # 5 # k # <}.

Attributes of an operation f on n will be extended
to the algebra <u;f>; thus, this algebra will be termed
minimal, essentially k-ary, etc. if f is minimal,
essentially k-ary, etc. We shall formulate our results in
‘terms of algebras.

Let 4 C n; we write f, for the restriction of f to
4. Clearly, a k-ary conservative algebra <ni;f> is deter-
mined uniquely by the set of its k-element subalgebras
<A;fﬁ>(A€Pk(ﬁ)).

For fixed k, consider a full set Rk of representa-
tives of isomorphism classes of all k-ary algebras <k,g>
It Wlll be appropriate for our aims to include

25, <2ied>, <2;v>

<g;e1
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in-Rz, and

<§;mi>, 1 = 0,44,424,624,109,255,
325,39,253,327,111,37

in Rj. Denote by M the set of these twelve majority
operations.

For a k-ary conservative operation f on n and an
arbitrary AEPk(g) there exists a unique k-ary algebra
<k;g> in R, such that <Aif,> = <k;g>. The set of these
algebras {<ki;g>: A€P, (n)} 1s called the spectrum of <n;f>;
we denote it by Spec<n;f>. We shall characterize
conservative minimal algebras by their spectra.

Let f1 and f2 be k-ary resp. l-ary operations on n
such that f1e[f2]. Then there exists a k-ary term
(= polynomial symbol) ¢ of type <I> such that f1 is the
result of substituting Ty for the l-ary operation symbol
in ¢, in sign: f1 = t(fz). In this case we say that we
apply t to f2. The result of succesive application gf t1
then t, to f is denoted by t2t1(f); we also write ti(f)
when ¢ is applied to f < times: For f conservative and
4 C n always (¢(f)), = t(f,). '

We shall make use of the following terms of type
<3> (here we omit the sign of the ternary operation

symbol) s

((zyz) (yzx) (zxy)),
((xyz)zy),

(z(xyz)z),

(x(yzx)y),
(y (zyx)z).

£ 0o 8 O T
|
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Next we formulate several observations to be applied
in the sequel.

(1) Each sdbalgebra of a minimal algebra ig either
minimal or trivial (see [6], 3.3). ’

(2) 4 two-element conservative minimal binary
algebra is isomorphic to <2;V>. '

(3) The set of all three-element minimal majority -

algebras is {<§;mi5: miEM} up to isomorphism.

Denote the set {mo} by MO' {mi: 7 = 44,424,624} by
M44, and {mi: < = 109,255,325,39,253,327,111,37} by ¥
We proved in [1] that the minimal clones generated by
majority operations on 3 are [mo], [m44], and [m109] up
to a permutation of 3. This combined with the following
proposition gives (3).

109°

If o0 is a majority operation on 3 then

(a) oE[mO] iff OEMOI
(b) oe[m44] iff oEM44,
(c) oE[m109] iff OEM109’

{(a) The range of maq consists of 0 only, hence by

Lemma 2 in [1] the same holds for each ternary operation

in [mO]; thus the set of nontrivial ternary operations
in [mo] is {mo} = M.

(b) M44 c {m44J since m424(x,y,z) = m44(y,x,z)
(shortly: my,, = (m44)(01)), and Mooy = (m44)(02);
further, Myg is a homogeneous operation, hence all
members of [m441 are homogeneous; however, the set of
homogeneous majority operations on 3 is exactly ¥
{see [2]).

44
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() Mygg E [myggl since mygg = (mygq) (1)

mags = almygg)s myg = (m355) (gqyr Ma53 = (M3g) (gq2)”

m3p7 = (m3g) (g21)7 My11 = (M39) (g2)7 M37 = (M39) (q2)
the other hand, the range of m;g59 is {0,1} and, as my,q

is minimal, each ternary operation in [m109] has this

. On

property; also the operations in [m109] share the prop-
erty of m,q59 to be invariant under the transposition (01)
of the base set 3. Comparing this with the list of
majority functions on 3 with range {0,1} ([1], Table 3)
we conclude that the set of nontrivial tefnary operations

in [m109] is Miggr as required.

(4) 4 comservative algebra <n;f> is not minimal if
there exists a nontrivial operation g on n such tﬁat

1) gelfl;

2) there are subsets 4,B C n with <A;fA> £ <B; fg>
and <Asg9,> = <B;gg>.

Indeed, f#lgl; in the contrary case, an isomorphism
between <A;gA> and <B;gB> would alsc be an isomorphism
between <4;f,> and <B;fp>-.

A k-ary operation f is called sharp if it is essentially
k-ary, and every g€l[f] with arity <k is trivial. (Thus,
minimal operations are the same as sharp operations

generating minimal clones.)
(5) 4 conservative algebra <n;f> with f k-ary is not

minimal if there exists an l-ary (1 > k) g in [f] which
is sharp on some A C n, |A} > 1.
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Indeed, f, is not trivial and fAﬁ[gA] whence f#lgl.
The following fact is obvious:

(6) An essentially k-ary algebra <n;f> <& minimal <if
and only if

1) for each nontrivial g€lf] there exists an
eggentially k-ary g' in [gl, and

2) <f gE[fJ and g is essentially k-ary then fE[g];‘

An at least ternary operation f on xn is a near-una-
nimity operation [4)] if f(x,y,every) = FY1T1Yseeery) =
= ... = f(ysee.rysx) = y identically holds in <n;f>.

(7) If m 8 a majority operation then any nontrivial

f in [m] ©Z8 a near-unanimity operation.

Call a term t of type <3> regulaer if it is non~
trivial and no occurrence of the operation symbol in it
has two graphically equal arguments. Applying a non-
trivial term ¢ to a majority operation we always can
suppose that ¢ is regular. Thus, we can suppose f = t(m)
with ¢t regular and use induction on the length (= number
of occurrences of the operation symbol) of ¢. For ¢ of
length 1, t(m) is a majority operation, hence the asser-
tion of (7) is true. Assume it is true for regular terms
of length < k. We have ¢(m) = m(t1(m), toy(m), ta(m)),
i.e. t(m)(m1,...,xn) = m(t1(m)(x1,...,xn),...
....b3(m)(x1,...,xn)). If ti is regular then .
ti(m)(x,y,...,y) = ... = y by the inductive hypothesis.
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Hence if at least two ti are regular then t(m)(x,Y,s...sY) =

., tya = 2

= ... =y. If, e.g., ty is regular and ty, =z, 3 g

then x, # mj since t is regular. Therefore,
tm) (zyyreeery) = m(Eg(m)(Ergsenesy)rees) =mly,...) =y,

~etc., as at least one of the second and third arguments

of m also equals y.
3. RESULTS

THEOREM 1. 4 conservative binary algebra <n;*> is

minimal <f and only <f Spec<n;x> is a subset of {e2 2

12€25V}

which contains V but not both.e? and eg.

PROOF. Let Spec<n;*> meet the condition in the
theorem. We may assume P,(n) = RUS (R # §) where

<2;V> if AE€R,
<A;*A> 2 )
<2iey> if 4es..

We shall apply (6). Consider a nontrivial essentially
l-ary g in [#]. As the unique essentially l-ary operation
in [v] is x4V...Vz,, we have gloyreeaszy) = Tq% .. Xz
on every A€R. Then g(x,s&yr-e-ry) (elgl) = T ®z, ON

every A€R. Thus [g] contains an essentially binary opera-

tion, and 1) of (6) holds for <um;*>.

Further, the essentially binary operations in [*]
are * and its dual (i.e. xz*x1), whence 2) of (6) holds,
too. Therefore, <z;*> is minimal.

Now let <»n;j;*> be minimal. (1) and (2) imply
Spec<n;*> C {ef,eg,v}. Suppose VgSpec<zu;*>. As *# is not
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trivial, we have Pz(ﬂ) = Juv (U,V # @) where

<2;22

7> if Aev, .

<4j;* > =
A 2
<2je5> if A&V,

There is a proper subset §§iﬂ‘Q which is maximal with
respect to the property thaf A€y for each AEPZ(S). Let
ben\S; then there exists an g€ with {a,b}€V and another’
c€s with {a,c}eU. Consider the operation x€[*] defined
by klx,y,2) = (x*y)*(z*x). Then h(x,y,z) = z on every
AEPZ(Q), i.e. the at most binary operations in [7%]

are trivial. However,

b if {(b,ec}€U,
hia,b,ec) =
' ¢ if {b,c}ev,

hence % is essentially ternary and sharp on {a,b,c¢}. In
virtue of (5), <n;¥> is not minimal, a contradiction.

Hence VE&Spec<u;¥>. S

Let C€P,(n) be such that <Cj* > = <2;V> and suppose

that e?,e%ESpec<ﬁ;*>. This meanssthat there are A,BEPZ(Q)

with <4;*,> = <g;ef>, <Bj* p> =L<2;e§>. Define o€[*] by

xoy = x%(y*x). Then o is not trivial as 0 = ¥, further,
A . ' C 5

<A;*A> 7 <B;*B> but <A;°A> = <B;oB> (= <g;e1>). By (4),

<n;*> is not minimal, a contradiction again, concluding

the proof.

THEOREM 2. A conservative majority algebra <n;m>

(n 2 3) Zg minimal <f and only if Spec<n;m> is a subset
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of M which contains al mosl one operalion [rom cach of

M44 and M109.

PROOF. Assume that Spec<n;m> satisfies the condition
of the theorem. Then P5(n) = RUSUT and there is a triplet
<Z,J,k> such that

<§;mi>, miEMO if A€Rr,
{I) <A;mA> = <§;mj>, ijM44 if 4€s,
<3im>, mEMiqg if AET.

Using (6), we prove that <z;m> is minimal. First we
show that for each nontrivial g€[m] there exists an
essentially ternary operation in [g]. The nontrivial
operations in [g] are at least termnary, and, as g contains
a minimal clone, there is a minimal operation f in [g].
By Rosenberg’s classification theorem for minimal opera-
tions guoted in the introduction, if f is not a majority
operation then it is either a semiprojection or x+y+z in
a boolean group. However, none of these possibilities can
hold because f is a near-unanimity operation by (7).
Hence f is a ternary (majority) operation, as needed.

Now consider an arbitrary nontrivial ternary m'€[m].

Thgnzthere are mi,EMO,mj.€M44,mk,EM109 such that

Bimg > if Aer,
<3jm. > if 4€s,

(1I1) <4i(mn) > =

and, for every A€P5(n), the isomorphism in (II) is the
same as that in (I). We shall be done if we show that
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there is a term ¢t of type <3> such that t(mi') =M,

t(mj,) =m,, t(mk,) = My because then

d

[l
i

<Aij(t(m')) > = <4it((m') 1>
<3Bitlmy)> <3jm,> if A€R,
<Bitlme)> = <3im.> if 4es,

<Bitlmy,)> = <3;m, > if 4€T,

R

with the same isomorphisms as (in (II) and) in (I), and
hence t(m') = m. Since my = Mox = Mg and t(mo) = m for
any nontrivial ternary ¢, we have to take care of mj and
my only. We shall do this in two steps: first we find a

term t1 with
(ITI) t1(mj') = Myyr t1(mk') = mMmi09r

and then a t2 with

It

(IV) tz(m44) = mj, tz(m109) M

We can check that, for my €M 097 prqp(mk.) = M09~

- On the other hand, prgp(m.:) =m_,, , if mj.EM44. Further,

2 2 J J
pelmygg) = myggr P 8mys,) = Meogr PT8(Meo,) = my,.
Define t4 by

prqp if § = 44,
t, =1 (pe)%prap if j = 424,
pzs prqp if 4 624.

In view of the above remarks about prgp and pzs, (III) is
fulfilled. Finally, in order to construct‘t2 with (IV) it
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suffices to find a t21 with t21(m109) = My, t21(m44)

= my, and another term t,5 such that tzz(mk) = My

taamyy) = mypar Typlmyny) = meoys tyylmgn,) = my,, since
then we can choose

to4 if 5 = 44,
ty =1 thytyy if G = 424,
2

#22t21 if 4 624.

It can be checked that the terms t21 and t22 given
in the table below for every possible value of k are

appropriate:

k 21 22
109 pzs
255 pqr pzs
325 q gspqrp
39 rs rpzs
253 : s2 sp2
327 qr qrpzs
111 r rpzs
37 s sp2

This completes the proof of the minimality of <m,m>.

Conversely, the spectrum of a minimal conservative
majority algebra <u,m> is a subset of ¥ by (1) and (3).

2

For any mjeM44 u (mj) = Myuo4 holds; hence Spec<n;m> cannot
contain two distinct algebras from Myq by (4). Similarly,
for any m. €109 prqp(mk) = Mi09 holds; thus, no distinct
operations from Mig9 are in Spec<u;m>. The theorem is
proved.
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