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Minimal clones—a minicourse

BiLA CSAKANY

ABSTRACT. This paper provides an elementary introduction to minimal clones, as well as
a survey of recent trends and results.

1. Clones

Clone is an English word of Greek origin, widely used, mainly due to its im-
portance in biology and, as a consequence, in science fiction. In Greek, it means
“glip, twig”. In the recent nonmathematical usage, it stands for “population of
genetically identical organisms derived originally from a single individual by asex-
ual methods” (Encyclopaedia Britannica), or, in other contexts, “a person or thing
that duplicates, imitates, or closely resembles another in appearance, function, etc.”
(Webster’s College Dictionary). In a mathematical monograph, to my knowledge,
it appeared for the first time in 1965, namely in the monograph of P. M. Cohn [4],
who attributed the notion to Ph. Hall. Among the predecessors, E. Post and K.
Menger should be mentioned. Instead of clone, we find function algebra or iterative

- Post algebra in several essential publications.

The notion of a clone generalizes that of a monoid. By a monoid we mean a set
of selfmaps of a set S that is closed under composition and contains the identical
mapping. Similarly, a clone is a set of (finitary) operations on a set S that is closed
under composition and contains all the projection mappings.

Composition forms from one k-ary operation f and k n-ary operations g1, - - . , gk,
an n-ary operation f(g1,...,gx) defined by

f(glu"'7gk)(a’17"'va’n) :f(gl(a/h"‘1a’n)7'":gk(a’la"'uan))?

for all a; € S. Here k and n are arbitrary positive integers. For k = n = 1,
composition is the usual product of selfmaps.
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Proyectwns are operations (ai,...,am) — a; with fixed (1 <) i (£ m) For

1 = m = 1, the unique projection is the identical mapping. PIOJectlons are often

referred to-as trivial operations.
Basic examples:

(1) The set Og of all operations on the set S (the full clone).

(2) The set Ps of all projections on the set S (the trivial clone).

(3) All term operations of an algebra (e.g., all linear combinations over a vector
space).

(4) All polynomial operations of an algebra (e.g., all polynomials over a field).

(5) All continuous operations on a topological space (e.g., all continuous real func-
tions).

(6) All operations monotone in each variable on a partially ordered set (called the
clone of that partial order).

(7) All idempotent operations on a set (f is idempotent if f(z,

. identically). '

(8) All conservative operations on a set S (f is conservative if, for a; € S,
f(a,...,an) € {a1,...,an}); such an operation is called also a quasiprojec-
tion).

(9) All operations commuting with every operation of an algebra (called the cen-
tralizer of the algebra; it generalizes the endomorphism monoid).

(10) All operations preserving some (finitary) relations on a set (e.g., all operations
invariant under some permutations of the set; (10) is a generalization of (8)
and (9)).

,x) = z holds

For finite sets, all clones are of form (10). This basic fact may be formulated as
follows: preserving a relation induces a Galois correspondence between operations
and relations, in which the closed classes of operations are ezactly the clones; see
(1], [19].

People who prefer to define monoids as associative groupoids with unit ele-
ment may ask whether clones could also be defined abstractly, e.g., by means of
identities. To accomplish this, we may consider a clone C a “many-sorted alge-
bra” with countably many base sets Cy, Ca,..., k + l-ary basic operations with
sk: Cx x CF — O, called superpositions (for k, n =1, 2, ...), n-ary basic opera-
tions, p¢, € Cp, (for all n,i with 1 < i < n < o) called projections, and identities
that reflect the behavior of composition of operations and projection operations.
d‘(E.g.,’sZ(p}'c, fi,..+, fx) = fi holds identically, for fi, ..., fx € Cp-) Such a many-
sorted algebra is an abstract clone [4], [57]. Clones of operations as introduced
above are sometimes called concrete clones. They can be considered as abstract

clones: for i =1, 2, ..., the base set C; is the set of all i-ary operations.
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Isomorphism of clones can be introduced in a natural way. Every abstract clone
is isomorphic to a concrete clone of operations [4]. The proof is esséntially the same
as that of the Cayley representation theorem for monoids; however, it is intrinsi-
cally clumsy. We can also define subclones, quotient clones, etc. There is a close
connection between varieties and clones: term operations of an algebra generating a
variety V form a clone Cy, and the correspondence V « Cy is one-to-one between
varieties and clones (up to term equivalence of varieties and isomorphism of clones;
cf. [58]). If V/ C V, then Cy- is a quotient clone of Cy .

There exists another way to define clones of operations ([22], [39], [45]). Consider
the following procedures which yield a new operation from given operation(s):

e Substitution forms from any m-ary f and n-ary g on a set S, an m +n — l-ary
operation f * g defined by

(f xg)(as,...

for a1, ..., Gm4n-1 € S.
o Permutations of variables form from any n-ary f, the n-ary operations f,
defined by

3 Qny An41, - - -7am+n—l) = f(g(a17 .. ';af’n):an—i-l; ey am+n—1))a

fr(a1,...,an) = flar@),--+»0r(n)),
for a1, ..., an € S; here 7 is an arbitrary permutation of the set {1,...,n}.
o Identification of variables forms from any n-ary f an n — l-ary operation A f

defined by

(Af)(al,ag, ey

, an € 8S.
e Introduction of a fictitious variable forms from any n-ary f, an n + l-ary
operatlon v [ defined by

an—l) = f(a'l7al)a/27 .. 7an—1);

for ay, ...

(VF)(a1,a2,...,an41) = flas,. ..,

Qny Qi1 € S.

an+l)7
for ai, ...,

Clones are closed under the above four procedures; a fact we shall often use
i'n our considerations. Moreover, a set of operations is a clone if and only if it
18 closed under these procedures and contains the identical mapping. The proof
consists of producing the results of the four procedures by the use of compositions
and projections, and vice versa. It is a nice introductory exercise. Note that these
procedures are binary and unary operations; thus, clones can be considered also as
usual (not many-sorted) algebras.

In what follows, if not stated otherwise, clone always means a clone of op-

emtigns on a finite set. A set consisting of n elements will be identified with
n={0,1,...,n—1}.

-
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2. Lattices of clones-

Let f and g be operations on a set S such that g can be obtained from f and
projections by (finitely many) compositions. (This means that g is a term operation
of the algebra (S; f).) In this case, we say that f generates g. All operations f
generates form a clone C; we also say that f generates C, and we write | f] for C.

This terminology can be extended to sets F' of operations, instead of a single
operation f. Generating clones is an algebraic closure operator on the set Og of all
operations on S. Thus, the clones of operations on S form an algebraic lattice.

There are countably many clones on the two-element set, and their lattice is
completely known (Post [44]). There is a continuum of clones on a set containing
at least three elements and a full description of this lattice seems to be hope-
less. Nevertheless, several intervals—mainly in the top and bottom regions—have
been determined. In particular, a complete list of the dual atoms—called mazimal
clones—was given for the two-element set by Post ([44]), for the three-element set
by Jablonskii ([23]), and finally, for every finite set, by Rosenberg ([49]). There is
a short proof by Kuznecov for the fact that there are only finitely many maximal
clones ([27]). Every clone is contained in a maximal one (easy: on n, the Sheffer-
Webb operation max(z,y)+1 (mod n) generates all operations; thus, the assertion
follows from Zorn’s Lemma).

The atoms of the lattice of all clones on a set are called minimal clones. In the
following sections we provide an overview of our knowledge of minimal clones.

3. The basics of minimal clones

The definition implies immediately that a clone C is minimal if and only if
each nontrivial f € C generates any nontrivial g € C. Equivalently, a clone C is
minimal if and only if there exists a nontrivial f € C such that f generates any
nontrivial g € C and any nontrivial g € C generates f. It follows that in order to
find all distinct minimal clones contained in a clone D, it is enough to find a set of
nontrivial operations F' C D with the following properties:

e For every nontrivial g € D, there exists an f € F, such that g generates I
o If f1, fo € F are distinct, then fi does not generate fo.

The distinct minimal clones in D are generated by the distinct operations f € F.

A standard technique to prove that f does not generate g is to find a relation p
such that f preserves p and g does not preserve p (since the property of preserving
a relation is inherited by composition of operations).

Usual tricks to prove that an operation f on a set S does not generate a minimal
clone:
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e To find a clone C and a nontrivial g € C such that f ¢ C and f generates g.

e To find an operation g such that f generates g, and [g] is not minimal.

e To find subalgebras (4;f), (B;f) of (S;f), and an operation ¢ such that
g € lf], (4;9) = (B;g), but (4; f) % (B; f).

Nontrivial operations of minimal arity in a minimal clone are called minimal
operations. Examples of minimal operations:

e A unary operation which is a retraction or a cyclic permutation of prime order.
o A semilattice operation.

o The dual discriminator d of Fried and Pixley [18], defined by d(z,y,2) = «,

if z =y, and d(z,y,2) = 2, if z # y (it is a majority operation: d(z,z,y) =

d(z,y,x) = d(y, z, z), identically).

e The operation m(z,y,2) =z+y+2z (mod 2) on 2 (it is a minority operation:
m(z,y,y) = m(y,z,y) = m(y,y,z) = y, identically).

o An n-ary nontrivial nearprojection s on an n-element set; nearprojections are

defined by s(z1,%2,...,2n) = 21, if 1,%9,...,2, are not pairwise distinct
(in general, operations with this property are called semiprojections), and
s(x1,%2,...,%n) = ;, with fixed 4, otherwise [5]. Note that semiprojections

and nearprojections are meant up to permutations of variables.

Rosenberg’s Classification Theorem. Every minimal operation is of one of the
following types: ) '

(1) a unary operation,

(2) a binary idempotent operation,
(3) a ternary magjority operation,

(4) a ternary minority operation,

(5) an n-ary semiprojection (n > 2).

Remarks. We prove Rosenberg’s Classification Theorem (RCT in the sequel) in the
above form. The original formulation in Rosenberg [50] also states that in case (1)
the operation is a retraction or a cyclic permutation of prime order (easy!), and in
case (4) the minority operation is necessarily 4+ y + z in an elementary 2-group
(not easy!).

The preceding examples show that Rosenberg’s classes are nonempty.

Usually, we call a minimal clone generated by a k-ary minimal operation a k-ary
minimal clone. Applying this terminology, RCT can be formulated as a classifica-
tion of minimal clones.

RCT shows that all nonunary minimal operations are idempotent.

In general, a minimal operation contained in a minimal clone is not unique.

o
by i
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Proof. Suppose that f is an at least binary minimal operation. Then f is idempo-
tent, else it generates (by identification of variables) the nonidentical unary opera-
tion f(z,...,z), which cannot generate f. ‘

Now suppose that f is ternary. Then by any identification of two variables, we
obtain a projection. There are eight possibilities:

flzz,y) =222y Y Yy
flzyz) =z zyyzzyy
flyz2) =2y Tz yTyTy

In the first and eighth cases f is a majority, resp., minority operation. In the
second, third, and fifth cases, f is a ternary semiprojection. The remaining cases
cannot occur. Indeed, then f generates a majority operation; e.g., in the sixth case
m(z,y,z) = f(z, f(z,y,2), z) will do. However, a nontrivial ternary ¢ generated by
a majority operation m is also a majority operation (use induction on the number
of occurrences of m in t). . '

Finally, let f be at least quaternary. Again, by identifying any two of its vari-

ables, f turns into a projection. Then, by the Swierczkowski Lemma, f is a semipro-
O

jection.

The Swierczkowski Lemma [51]. Given an at least quaternary operation, if
every operation arising by identification of its variables is a projection, then these '
projections coincide.

2

For a proof, see the Appendix.

From RCT we can deduce that on a given finite set there are only finitely many
minimal clones. Indeed, if m > n, then an m-ary semiprojection on an n-element
set is necessarily a projection. It follows that on a finite set there are only finitely
many minimal operations, and this implies the statement. (It is trivial that there
are infinitely many minimal clones on any infinite set.)

From the Swierczkowski Lemma it follows that every clone on a finite set contains
at least one minimal clone. Here is a proof [24]: Call a nontrivial clone C' n-
special, if every nontrivial operation in C is at least n-ary, and there exists an n-ary
operation in C that generates C. Any nontrivial clone B on a finite set M contains
n-special clones for some n: a nontrivial operation of minimal arity in B generates
such a clone. By the Swierczkowski Lemma, here n cannot exceed the number of
elements of M. This implies that B contains only finitely many special clones.
They are partially ordered by inclusion. A clone which is minimal with respect to
this ordering is a minimal clone.

This is a proof without tools. An equally simple proof with some tools: in the

~ Galois connection mentioned in Section 1, clones correspond to closed classes of
relations (it is not necessary to know what they are!). Hence it suffices to prove

y )
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that every closed class of relations is contained in a maximal one. As there exist
relations that are contained only in the closed class of all relations this follows from
Zorn’s Lemma. (On the set n (n > 2), {(a, b, c)|a<bs#c}is the,z needed relation;
for n = 2, the proposition is included in Post’s description of all clones.) ’

On ‘am infinite set there exist clones containing no minimal clone. A trivial ex-
'ample is the clone generated by the (unary) successor function on the set of positive
integers. Another example is the clone generated by any nontrivial nearprojection.

4. Some history, objective and subjective (1941-1982)

The full list of minimal operations generating distinct minimal clones on 2:
th.e .unary constants 0 and 1, the transposition (0,1), the binary maximum and
minimum operatlo.nf;, and the ternary majority and minority operations (Post [44]).

The first nontr_1v1al series of minimal clones was described in Plonka [41]. (He
ca'lled alg?bras with minimal clone of term operations R-prime, that is, reduct-
erme.) His example is the clone of the full idempotent reduct of a(ny) vector space
(1; ShO:[::l:l . the c}llonel of an affine space) over a(ny) finite prime field. Up to isomor-
phism, this is the ¢ i inati i i
phis , one Cp of all convex linear combinations, that is, operations of

1Ty + - + Any,

With Sa; = 13 qn the set of all residue classes modulo p. For the proof of minimal-
ity, note that it is easy for p = 2: all nontrivial convex linear combinations are of

form zy + -+ + 22p11 (n >
+1 (n > 1), and they generate each other. For p > 2. it.
to verify the following propositions: P> 2, itsuffices

(;) ;n =m(z,y,2) =z — y + z generates all binary operations in Cp.

(2) For any 0 < k < p, the set B of all binary operations in Cp generates
LT —ky+ k= :

(3) B generates Cj.

(4) Any nontr.iviabl operation in Cj, generates a binary nontrivial operation.

(5) If f € Cp is binary and nontrivial, then f generates m. -

(I;Iflnts. 12. az + (1 —a)y = m(z,y, m(z,y,. .. m(z,y,z)...)), with a — 1 occurrences

me 2.z —ky+kz =ulvz+(1-v)y) + (1 - u)(wy+ (1 - w)z), for appro-
prlzfnte U, U, W. 3.'Induction on arity; apply the preceding observation. 4. Identify
;farlables. 5. Write zy for f(z,y) = az + (1 — a)y, and use the rightwards rule
or parentheses: zyz = (zy)z. Then z — y + 2z = zy°~(2y??), where ¢ = o(a)
(mod p), d = o(1 — a) (mod p). - ’ -

Tlie .ﬁrst monograph to summarize some facts on minimal clones was the Péschel-
Kaluznin book [45]. It contains, e.g., the minimality of the (lower) median term
operation in lattices, a version of the Swierczkowski Lemma, finiteness of the set
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of minimal clones, and the fact that the lattice union of all minimal clones is the
clone of all operations. We recall Problem 12 in that book: Describe all minimal
clones and determine how many there are. ’ 5

In 1982, I succeeded in determining all minimal clones on the three-element set.
(It was the topic of my Czechoslovakian Summer School talk in 1982.) I started
with the notion of a pattern operation due to Quackenbush [47], and the functional
completeness theorems for algebras with polynomial ternary discriminator or dual
discriminator operations (Werner [61] and Fried-Pixley [18]). Recall that

o two n-tuples (a1,-..,an), (b1,...,bn) are of the same pattern if, for i, j €
{1,...,n}, a; = a; if and only if b; = by;

e an operation f is a pattern operation, if f(a1,...,an) = ai, © € {1,...,n},
(i.e., f is conservative), and this ¢ depends only upon the pattern of a1, ...,an
(note that nearprojections are pattern operations, and all pattern operations
on a set form a clone); v

o the ternary discriminator t is defined by the rule: t(a,b,c) = ¢, if a = b;
t(a, b, c) = a, otherwise. -

The theorems of Werner and Fried-Pixley state that the ternary discriminator to-
gether with all constant operations generate all operations, and so does the dual
discriminator. The two discriminators are pattern operations. I extended these
theorems to all pattern operations by proving the following 5]:

(1) Any pattern operation generates either the dual discriminator or some non-
trivial nearprojection. ,

(2) Any nontrivial nearprojection together with all constant operations generate
all operations.

Later, I noticed that a nontrivial nearprojection generates any other nearprojection
of greater or equal arity [9], and then realized that property (1) of pattern opera-
tions provides all minimal clones consisting of pattern operations. Encouraged by
this observation, I then took up the study of minimal clones on the three-element
set. Knowing RCT, this may seem not too hard; however, there was no RCT at
that time. Thus, I had to discover its special case for a three-element set, and
examine each operation in order to find the minimal ones. As there are 729 bi-
nary idempotent operations, the same number of majority operations, and 2,187
semiprojections on 3, the task looked overwhelming. So I was compelled to learn
some Pascal programming (first version, not Turbo!). As a result, I have found all
the 152 minimal operations, the 84 minimal clones, and the 24 essentially distinct
minimal clones: 4 unary, 12 binary, and 8 ternary clones (3 generated by majority
operations and 5 by semipro jections). (Here we call two clones on a set S essentially

- distinct, if no permutation of S induces isomorphism between them. In this sense,

e.g., there are five essentially distinct minimal clones on the two-element set.)
¢
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In the last quarter of 1982, we had close co-operation with Rosenberg. In this
period he proved RCT; I determined all minimal conservative binary operations
and majority operations [8]. '

A minimal conservative operation f on S restricted to any subset A of S provides
a Ir{inimal conservative operation f4 on A. If f is n-ary, it is completely determined
by its restrictions to all n-element subsets of S. In the binary case, each restriction
t0 a two-element subset is either a semilattice operation (say, V) or one of the binary
projections (up to isomorphism). Call the system of these restrictions the spectrum
of f. A conservative binary operation is minimal if and only if its spectrum contains
V but not both projections.

The number of possible restrictions of a minimal conservative majority operation
to a three-element subset is 12 (up to isomorphism). They can be subdivided into
three classes, Cp, C1, C2, of one, three, and eight elements, respectively. A majority
operation f on 3 is determined by the sequence

£(0,1,2), £(0,2,1), £(1,0,2), £(1,2,0), f(2,0,1), f(2,1,0).

The single operation in the class Cy is one with constant deterrﬁining sequence; C

consists of the majority nearprojections; Cs is the set of all majority operations f
such that

o the determining sequence of f does not contain 2;
e the transposition (01) is an automorphism of the algebra (3; f).

A conservative magjority operation is minimal if and only if its spectrum contains
at most one operation from each C; (i = 0,1,2). As Quackenbush noted [46], this
description provides us with a polynomial time algorithm which decides whether a
conservative majority operation generates a minimal clone.

5. Some history (continued)

Unary or minority minimal operations cannot be conservative. Minimal conser-
vative semiprojections have not yet been completely determined, except for n-ary
ones on n-element sets (Jezek-Quackenbush [24]). Call a binary relation p bitransi-
t?’ve, if either p is an equivalence relation with all nonsingleton classes of the same
size, or p is a directed bipartite graph whose automorphism group is transitive on
‘Zhe set of arrows. For any bitransitive relation p on n, the semiprojection s defined

Y

a ifag,... isti :
s(a1,...,an) = 4 1 ' ,@n, are distinct and (a1, an) € p;
a1, otherwise,
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generates a minimal clone, and every minimal clone consisting of conservative op-
erations on n is generated by such an operation. Distinct bztmnsztwe relations
determine distinct minimal clones.

For 4, this result provides all quaternary minimal semiprojections. We have no
practical description of the ternary minimal clones on the four-element set, not
even in the conservative case. This is the last (and very big) gap in determining
all minimal clones on 4. Indeed, the unary and the minority case are trivial, while
the remaining parts of the problem were solved not long ago.

The binary case was settled by Szczepara in his 210 page long Ph.D. thesis [53].
There are 2,182 binary minimal clones on 4, and 120 of them are essentially distinct.
Szczepara used Pélfy’s method ([40], see later) by exhibiting six systems of identities
such that a binary operation on 4 is minimal if it satisfies one of these systems,
and every minimal clone on 4 is generated by an operation satisfying one of these
systems. The simplest such system of identities is that of the rectangular bands;
another simple example is 22 = z, z(y2) = y(z2), (zy)z = yz, z(zy) =

All minimal clones of majority operations on 4 were determined by Waldhauser
in [59]. It is a bit surprising that, up to isomorphism, there are only 12 noncon-
servative operations among their generators. Even these operations preserve three
out of the four three-element subsets of 4. They are constants on pairwise distinct
triplets on two three-element subsets while on the remaining one subset they are
exactly the 12 distinet majority operations on 3.

We have observed that if a k-ary operation is minimal on n (n > 3), then
kE < n. The converse is also true: if k < n and n > 3, then there exists a k-ary
minimal operation on n (Pélfy [40]). For k = n, consider a clone generated by an
n-ary semiprojection. It contains a minimal clone which is generated by an n-ary
minimal operation. If k < n, let b1, ..., bk, bg+1 be distinct elements of n, then the
k-ary semiprojection f defined by

brs1, fay= by and {a27 e wak} = {b27 s 7bk}3
f(a17 ,CLk) =

a1, otherwise,

is a minimal operation.
P3lfy exhibited some identities valid in the algebra. (n; f) which guarantee that
(%) for every nontrivial term operation g on (m f), the operation f is a term
operation on the algebra (n;g)
(i-e., every g generated by f generates f). He also observed that the fulfilment of
(%), that is, the minimality of [f], means that an appropriate system of identities
(one identity for every nontrivial term operation) is valid on (n; f). This implies:
o Minimality is invariant under isomorphism, hence minimal clones—in contrast
with the mazimal ones—can be investigated as abstract clones.
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o If [f] is a minimal clone; then each nontrivial algebra in the variety generated
by (n; f) has a minimal clone of term operations.

Pélfy’s observation on identities has impacted the investigation of minimal clones
very favorably, because it has connected the preceding research (of somewhat com-
binatorial flavor) with the main trends of universal algebra.

Another example of k-ary clones on n-element sets is a subclone of the clone of
a suitable partial order. Let n be the union of an n — k + 2-element chain L and a
k — 2-element antichain {bs,..., b} T)hen the monotone semiprojection f defined
by

az, if a1 # as, a1,a2 € L and {as,...,a5} = {b3,...,bx};
f(as, ,ak)={2 17 a2, ai,a {as K} ={bs k)

a1, otherwise,

is a minimal operation (Lengvarszky [29]).

In [30], Lévai and Pé4lfy applied the method of identities to the problem of
determining all minimal binary clones with exactly n binary operations. Here n > 3
because the two projections are included. For n = 3, there are two such clones: that
of Plonka’s affine space over the three-element field, and the clone generated by a
commutative binary operation satisfying the two-variable identities of semilattices
(in short: the clone of 2-semilattices). The cases n = 4, 6 are also settled (for
n = 4, the simplest example is the clone of rectangular bands). Dudek proved that,
forn =5, 7, there exists a unique minimal clone with n binary operations (that of
affine spaces over the n-element field), and conjectured that this is the case for all
prime numbers ([15], [16]). However, Lévai and P4lfy exhibited very tricky minimal
clones with 3k+-2 (k > 2) binary operations, distinct from the clone of affine spaces
in case 3k + 2 is a prime. It is not known whether there exists a minimal abstract
clone with infinitely many binary operations.

The fact that the lattice union of all minimal clones on n is the full clone ([45])
was improved first by Szabé [52]: for prime n, those generated by any full cycle
and the median operation (with respect to the lattice operations max and min) are
enough, while for composite n we can choose three minimal clones generated by the
dual discriminator and the cycles (01 --- p—1)and (n—p n—p+1 --- n—1),
with n/2 < p < n. However, this unexpected appearance of number theory can
be avoided: two minimal operations are enough for any n (Czédli-Halas~Kearnes—
Pélfy-Szendrei [12]). We always need a fixpoint-free permutation 7 of prime order,
and, for a composite n # 4, 8, an appropriate rectangular band operation, for
n = 8, some 2-semilattice operation; and Szczepara’s list helps in case n = 4: up to
permutations of 4, there exists a unique minimal binary operation f such that 7
and f together generate the full clone on 4. In [38], Machida and Rosenberg gave a
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necessary and sufficient condition for a pair of minimal operations to generate the
full clone. ‘ ’
The minimal operation m(z,y,2) = T — Yy + 2 of an affine space is a Mal cev
operation, that is, it fulfils the identities m(z,z,y) = m(y,z,z) =¥ (Wh.lch, b:y
s fundamental observation of Mal’cev, guarantee permutable congruel}c?s in vari-
eties). The converse is also true: if a Mal’cev operation m generates a minimal clone
on a set S, then this clone is that of an affine space on S, and m(z,y,2) = T—y+2.
(Szendrei [55], for finite sets, but it is true also for infinite S, Kearnes [25]) Qf
course, |S| is a prime power in the finite case. The result c?f Szendrei implies
also the hardest part of RCT: a minimal minority operation is ac.—i— y. + z on .an
affine space over the two-element field. By RCT, a group operatmr.l is not min-
imal. A quasigroup operation can be minimal, e.g., binary operations of affine
spaces are minimal quasigroup operations. The Szendrei-Kearnes resu.lt shows that
this is the unique example because quasigroups have Mal’cev operations (namely,
z)=(z z)).
m(;?ei’m)es’ Ees/éﬁ\:(g))n) (ll\l/l\al)’lev operations is a byproduct of his characterization
theorem for Abelian minimal clones [25]. A clone A is Abelian if for every m-ary
operation f € A and elements a, b, CayoevsCnyd2yeeesn

f(a’a027"'7cn) = f(a’,d%"')dn)
implies that

flb,cay. . Cn) = fb,da, ... dn).
Up to isomorphism, Abelian minimal clones are the same as minimal clo§es of term
6perations of finite cyclic groups. In [60], Waldhauser showed that in this theorem

the Abelian property can be replaced by a weaker-but-similar-in-spirit requirem'ent.
The operations f and g (m-ary and n-ary, resp.) commute, if, for any matrix

aiy - Ain

Am1* " Amn
the equation

g(f(allr“aa"rnl)u oo, flana, - - ) Gmn)) = f(g(alla ey Gln)y e ,9(@mas - - <3 Gmn))

holds (cf. Example (9) in Section 1). An operation is commutative, if it commutes
with itself. A commutative operation generates a clone C in which any two opera-
tions commute; in this case, C is called a commutative clone. Unary.n{inimal'clor.les
are commutative; a majority operation cannot be commutative; a minimal minority

- operation is always commutative. The remaining hard cases of commutative mini-

mal clones are completely determined in Kearnes-Szendrei [26]. In the binary case,
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they belong to six types (affine spaces, rectangular bands, and semilattices are the
simple types). The semiprojection case is the most difficult; it can be dealt with

by introducing a natural semimodule structure on the set of minimal operations of
the given clone.

6. Variations and generalizations

A clone is essentially minimal, if its nontrivial subclones are generated by unary
operations (Machida, [32], [33]). An operation of minimal arity generating & given
essentially minimal clone is also called essentially minimal. An at least binary
essentially minimal operation f on S is either idempotent—and then it generates
a minimal clone—or a — f(a,...,a) is a nonsurjective selfmap of §. (Otherwise,
iterating f, we obtain a nontrivial idempotent operation g which cannot generate f.)
A thorough investigation of essentially minimal binary operations was carried out
by Machida and Rosenberg in [37]. '

A set of partial operations on a set is a partial clone, if it is closed under com-
position and it contains all projections. Minimal partial clones on finite sets S are
completely determined (Bérner-Haddad-Pdschel [2]). A minimal partial clone is
either a minimal clone or a partial clone generated by a partial n-ary projection
whose domain is a totally symmetric and totally reflexive proper subset R of S™.
(R is totally symmetric, if it is invariant under permutations of components of the
vectors (a1,...,an) € R; R is totally reflexive, if it contains all vectors whose com-
ponents are not pairwise distinct.) On any finite set 9, there are three minimal
partial clones whose union generates the partial clone of all partial operations on
S (Haddad-Machida—Rosenberg [21]). '

Composition is not the unique natural way of forming new operations from given
ones. We feel that the unary inverse operation in groups is somehow “generated” by
the multiplication, however, not by composition. For group elements a, b, b = a™*
means that the formula Jz(zab = x) is true. Formulae of such type are called
primitive positive. Thus, over group theory, the inverse operation is expressible
from the multiplication by a primitive positive formula. Expressibility by & prim-
itive positive formula (in short: parametrical expressibility) is more effective than
composition: f(g1,...,9%)(a1,-..,an) = b is the same as

Hxl..;ﬂxk(m(al,...,an) =x1/\“'/\gk(a'17"',a'n)=$k; /\f(x17;xk)=b)

It follows that sets of operations containing all projections and closed under para-
metrical expressibility are clones; we call them primitive positive clones. The lattice
of primitive positive clones on 2 and 3 element sets—including minimal primitive
positive clones—are known (Kuznecov [28]; Daniléenko [13]). This lattice is finite
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for any finite set n (Burris-Willard [3]); nevertheless, we do not know all minimal
positive primitive clones for n > 3.

A minimal operation [f] on S is doubly minimal, if also the algebra (S;f) is
minimal, that is, it has no proper subalgebras except, possibly, one-element sub-
algebras. Without requiring finiteness, all such algebras are on the following list:
two-element zero-semigroup and semilattice, 2 with majority operation, p with a
full cycle, and the p-element affine space [10].

For a binary operation o, the sequences &1 © Z2 0 T3, L1 0 %2 0230 T4, -- ,L1 0
Z50---0Zy,... can be bracketed in various ways, counted by the Catalan numbers
2,5,14,.... The bracketings give rise to various term operations which, however,
can coincide for distinct bracketings. The sequence of numbers of distinct term
operations arising in this Wéy is the associative spectrum of o; it “measures” how
far o is from being associative. Binary minimal operations on 3 were investigated
from the point of view of associativity: five out of the 12 are associative, four
of them are Catalan (i.e., distinct bracketings induce distinct term operations),
(2,4,8,...) is the associative spectrum of two, and finally, the associative spectrum
of the unique binary operation of the 3-element affine space is ([2"/ 3]) (n > 3)
(see [11]).

Appendix. The Swierczkowski Lemma

Swierczkowski proved his lemma in the following form: Ifn >3, and any n ele-
ments of an at least n-element algebra form a basis (i.e., a free generating system
of that algebra), then the algebra is trivial. Since then several people have redis-
covered it in the equivalent form, given at the proof of RCF (Harnau, Daniléenko,
etc.). :

In order to prove the lemma, it is enough to show that, for any at least quaternary
operation f that always turns into some projection, if we identify at least two of
its variables, the projections f(z1, 1, %3, Z4,.-.) and f(z1, 2, %1, L4, - .. ) coincide.
For other identifications of nondistinct pairs of variables, apply permutations of
variables; for identification of distinct pairs of variables, apply the above twice.

Now, if f(z1,21,%3,%4,...) is the 4-th and f(x1, 22,1, %4, ..) is the j-th n-
ary projection, then—up to a permutation of variables—we have the following four
cases to discuss (in fact, to refute):

i =1334

j=4245
(of course, the last case only for an at least 5-ary f). Indeed, in each operation
under consideration the set V' of variables is the union of the following three sets:

e I, the set of variables identified (with some other variable);
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e O, the set of variables identified in the other operation;
e R, the set of the remaining variables.

There are six possibilities:

e e W e 6
i € I I I O O R
j e I O R O R R -

In the cases (1) and (2), the projections obtained by identification coincide. Cases
(3),...,(6) are represented—in this order—by the choice of variables 7 and j in the
above four cases. We show that each of these four cases leads to a contradiction.
For the sake of brevity, we write 2122 ... instead of f(z1,z2,...). Case (3):

T1T1X3T4 " =21
L1X2L1T4 """ — T4

= T1T1T1%4 - = 21,
= T1T1T1T4 - - = T4,

and the same simple trick works for the cases (4) and (6). Case (5):

T1T1L3T4 - = T3 = L1X1T3%1--- =23 = X1T9%3%1 " = I3,
T1T2T1Ta -+ =2 = T1TLoT1T1 -+ =Ty = T1ToT3T1 -+ = To.
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