- [5] I.G. Rosenberg, Completeness properties of multiple-valued logic algebras, in: Computer Science and Multiple-valued Logic (edited by D.C. Rine), North-Holland, Amsterdam, 1977; pp. 144-186.
- [6] S. Świerczkowski, Algebras which are independently generated by every n elements, $Fund.\ Math.$, 49(1960), 93-104.

Béla Csákány József Attila University Bolyai Institute Aradi vértanuk tere 1. Szeged, Hungary, 6720 Tat'jana Gavalcová Kat.matematiky SF VST Svermova 5/a 04187 Kosice Czechoslovakia COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 28. FINITE ALGEBRA AND MULTIPLE-VALUED LOGIC SZEGED (HUNGARY), 1979.

INDUCTIVE CLONES

B. CSÁKÁNY - T. GAVALCOVÁ

1. PRELIMINARIES

Throughout this article, we restrict ourselves to algebras whose base set is finite, has $n \ge 3$ elements and is identified with $\{0,1,\ldots,n-1\}$.

A well-known theorem of ŚWIERCZKOWSKI[6] says that if the base set of an algebra A is independent then A is trivial. This theorem can be reformulated as follows: let A be an n-element algebra; whose at most n-ary term functions are projections; then all term functions of A are projections. A very close result was proved independently by HARNAU[3] (Lemma 2.2.): let C be a clone on an n-element set, whose at most n-ary functions are essentially at most unary; then every function in C is essentially at most unary.

Consider a k-ary function $f:A^k\to A$, and a partition π of the set $K=\{1,\ldots,k\}$. Let φ be a selfmap of K mapping every $x\in K$ on the least element of the block of π containing x and let $\{i_1,\ldots,i_t\}$ (with $i_1\leq\ldots\leq i_t$) be the image of φ . We define the t-ary function f^π by $f^\pi(x_1,\ldots,x_t)=f(x_{\varphi(1)},\ldots,x_{\varphi(k)})$. It is said to be a factor function (shortly: factor) of f. The factor f^π is proper if π is

not the least partition (i.e. has a nonsingleton block). We associate with f and π also the restriction f_{π} of f to the set of all k-tuples $(\alpha_1,\ldots,\alpha_k)\in A^k$ with $\alpha_i=\alpha_j$ whenever i and j belong to the same class of π .

Clearly, if \mathcal{C} is a clone and $f \in \mathcal{C}$ then any factor f^{π} of f also belongs to \mathcal{C} . As we shall see, the converse is not true in general; however, it is easy to see that the theorem of Świerczkowski mentioned above is equivalent to the assertion that every more than n-ary function is a projection provided all of its proper factors are projections. Substituting "projection" by "essentially at most unary function" here, we obtain Harnau's result. These examples suggest the following definition: call a clone \mathcal{C} on an n-element set induc-tive if every more than n-ary function belongs to \mathcal{C} provided all of its proper factors are members of \mathcal{C} .

In this note, we prove the inductivity or the non-inductivity of several clones, especially of those occurring in Rosenberg's completeness theorem (see, e.g.,
[5], p. 155), and we give an application of the inductivity of clones of linear functions.

2. INDUCTIVE CLONES

The following lemma is trivial:

LEMMA. Let Q be a subset of the poset P of partitions of $\{1,\ldots,k\}$ $(k\geq 4)$ distinct from the least partition. If

- (1) $\rho \in Q$ whenever $\rho > \pi \in Q$
- (2) at least two minimal elements of P belong to Q, and

(3) Q contains every minimal element of P covered /in P/ by two elements of Q, then P = Q.

The above quoted results can be expressed as follows:

PROPOSITION 1. The clone of projections $\,P\,$ and the clone $\,U\,$ of essentially at most unary functions are both inductive.

For reader's convenience we give a short proof based on the lemma. Let k>n and let f be a k-ary function whose all proper factors belong to P (U). For each partition π of $\{1,\ldots,k\}$ denote by $\hat{\pi}$ the block of π such that $f_{\pi}(x_1,\ldots,x_k)=g(x_j)$ for some $j\in\hat{\pi}$ and g unary (where g is the identity if the clone is P). It suffices to show that there exists an i ($\leq k$) such that $i\in\hat{\pi}$ for every proper π .

The number of minimal partitions of $\{1,\ldots,k\}$ is $(\frac{k}{2})$, which is greater than k, since $k \geq 4$. Hence there exists an i such that $i \in \hat{\pi}_1, \hat{\pi}_2$ for two distinct minimal partitions π_1, π_2 . We show that the set Q of proper partitions π satisfying $i \in \hat{\pi}$ fulfils the conditions of the Lemma. If $\pi < \rho$, then f^{ρ} is a factor of f^{π} , whence (1) follows. (2) is true by the choice of i. Now assume that two distinct partitions ρ and σ from Q cover a minimal element π of P. As $\pi = \rho \wedge \sigma$ and $i \in \hat{\rho}$, $i \in \hat{\sigma}$, we have $i \in \hat{\rho} \cap \hat{\sigma} = \hat{\pi}$, whence $\pi \in Q$ follows, proving (3).

PROPOSITION 2. Let R be a ring /ring with unit 1/2 and A a faithful R-module. Then the clone

$$C = \{\lambda_1 x_1 + \ldots + \lambda_k x_k + \alpha : k \ge 1; \lambda_1, \ldots, \lambda_k \in \mathbb{R}, \alpha \in \mathbb{A}\}$$

$$(C' = \{\lambda_1 x_1 + \ldots + \lambda_k x_k : k \ge 1, \lambda_1, \ldots, \lambda_k \in \mathbb{R}, \lambda_1 + \ldots + \lambda_k = 1\})$$

is inductive.

We prove this for $\mathcal C$ only; for $\mathcal C'$, the same argument works. Suppose that f is a k-ary function (k>n) on A whose all proper factors are in $\mathcal C$. It is enough to find $\alpha_1,\ldots,\alpha_k\in R$ and $\alpha\in A$ such that $f_\pi(x_1,\ldots,x_k)=\alpha_1x_1+\ldots+\alpha_kx_k+\alpha$ for every π . Assume

$$f(x_1, x_1, x_3, \dots, x_k) = \beta_1 x_1 + \beta_3 x_3 + \dots + \beta_k x_k + b,$$

$$f(x_1, x_3, x_3, \dots, x_k) = \gamma_1 x_1 + \gamma_3 x_3 + \dots + \gamma_k x_k + c.$$

We show that $\alpha_1 = \gamma_1$, $\alpha_2 = \beta_1 - \gamma_1$, $\alpha_3 = \beta_3$, ..., $\alpha_k = \beta_k$, $\alpha = b$ will do. By the lemma, we have to show that the set Q of proper partitions π satisfying $f_{\pi}(x_1, \ldots, x_k) = \gamma_1 x_1 + (\beta_1 - \gamma_1) x_2 + \beta_3 x_3 + \ldots + \beta_k x_k + b$ fulfils the conditions of the lemma. Indeed, $f(x_1, x_1, x_3, \ldots, x_k) = \gamma_1 x_1 + (\beta_1 - \gamma_1) x_1 + \beta_3 x_3 + \ldots + \beta_k x_k + b = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_k x_k + a$, and $f(x_1, x_3, x_3, \ldots, x_k) = \gamma_1 x_1 + (\gamma_3 - \beta_3) x_3 + \beta_3 x_3 + \gamma_4 x_4 + \ldots + \gamma_k x_k + c = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_k x_k + a$ since $c = f(0, \ldots, 0) = b$, $(\gamma_3 - \beta_3) x = f(x, x, x, 0, \ldots, 0) - (\beta_3 + \gamma_1) x - c = (\beta_1 - \gamma_1) x$, $\gamma_4 x = f(0, 0, 0, x, 0, \ldots, 0) - c = \beta_4 x$, and so on. Thus Q contains two minimal partitions. Clearly, if $\pi_1 < \pi_2$ and $\pi_1 \in Q$ then $\pi_2 \in Q$.

Finally we show that Q satisfies (3), too. Let $\pi=(12)$, $\varkappa=(123)$, $\lambda=(12)(34)$, where the parentheses indicate the at least two-element classes of the partition; the further possible cases may be treated analogously. Suppose

$$f(x_{1}, x_{1}, x_{1}, x_{4}, \dots, x_{k}) =$$

$$= (\alpha_{1} + \alpha_{2} + \alpha_{3})x_{1} + \alpha_{4}x_{4} + \dots + \alpha_{k}x_{k} + \alpha.$$

$$f(x_{1}, x_{1}, x_{3}, x_{3}, \dots, x_{k}) =$$

$$= (\alpha_{1} + \alpha_{2})x_{1} + (\alpha_{3} + \alpha_{4})x_{3} + \dots + \alpha_{k}x_{k} + \alpha,$$

$$f(x_{1}, x_{1}, x_{3}, x_{4}, \dots, x_{k}) =$$

$$= \delta_{1}x_{1} + \delta_{3}x_{3} + \delta_{4}x_{4} + \dots + \delta_{k}x_{k} + d,$$

with suitable $\delta_1, \dots, \delta_k \in \mathbb{R}$, $d \in A$. Then $d = f(0, \dots, 0) = a$; $\delta_1 x = f(x, x, 0, \dots, 0) - a = (\alpha_1 + \alpha_2)x$, i.e., $\delta_1 = \alpha_1 + \alpha_2$; $(\delta_1 + \delta_3)x = f(x, x, x, 0, \dots, 0) - a = (\alpha_1 + \alpha_2 + \alpha_3)x$ whence $\delta_3 = \alpha_3$; considering $f(0, 0, x, x, 0, \dots, 0)$ and $f(0, 0, 0, 0, x, 0, \dots, 0)$ we obtain $\delta_4 = \alpha_4$, $\delta_5 = \alpha_5$, etc., showing that $f(x_1, x_1, x_3, x_4, \dots, x_k) = (\alpha_1 + \alpha_2)x_1 + \alpha_3x_3 + \alpha_4x_4 + \dots + \alpha_kx_k + a$, which was needed.

A special case of $\mathcal C$ is the clone of all functions of form $\sum \lambda_i x_i + \alpha$, where A is a p-elementary Abelian group considered as an $\mathcal R$ -module with $\mathcal R$ the full endomorphism ring of A. (This is the third type of maximal clones in Rosenberg's theorem.)

It is easy to observe that the clone of all functions preserving a given non-trivial equivalence relation on A and the clone of all functions invariant un-

der a given permutation p of A are also inductive.

Indeed, let $f: A^k \to A$ where |A| < k and suppose that, for any proper π , f^{π} preserves a given non-trivial equivalence \sim on A. Let $a_i, b_i \in A$ and assume $a_i \sim b_i$ ($i = 1, \ldots, k$). Since |A| < k, at least two a_i 's - say, a_1 and a_2 - coincide; the same is valid for the b_i 's. If $b_1 = b_2$ then $f(a_1, a_2, \ldots, a_k) \sim f(b_1, b_2, \ldots, b_k)$, since $f^{(12)}$ preserves \sim . If $b_1 = b_3$ then $f(a_1, a_2, a_3, a_4, \ldots, a_k) \sim f(b_1, b_1, b_1, b_1, b_2, \ldots, b_k)$, since $a_2 = a_1 \sim b_1$, $a_3 \sim b_3 = b_1$, and $f^{(12)}$ preserves \sim ; further, $f(b_1, b_1, b_1, b_4, \ldots, b_k) \sim f(b_1, b_2, b_3, b_4, \ldots, b_k)$, since $b_1 \sim a_1 = a_2 \sim b_2$ and $f^{(13)}$ preserves \sim . The remaining case $b_3 = b_4$ can be settled in the same fashion. Thus, f preserves \sim .

As for the clone of p-invariant functions, it suffices to remark that $b_i = a_i p$ implies that the pattern of equalities in $\langle a_1, \ldots, a_k \rangle$ is the same as in $\langle b_1, \ldots, b_k \rangle$, whence $(f(a_1, \ldots, a_k))p = f(b_1, \ldots, b_k)$, since every f^{π} is invariant under p.

3. NON-INDUCTIVE CLONES

Let \leq be a non-trivial partial order on A. Then the clone of all functions preserving \leq is not inductive. We show this by constructing an (n+1)-ary non-monotone function on A with monotone factor functions only.

For this aim, denote by $A^{n+1}_{(ik)}$ the set of all (n+1)-tuples from A whose ith and kth entries coincide. Then $A^{n+1} = \bigcup_{i \neq k} A^{n+1}_{(ik)}$. Making use of the com-

ponentwise partial order on A^{n+1} , we define a new partial order on it as follows: for $a,b\in A^{n+1}$ let $b\leq a$ iff there exist $c_0=b,c_1,\ldots,c_t=a$ $(t\geq 0)$ in A^{n+1} such that, for every $j=1,\ldots,t$, $c_{j-1}\leq c_j$ in A^{n+1} , and there exist i=i(j), k=k(j) such that $c_{j-1},c_j\in A^{n+1}$ (ik).

Now \leq is weaker than \leq ; still they coincide on each $A^{n+1}_{(ik)}$. Hence it is enough to find a function $f:A^{n+1}\to A$ which is not monotone with respect to \leq and is monotone with respect to \leq . Indeed, an n-ary factor $f^{(ik)}$ of f is monotone exactly when $f_{(ik)}$ is monotone, and the latter one is the restriction of f to $A^{n+1}_{(ik)}$.

Let S and T be arbitrary posets: take an arbitrary $a \in S$, and let c, $d \in T$, c < d. Then the function

$$f(x) = \begin{cases} c & \text{if } x \leq a, \\ d & \text{otherwise} \end{cases}$$

is monotone. Apply this fact to the case $S=A^{n+1}$ with \leq , $T=A=\{a_1,\ldots,a_{n-2},0,1\}$ where 1 covers 0, c=0, d=1, $a=\langle 0,1,1,a_1,\ldots,a_{n-2}\rangle$. Then f is monotone with respect to \leq . Put $b=\langle 0,0,1,a_1,\ldots,a_{n-2}\rangle$. Then $b\leq a$ fails, because there is no $c\in A^{n+1}$ with b< c< a, and there are no i,k with $a,b\in A^{n+1}_{(ik)}$. Hence it follows 0=f(a)< f(b)=1, though b< a, showing that f is not monotone with respect to \leq .

The inductivity of the remaining clones appearing in Rosenberg's theorem will be refuted by a common counter-example. Define $f:A^{n+1}\to A$ as follows:

$$f(a_1, \dots, a_{n+1}) = \begin{cases} 0 & \text{if } |\{a_1, \dots, a_{n+1}\}| \le n-1, \\ r-1 & \text{if } \{a_1, \dots, a_{n+1}\} = A, \\ a_r = a_s, r < s. \end{cases}$$

Then (C;)

$$f(1,2,...,i,0,0,i+1,i+2,...,n-1) = i$$

holds for each $i \in A$.

Now, let ρ be an h-ary $(2 \le h < n)$ central relation on A; suppose that 0 belongs to the centre of ρ and $(1,2,\ldots,h) \notin \rho$. Then $(C_1),\ldots,(C_h)$ together show that f does not preserve ρ . On the other hand, every factor of f takes on at most two values one of which is always 0; thus, ρ is preserved by every factor of f. This means that the clone of all functions preserving ρ is not inductive. In contrast with this, the clone of all functions preserving a unary central relation is inductive.

Finally, let T be a h-regular family of equivalences on the set $A=\{0,1,\ldots,n-1\}$ $(2< h\leq n)$, and denote by λ_T the relation determined by T. We can assume without loss of generality that $\{0,1,\ldots,h-1\}$ is a full system of representatives for some equivalence in T (i.e., $\langle 0,1,\ldots,h-1\rangle \not\in \lambda_T$). Then $(C_0),\ldots,(C_{h-1})$ together show that f does not preserve λ_T . As in the preceding case, we can check that each factor of f preserves λ_T . Thus, the clone of all functions preserving λ_T is not inductive.

4. AN APPLICATION

Consider the three-element set $A = \{0,1,2\}$. We write $r_3(x,y)$ for $2x + 2y \pmod{3}$, d for the dual discriminator, and l_{q} for the ternary near-projection on A (see, e.g. [1]). We prove that in the lattice of clones on A the clone $[r_{\mathfrak{q}}]$ is covered by $[r_{\mathfrak{q}},d]$. This was discovered by MARCENKOV[4], who determined the lattice of clones of homogeneous functions on the three--element set. We give another proof here, using the inductivity of the clone $[r_{2}]$ which is the same as the clone of functions of form $\sum \lambda_i x_i$ with $\sum \lambda_i = 1$, where A is the base set of GF(3) and $\lambda_{1} \in GF(3)$ (clone C' in Proposition 2). Taking into account that $[r_3,d]$ is the clone of all homogeneous functions on A(see Theorem 2 in [2]), our assertion can be formulated in the following more symmetric way: on the three element set an arbitrary nontrivial linear homogeneous function together with an arbitrary non-linear homogeneous function generates the clone of all homogeneous functions.

We have to show that

$$[r_3,f] \supseteq [r_3,d]$$

whenever f is homogeneous and $f \notin [r_3]$. First, let f be a non-trivial pattern function. Then, as the minimal clones of pattern functions on A are exactly $[l_3]$ and [d] (see [2], Theorem 1), $l_3 \in [f]$ or $d \in [f]$ holds. The latter case implies (*) immediately, while the former can be settled using the identity

$$(**) d(x,y,z) = l_3(l_3(y,x,z), r_3(x,y), l_3(z,y,x)).$$

Secondly, let f be a non-pattern function. Then f is at least ternary. It suffices, however, to consider only the case when f is exactly ternary. Indeed, if n>3 is the minimal integer with the property that there exists an n-ary homogeneous non-linear f such that $[r_3,f]$ does not contain $[r_3,d]$, then, for each proper factor f^π , $[r_3,f^\pi]$ ($\subseteq [r_3,f]$) does not contain $[r_3,d]$ a fortiori, whence $f^\pi \in [r_3]$. As $[r_3]$ is inductive, this implies $f \in [r_3]$, a contradiction.

Thus, let f be a ternary homogeneous non-pattern function on A with $f \notin [r_3]$. Such a function is determined uniquely by the values f(0,1,2), f(0,0,1), f(0,1,0), and f(0,1,1). A trivial computation shows that there exist 51 such functions and each of them can be obtained by a permutation of variables from exactly one of the following ten functions:

										f ₁₀
$f_{i}(0,1,2)$ $f_{i}(0,0,1)$ $f_{i}(0,1,0)$ $f_{i}(0,1,1)$	0	0	0	0	0 .	0	0	0	0	0
f _i (0,0,1)	0	0	1	1	1	1	2	2	2	2
f _i (0,1,0)	0	2	0	2	2	2	0	0 ,	2	2
f _i (0,1,1)	2	2	2	0	1	2	0	1	0	2

We have to prove that, for any i, either $d \in [f_i]$ or $l_3 \in [f_i]$ holds (the latter one also suffices in view of (**)). But this is true, as the following identities show:

$$\begin{split} f_1\left(f_1\left(z,y,x\right),z,z\right) &= d\left(x,y,z\right), \\ f_4\left(f_4\left(x,y,z\right),f_4\left(y,z,x\right),f_4\left(z,x,y\right)\right) &= f_2\left(x,y,z\right), \\ f_2\left(z,y,f_2\left(y,z,x\right)\right) &= l_3\left(x,y,z\right), \\ f_7\left(z,f_7\left(z,x,y\right),y\right) &= f_8\left(x,y,z\right), \\ f_8\left(x,x,f_8\left(x,y,z\right)\right) &= f_3\left(x,y,z\right), \\ f_3\left(x,z,f_3\left(y,x,z\right)\right) &= f_{10}\left(x,y,z\right), \\ f_{10}\left(z,y,f_{10}\left(z,y,x\right)\right) &= p\left(x,y,z\right) \end{split}$$

where p is Pixley's ternary discriminator (it is well-known that $d \in [p]$).

$$\begin{split} f_5 &(x, f_5 (x, z, y), x) = f_6 (x, y, z), \\ f_6 &(f_6 (x, z, y), f_6 (z, y, x), f_6 (y, x, z)) = \mathcal{I}_3 (x, y, z), \\ f_9 &(x, y, f_9 (y, x, z)) = p (x, y, z). \end{split}$$

REFERENCES

- [1] B. Csákány, Homogeneous algebras are functionally complete, Algebra Universalis, 11(1980), 149-158.
- [2] B. Csákány T. Gavalcová, Finite homogeneous algebras I., Acta Sci. Math. (Szeged), 42(1980), 57-65.
- [3] W. Harnau, Eine Verallgemeinerung der Vertauschbarkeit in der k-wertigen Logik, Elektronische Informationsverarbeit. Kybernetik, 12(1976), 33-43.
- [4] S.S. Marčenkov, On closed classes of self-dual functions of many-valued logic (in Russian), Problemy Kibernet., 36(1979), 5-22.