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Varieties of affine modules

By ‘B. CSAKANY in Szeged .

Let R be a ring with unit'element. Any n-ary (n>0) polynomial f=£(x;, ..., X,)
of a unital right R-module A is of the form

(1) ' SR | X1Qitr + Xy 0

- where ¢;€R (i=1, ..., 'n). Denote by I the family of all polynoinials of A satisfying

Zo =1. We can assocmte with A the algebra A*=(4; I) which will be called an

a]ﬁne module over R.
Affine modules were introduced by OSTERMANN and SCHMIDT in [9] in the
case when R is a field this notion coincides with that of the affine space over R,

.treated by MAcC'LANE and BIRKHOFF in [2]. In [6] GIVANT, characterizing varieties -
" in which all algebras are free, announced that all affine spaces over a division ring

(defined similarly) form such a variety.

In what follows we show that all affine modules over any rmer ‘with unit element
form a variety and we give an abstract characterization (in terms of subalgebras
and congruences) up to (ratlonal) equivalence in MAL’CEV’S sense (see [3], Chapter 9)
for varieties of affine modules. Such varieties' over commutative rings as well as
over fields are also characterized. Finally, we show that any variety of affine modules
determines its “ring of scalars’ up to isomorphism. '

The basic terminology we use is adopted from [1]. Note, however, that we will
denote polynomial symbols and polynomials induced by them in the same way. Some-
times we write (gq, ..., 0,) instead of the polynomial f given by (1). The base sets
of algebras A, B, ... will be denoted by 4, B, ... . All rings which occur in the follow-
ing are supposed to have a unit element and all modules will be unital right modules.
We shall denote the class of all R-modules by .# (R), and the class of all affine mod-
ules over R by &/ (R). For any R-module B the associated affine module will always
he denoted by B*.

Proposition. For any ring R, o (R) is a variety.
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tively. Then F,, UF,, generates Fyo. On the other hénd, FoNFo={xy}. Indeed,

let x€Fy; NFy ; then there exist binary polynomials & and % over F, such that
x=g(Xy, X1)=h(x,, x;). The second equality - holds identically in %; hence by

idempotency, we have x=g(xy, x)=h(x,, Xo)=x,. Thus, we can apply Lemma 1:

Fo122 Foy X Foy, and there exists an isomorphism ¢ such that for any binary poly-

nomial k over Foys (k (%o, %)) 0= (k(xq, xy), Xop and (K (%o, X9)) 0= (x0, k (x,, Xo)). -

4 We can find a ternary polynomial Jover Fy,, such that (f (x5 x4, X)) o={x; Xg).
Let F, denote the free algebra over # with countable free generating set
{xo, X5 .} agd for any x, yEIj'w let x+y=f(x,, x, y). This binary algebraic func-
tion over ¥ will be called addition. We show that (Fu; +) is an Abelian group
B First, (x,, X3) =(f(x0a X15 xz))@ =f(%0, %, 0, X50) =/({xo, Xo))s (X1, Xo)s (g5 Xg))="
T—(f(xo, %1 Xo)s /%o, %o, %)) Hence f(x, y, x)=f(x, x, )=y is an identity in %
. hen for anyxEEa, we get x+x,=f(x,, X, xo)=x, and similarly, x,+x=x; ie., x
is the zero element for the addition. ’ B

Let now F,y, be a free algebra over # with free generating set {y, ¥
, 2 s Uno

Xos X1 ..os X}, Let F,y and F,, denote the subalgebras of F,, generated by
.{xo, X15 -5 X} and {xg, ¥y, ..., Va}» respectively. Lemma 1 appliedntg algebras F

F”O and K, furnishes the following fact: ¥, = F,o X ¥,, and there exists az isomornoﬁj
ism  such that for any (n+1)-ary polynomial / OVéanO,; (1(x0, x4, ... x,)) 5 =
=(U(x0; X1, .., %,), %) and (1005 Y15 ooy YV =(,, 1(x0, 15, 7)) ho,ldf‘ This

implies
| 3) ' P (%s X0, 1), .. af(xo: Xas Vn)) = f(%0, 2(x1, ..., X,), P2(1s s V)
for any n-ary polynomial p over F,,. Indeed,
P, X1, 3D, oo f (%o, Xy 1)) =
= ((fGeot, 28, 71, .., Fxrols %0, B =
= (PUFGos 30)s Cxas %), (s 21 oes s Xy (s Xy G, 7))t =
= <P(f(x0: Xy5 Xo)y ees f(Xgs X, xo)):P(f(xt)s Xo5 Vs -oes (%05 X, yn))> Yl =
=PG5 s %), Py s yIIYE = o |
= <f(xo=17(x1: v s Xn)s xo),f(xo: X052 (V15 ..., yn))>¢-‘1 =
= (o x0)s P @s s %), %), oy DGy o Y =
= (Fa ¥ @G, oo 5D P e DO =
= (%0, Dot s s P (315 oees 1)
~Since (3) holds identically in #, for p=f aﬁd for any x,. ¥, z€F, we get
X +2) = f( S, X0 Xo), f6o, X, X0), F%o, 3, 7)) ="
= f(%o, f (%o, %, 3), f(xo, X0, 2)) = (x+y)+z,

Varieties of affine modules : ' 7

i.e. the addition is associative. Commutativity of addition may be checked analog- _
ously. Finally, again by (3), L :
x+f(x= Xo» xO) =‘f(x0=f(x0" X5 xo):f(xs %05 xo)) =
=f(f(x0’ x(]a x):f(xm X, xO)}f(xO: xO: xO)) :f(x: X, xO) : x07
showing that f(x, x,, X,) is the additive inverse of x in F,.

Let us consider the set R of all unary algebraic functions over F;, which in-
volve no constants unless x,. For each such function ¢ there exists a binary poly-
nomial z over ¥, such that xt=1(x,, x) for any xcF,. We define addition and
multiplication on R as follows: o

. x(T+7y) = X1, +XT5,  X(117) = (X7)T,-
It may be seen immediately that R is closed under these operations; furthermore, addi-
tion is associative, commutative and invertible (namely, x(—1)=F(#(x, X), Xo, Xo)),
while multiplication is associative, left distributive and has a unit element (namely,
the identical function). Right distributivity follows from (3):

x((‘51+rg)‘£3) = (x11+xf2)73 = t:s("o:f(xo: 1y (%o, X), 12 (%o, x))) =
= f(x05 t3(05 11 (X0, X)), 23 (%o, £3(X0s x))) = (xty) 13—§—(x12)73 = x(’[lTB_i—.Tsz)'

Thus, R=(R; +, -) is a ring with unit element. Let R={g| o€ R}, and R=(R; +, -)
a ring isomorphic to R under the one-to-one correspondence g--g.

To get the desired equivalence we show the existence of a weak isomorphism
4 of the free affine module G over R with countable generating set onto ¥, which
maps the free generating set of G onto that of ¥,,. By Lemma 2, G may be given
in the form G=F*, where F is the free R-module with countable free generating set
{%1, X5, ...}, and the free generators of ¥* are {0, x;, X5, ...}; then each element
of G can be written in the form xi;éﬁ—--- +X; Oms where g;, ..., 0,, ar¢ NON-ZETO
elements of R, and this representation is unique (empty sum is allowed).

Define now y by (x; @+ +x; 0n)x=%; 0+ +x; 0n (at the right band
side, x; are free generators of F,, addition and “scalars” are the above-defined
algebraic functions on F,). Furthermore, let Ox=x,. Then y maps the free gen-
erating set of G onto that of F,,. Observe that y is one-to-one; indeed, if

(4) ) . 'xi1Q1+ e 'I'.'xi'QO = leo;l + o +xj,,o-n ‘

holds in ¥, then (4) (which i$ a short form for the equality of two elements of F,,,
whose full expression invoives the polynomials f, 7y, ..., F» S1, ---, S, and the free
generators xo, X; , ..., X; , 'le', ey x; ) holds identically in 2. Replace all x; and x;,
except x; by x,; then, using idempotency of all 7, and s, we get ;3 (%o, x,-l)'= X, unless
X, =x;, for some /. But r;(x,, x; )=x, holds also identically in &, whence it-follows
0:=0 in R, a contradiction. Thus we conclude that X =X and ry(xg; xfi):
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=5, x.jl)=s,(x0, xi1)=' whence ¢;=¢, in R. Now a tfivial induction shows that
the two sides of (4) are the same. .
To prove that y is onto we -use (3) in the form P(Cer+yp), o5 (5, +y )=

=p s s %) +p (1, .., v, (e, addition in F, commutes with all polynomials). -

Any element of F, can be written in the form p(xp; ..., x,); but
P (X5 eees X) = p(xo+Xo+-+ +,, Xo+Xy+Xo+- + X, ..., x0+~--—!¥x0+xt) =
= p(xg, Xg5 ..., Xo) FP (X5 X1, Xgy oy Xg)F+-r +p(xg5 ...y X, X,).
- For any 7 (1=i=¢) there exists a binary polynomial p; such that
p(x(): ey Xoy X, Xos -";xo) = pi(xda ‘xi)'
Hence _ .
P05 e ) = py (X, X))+ - TP(x0, %) = X7y + - Fx,m, = (o Tty + -+ X7 7,
where the unary algebraic functions 7m; in R are defined by xz; =pi(xy, X).
To complete the proof, we need a one-to-one correspondence { between all

poly_nox?aials G and F, with the property that for any n-ary polynomial g of G and
for arbitrary y,, ..., €G the equality

® @0 s 7)1 = @O s 1)

holds. Si.npe polynomials of G are the same as (fundamental) operations, every
polynomial of G is of the form (@, -.-»2,), where §,,...,0,€R, 2e:i=1. Let

(@ s 800 21y ..., 2)=2, @1+ +2,0,. There is an n-ary algebraiclfunction of
F,, on the right side; we show that in fact it is a polynomial. Since # is Hamiltonian
the subalgebra H of ¥, generated by {x, ..., x,} is a block for some cdnoruencei
6 of F,,. Then x, g, +--- + X5 0y = X101+ + %, 0,=x, (6), whence X Ql-f-.'-' —}—be €H.
Thus, there exists an n-ary polynomial r of F,, such that X 01+ +Jé,, 0 =r(x n .n X ).
Hence 70t +2,0,=7(z, ..., z,) follows for any z, ..., z,,eFa,‘.n B
To show that { is onto and one-to-one we may proceed similarly as in the case
- of x, but we must take into consideration that now the ¢; may equal 0. Finally we
E;cg.e \%2 t;:vzf(gl, ..-» @) and arbitrary elements Yi=XTy + 4 x,7%, (=1, ..., )

(40’1: cees _Vn))X = (xl(fn@l‘f‘ Ty Op) o + % (Ty 0y + -+ +fm@n))x =
= X (t30; + - + T Qn) + - +xt(7n191+ T 0,) =
. = T+ o+ Xy + T X Tt X700, = @OOLL o5 Yul)s
which was needed. ‘
. Call a variety «# Abelian if in all algebras of & any two operations commute
(i.e., for any m-ary g and n-ary h,

. g(h(xras .y Xp)so.. L B(g(Xggs ee s Xy, onns Ftns ev s X))
1 an identity in o). -
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Theorem 2. 4 variety & is equivalent to o (R) for some commutative ring R
if and only if % is Abelian and satisfies condition (). :

- Proof. On the base of Theorem I, necessity is obvious from the description
of operations on affine modules and the definition of Abelian varieties. Let now %

- be an Abelian variety satisfying (% ). With not_ations used in the proof of Theorem 1,

we have to show that the ring R of all unary algebraic functions on F, involving

no other constants than x,, is commutative. Let o,, QZQR; then for any x€F,,
x(0100) = "2(%: 7;(xo: x)) = rz(i’i (xo5 Xo), r1 (X0, x)) = |
= rl("z(xm Xo)s 75 (X, x)) = rl(x09 ro(X, x)) = x(QzQ1): .

i€, 010:=020:- X

Theorem 3. 4 variety R is equivalent to the variety of all affine modules
( =affine spaces) over a field if and only if & is Abelian, equationally complete and

" satisfies condition (x).

Proof. In view of the preceding theorems, necessity is implied by Givant’s
result mentioned in the introduction. Let now Z be an equationally complete Abelian
variety satisfying (). It is enough to show_that the function ring R is simple. In other
words, we need the following fact: if a commutative ring with unit element, say P,
has a proper ideal J, then the variety £ of all affine modules over P has a proper
(non-trivial) subvariety. - S

We may' assume that P/J is not isomorphic to P. Let # denote that block of
the congruence determined by J which contains n(€P). With any affine module
over P/J we can associate an affine module over P with the same base set by defining:
the operations as follows: (my, ..., 7)) (Vy» ..o v =15 -.2» ) (15 ---» Yi)- Apply-
ing the closure operators S, H and P, one can easily check that the affiné modules
over P obtained by such a way form a subvariety 2’ of #. Moreover, &’ is equiv- _
alent to the variety of all affine modules over P/J, whence, especially, follows that.
&’ is non-trivial. Finally, =2 implies that the variety of all affine modules over P
is equivalent to the variety of all affine modules over P/J. The following theorem.
shows that this is not the case, and thus &’ is a proper subvariety of 2, qu.e.d..

Theorem 4. If, for any rings Ry and R,, o/ (R,) and £ (R,) are equivalent,.
then R, and R, are isomorphic. ’ :

Proof. For i=1, 2, R, when considered as an R;-module is a free R-module:
with the free generator 1. Lemma 2 implies that R —asan affine module over R; —
is free in &/ (R;) with the free generating set {0, 1}. As &/ (R,) is equivalent to 7 (R,)
there exists a weak isomorphism y of R} onto R} such that 0y=0, 1y=1, with cor-
respondence of polynomials {. Let, especially, (¢, 1 —0){=(¢’, 1 —¢") for any binary-
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polynomial (g, 1 —g) of R;}. Define the inapping @: R;~R, by gp=¢’. Since { is
one-to-one and onto, the same is valid for ¢. We show that ¢ is an isomorphism
of R, onto R,; for this aim, it suffices to show that ¢ is homomorphic.

First we prove ' :

) (1, -L, D=1, -1, 1).

Let (19 *1: I)CZ(OC, ﬁ’ y)a then using (5) for q=(1, _17 1) and y1=19 y2=J’3=0= we
obtain a=1. Similarly we get f=—1, y=1. - :
Now from (5) and (6) it follows

Ce2) = () = 43) )1, 0) = (e, T— (e +))(1, O))y =
= (4 =L D(Cs 1=0)(1, 0, 0, (3, 1—3) (1, O)) g =

= (L =L D((s 1-%)(1, 0) 7, 0z, (3, 1—3) (1, 0) ) =

=1, =1, (¢, 1-x7)(1, 0), 0, o, 1-y)(Q, 0)) =x"+y.

Finally, for any x, y€R, we have Cy) g =(p+0(1 — Mx=0"1— V) (xyg, O)=

=(xy)y’, whence

®) =1 = (xp)y = (x)y-y = X'y =xy,

completing the proof.
~ Note that the proof of theorem 3 indicates also the following result: A variety
of form o/ (R) is equationally complete if and only if R is a simple ring.
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