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Abstract. As an abstraction of the conjugation on the multiplicative
semigroup of quaternions, Garrão, Martins-Ferreira, Raposo, and So-
bral [2] introduced the notion of a conjugation semigroup, and studied
the category of cancellative conjugation semigroups. In this note the
conjugations of a group are shown to be in one-to-one correspondence
with the endomorphisms of the group whose ranges are in the center.
Moreover, cancellative conjugation semigroups are proved to be, up to
isomorphism, the conjugation subsemigroups of conjugation groups.
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1. Introduction

The notion of a conjugation semigroup has been introduced by Garrão,
Martins-Ferreira, Raposo, and Sobral [2] in order to present and investigate
new weakly Mal’tsev categories that fail to be Mal’tsev. A conjugation on
a semigroup S = (S; ·) is a unary operation – on S such that the following
equalities hold for every x, y ∈ S:

xx = xx,(1)

xyy = yyx,(2)

xy = y x.(3)

By a conjugation semigroup we mean a unary semigroup S– = (S; ·, –)
where – is a conjugation on the semigroup S. If S is a monoid, that is, it
has an identity element 1, then – need not satisfy the equality 1 = 1. In the
context of monoids, we usually require that conjugations have this property.
When this is not the case, for example, when applying results obtained
for semigroups in the context of monoids, we distinguish the conjugations
on monoids where the equality 1 = 1 is not required to be satisfied from
those where it is required by calling the former semigroup conjugations and
the latter monoid conjugations. A conjugation monoid is defined to be a
unary monoid S– where – is a monoid conjugation on the monoid S. If S
is a cancellative semigroup (monoid) or, in particular, a group then S– is a
cancellative conjugation semigroup (monoid) or, in particular, a conjugation
group. For example, rules x = x, x = 1, and x = x−1 define conjugations on
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every commutative semigroup, commutative monoid and group, respectively.
We denote these conjugations by id, 1 and inv, respectively. Note that the
mappings defined by the first two rules on any semigroup and on any monoid,
respectively, are endomorphisms, and we denote them also by id and 1.

Notice that conjugation semigroups (monoids, groups) form a variety of
unary semigroups (monoids, groups). Therefore a unary subsemigroup (sub-
monoid, subgroup) of a conjugation semigroup (monoid, group) is a conju-
gation semigroup (monoid, group), and so we call it a conjugation subsemi-
group (submonoid, subgroup). Obviously, if the conjugation is id (1, inv) in
a commutative conjugation semigroup (commutative conjugation monoid,
conjugation group) S– then each subsemigroup (submonoid, subgroup) of
S is a conjugation subsemigroup (submonoid, subgroup) of S–. A homo-
morphism between conjugation semigroups (monoids, groups) is meant to
be a unary homomorphism (which maps an identity element to an identity
element).

It is clear by (3) that each conjugation on a semigroup (monoid, group)
is necessarily an anti-endomorphism of the semigroup (monoid, group), that
is, a homomorphism from the semigroup (monoid, group) into its left-right
dual. In particular, on a commutative semigroup (commutative monoid,
Abelian group), the conjugations are just the endomorphisms since (1) and
(2) are implied by commutativity. For example, the conjugations id and 1
are of this kind.

The examples in [2] motivating the notion of a conjugation semigroup are
the multiplicative semigroups with underlying sets

TK = {u ∈ K : 0 < |u| < 1} (K ∈ {R,C,H})

together with the conjugation id if K = R and with the usual conjugation
otherwise. The same conjugation on the multiplicative group K∗ of the
field K defines a conjugation group (K∗)–, therefore (TK)– is a cancellative
conjugation subsemigroup in (K∗)–. Note also that (TK)– = (TH)– ∩ (K∗)–,
and (R∗)– is a conjugation subgroup in (C∗)– and (C∗)– in (H∗)–. The
conjugation defined on H∗ has the property that u = u−1|u|2 for every
u ∈ H∗ where the mapping u 7→ |u|2(= uu) is an endomorphism of the
group H∗, and its range is R+ = {u ∈ R : u > 0} which is contained in
the center of H∗. Obviously, this property is inherited by the conjugation
subgroups (C∗)– and (R∗)– since they contain R+. The aim of Section 2 is
to describe any conjugation on a group in a similar way.

Theorem 1. For every group G, there is a one-to-one correspondence be-
tween the conjugations of G and the endomorphisms of G whose ranges are
in the center of G. For any such endomorphism ζ of G, the respective con-
jugation is defined by the rule g = g−1 · gζ (g ∈ G).

For example, the conjugations id and 1 on Abelian groups correspond to
the endomorphisms x 7→ x2 and id, respectively, and the conjugation inv
corresponds to the endomorphism 1.

It is an important observation in [2] that a cancellative semigroup pos-
sessing a conjugation is necessarily embeddable in a group. The question
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naturally arises whether every cancellative conjugation semigroup is embed-
dable in a conjugation group (as a unary subsemigroup). In Section 3 we
give an affirmative answer to this question.

Theorem 2. The cancellative conjugation semigroups (monoids) are, up to
isomorphism, just the conjugation subsemigroups (submonoids) of conjuga-
tion groups.

As it has been mentioned, the motivation for introducing and studying
conjugation semigroups and monoids in [2] has come from the topic of weakly
Mal’tsev categories. Therefore we formulate our results in Section 4 in terms
of category theory.

2. Conjugations on groups

This section is mainly devoted to proving Theorem 1. Before focusing on
conjugations on groups, we introduce a weaker version of a conjugation on
any semigroup which is defined by the properties crucial from the point of
view of Theorem 1, and show that on cancellative semigroups, it coincides
with the original notion.

Let S be an arbitrary semigroup. The center of S, denoted by Z(S),
consists of all elements of S which commute with each element of S. If Z(S)
is non-empty then it forms a subsemigroup in S. Note that if S is a monoid
then 1 ∈ Z(S). Consequently, the center of a monoid (group) always forms
a submonoid (subgroup).

If – is a unary operation on a semigroup S then we call – a weak conju-
gation if the equalities

xyy = yyx,(4)

xy = y x.(5)

hold for every x, y ∈ S. For weak conjugations on monoids we use the terms
weak semigroup conjugation and weak monoid conjugation in a similar way
as for conjugations.

Clearly, (1) and (2) imply (4), and (3) coincides with (5), so that a conju-
gation is necessarily a weak conjugation. Conversely, (4) implies the equality
xxx = xxx (yyy = yy y) for every x ∈ S (y ∈ S), whence we obtain xx = xx
(yy = yy), if S is left (right) cancellative. Let us also mention that if S has
an identity element 1 then (5) implies 1 · 1 = 1 = 1 · 1 (1 · 1 = 1 · 1) whence
1 = 1 follows if S is left (right) cancellative. Thus we verified the following.

Proposition 1. (i) Every conjugation on a semigroup (monoid) is a
weak conjugation.

(ii) If a semigroup (monoid) is left or right cancellative then a unary
operation on it is a conjugation if and only if it is a weak conjugation.

(iii) If a monoid is left or right cancellative then a (weak) semigroup
conjugation on it is a (weak) monoid conjugation.

The starting point towards Theorem 1 is the following general observation
on (weak) conjugations.



4 MÁRIA B. SZENDREI

Proposition 2. For every semigroup S and every weak conjugation – on
S, the mapping

(6) ζ : S → S, aζ = aa (a ∈ S)

is an endomorphism of the semigroup S such that Sζ ⊆ Z(S).

Proof. Property (4) implies that Sζ ⊆ Z(S). By applying (5) and (4), we
obtain for every a, b ∈ S that

(ab)ζ = abab = abba = aabb = aζ · bζ.
Thus ζ is, indeed, an endomorphism of the semigroup S. �

Now we turn our attention to conjugations on groups, and prove Theorem
1. Let G be an arbitrary group. To any conjugation – on G, Proposition
2 assigns an endomorphism ζ of G whose range is contained in Z(G). It is
straightforward by the definition of ζ that – can be expressed by means of
ζ as follows:

(7) g = g−1 · gζ for every g ∈ G.
Consequently, the assignment – 7→ ζ given by (6) defines an injective map-
ping from the set of all conjugations of G to the set of all endomorphisms
of G whose ranges are contained in Z(G). In order to complete the proof
of Theorem 1, it suffices to show that, for any endomorphisms ζ of G with
Gζ ⊆ Z(G), the unary operation – defined by the rule in (7) is a conjuga-
tion on G. By Proposition 1(ii), this follows if we check that – is a weak
conjugation. Let ζ be an endomorphism of G such that Gζ ⊆ Z(G). Then
equality (4) is implied since gg = gζ ∈ Z(G) by assumption, and property
(5) can be checked as follows where the same assumption is applied in the
last but one step:

gh = (gh)−1 · (gh)ζ = h−1g−1 · gζ · hζ = h−1 · hζ · g−1 · gζ = hg.

This completes the proof of Theorem 1.

3. Cancellative conjugation semigroups

The aim of this section is to prove Theorem 2.
Throughout the section, let S– = (S; ·, –) be a cancellative conjugation

semigroup, and put S = (S; ·).
It is observed in [2] that, due to property (2), conjugation semigroups

satisfy the condition that aS ∩ bS 6= ∅ for every a, b ∈ S. This implies by
Ore’s theorem [1, Theorem 1.23] that the semigroup S is embeddable in
a group. Since (2) is left-right symmetric, the dual condition Sa ∩ Sb 6=
∅ (a, b ∈ S) also holds in S. Thus we see by [1, Theorems 1.24 and 1.25]
that there exists a group G containing S as a subsemigroup such that

(8) every g ∈ G is of the form g = ab−1 = c−1d for some a, b, c, d ∈ S,

and G is uniquely determined up to isomorphism. Such a group G is called
the group of quotients of the semigroup S.

The main step of the proof of Theorem 2 is that we extend the conjugation
– on S to the group of quotients G of S such that we obtain a conjugation
∼ on G. Before introducing ∼, we need two lemmas.
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Lemma 1. For every a, b, c, d ∈ S, the following implications hold in G:

(i) if ab−1 = c−1d then b
−1
a = d c−1;

(ii) if ab−1 = cd−1 then b
−1
a = d

−1
c.

Proof. (i) If ab−1 = c−1d in G then ca = db in S whence we see by (3) that

a c = ca = db = b d in S. This implies the equality b
−1
a = d c−1 in G.

(ii) If ab−1 = cd−1 in G then property (8) ensures that ab−1 = x−1y =
cd−1 for some x, y ∈ S. Thus applying (i) for both equalities, we obtain the
equality to be verified. �

Lemma 2. For every a ∈ S and g ∈ G, we have aag = gaa = gaa = aag.

Proof. We show the first equality, the rest follows since – satisfies (1). By
(8) assume that g = bc−1 = d−1e for some b, c, d, e ∈ S. Then db = ec and
dbaa = ecaa in S. By (2), we obtain that daab = eaac in S. Hence we
deduce that aag = aabc−1 = d−1eaa = gaa in G. �

Now we are ready to define the unary operation ∼ on G. For any g ∈ G,

if g = ab−1 for some a, b ∈ S then let g̃ = b
−1
a. Lemma 1 shows that the

operation ∼ is well defined.

Proposition 3. The unary operation ∼ on G is a conjugation, and it ex-
tends the conjugation – on S.

Proof. First we check that ∼ extends –. Assume that c = ab−1 for some
a, b, c ∈ S. Then a = cb in S, and we have a = cb = b c by (3) which implies

that c = b
−1
a = c̃.

By Proposition 1(ii), it suffices to prove that the unary operation ∼ is a
weak conjugation, that is, properties (4) and (5) hold. Consider arbitrary
elements g = ab−1 and h = cd−1 in G where a, b, c, d ∈ S.

To verify the equality hgg̃ = gg̃h, first observe that, by the definition of
∼ and by Lemma 2, we have

gg̃ = ab−1ãb−1 = ab−1b
−1
a = a(a−1bb)−1 = a(bba−1)−1 = aa(bb)−1.

Thus we have to check that haa(bb)−1 = aa(bb)−1h. Applying Lemma 2, we
obtain that, indeed,

haa(bb)−1 = aah(bb)−1 = aa(bbh−1)−1 = aa(h−1bb)−1 = aa(bb)−1h.

To show the equality g̃h = h̃g̃, notice that h̃g̃ = c̃d−1ãb−1 = d
−1
cb

−1
a

by definition. On the other hand, we have b−1c = xy−1 for some x, y ∈ S
by (8). This implies that gh = ab−1cd−1 = axy−1d−1 = ax(dy)−1, and by

Lemma 1(i) that y−1x = cb
−1

. By applying these equalities and (3) for –,
we deduce that

g̃h = dy
−1
ax = (yd)−1x a = d

−1
y−1x a = d

−1
cb

−1
a.

Thus the equality g̃h = h̃g̃ follows. �

Proposition 3 shows that the conjugation semigroup S– is, indeed, a con-
jugation subsemigroup in the conjugation group (G; ·,∼), and so Theorem 2
is proved for cancellative conjugation semigroups. By Proposition 1(iii), the
statement for cancellative conjugation monoids is a straightforward conse-
quence.
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4. Categories of conjugation groups, and of cancellative
conjugation semigroups and monoids

In conclusion, we formulate our results in terms of category theory.
Denote the category of conjugation groups by G, and consider the category

Ĝ of all unary groups (G; ·, ζ) where the unary operation ζ is an endomor-
phism of the group (G; ·) such that Gζ ⊆ Z(G). We have seen at the end of
Section 2 that the assignments (G; ·, –) 7→ (G; ·, ζ) and (G; ·, ζ) 7→ (G; ·, –)

between the objects of G and Ĝ, where ζ is defined in the first assignment
by (6) and – is defined in the second one by (7), are inverses of each other.
Now let (G; ·, –) and (G; ·, ζ), and similarly, (H; ·, –) and (H; ·, ζ) be pairs
of unary groups assigned to each other by the previous assignments, and let
φ be a homomorphism from the group (G; ·) to the group (H; ·). Then φ is
easily seen to be a homomorphism from (G; ·, –) to (H; ·, –) if and only if it is
a homomorphism from (G; ·, ζ) to (H; ·, ζ). For, if g ∈ G then gφ = gφ if and
only if gφ · gφ = gφ · gφ, where the left hand side is equal to (gg)φ = (gζ)φ,
and the right hand side to (gφ)ζ. Hence the assignments between the hom-

sets of G and the hom-sets of Ĝ which send each morphism to itself extend

the former assignments between the objects of G and Ĝ to mutual inverse

functors between the categories G and Ĝ. This provides the following form
of Theorem 1.

Corollary 1. The categories G and Ĝ are isomorphic to each other.

As in [2], denote the category of cancellative conjugation semigroups by
S, and the category of cancellative conjugation monoids byM. Notice that
G is a full subcategory of M, and M is a full subcategory of S (contrary
to a remark in [2, p. 814]; recall Proposition 1(iii) and the fact that any
homomorphism between left (right) cancellative semigroups with identity
elements maps an identity element to an identity element). Consider the
category SgrG of all conjugation subsemigroups of the conjugation groups,
and similarly, the category MonG of all conjugation submonoids of the con-
jugation groups. Since each conjugation subsemigroup (submonoid) of a
conjugation group is obviously cancellative, SgrG (MonG) is a full subcat-
egory of S (M). Thus Theorem 2 is equivalent to the following statement.

Corollary 2. The category SgrG (MonG) coincides with S (M).
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