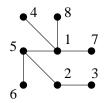
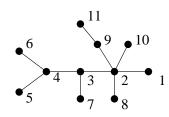
Graph Theory (2025 fall semester) Practice 2

- 1. Is there a graph with the following degree sequences?
- a) 11, 3, 3, 3, 3;
- **b**) 11, 3, 3, 3.
- 2. Is there a graph without loop edges with the following degree sequences?
- a) 12, 3, 3, 2, 2;
- **b**) 6, 6, 6, 6, 3, 3, 2, 2.
- **3.** Is there a simple graph with the following degree sequences?
- **a)** 3, 3, 3, 2, 2, 2, 1, 1, 1;
- **b**) 6, 6, 5, 4, 4, 3, 2, 2, 1;
- **c)** 6, 6, 6, 6, 3, 3, 2, 2.
- **4.** Is there a tree on 8 vertices with the following degree sequences: **a)** 1, 1, 2, 2, 2, 2, 2;
- **b)** 1, 2, 2, 2, 2, 2, 3; **c)** 1, 1, 1, 2, 2, 2, 3, 4; **d)** 1, 1, 1, 2, 2, 2, 2, 3?
- 5. Let G be a simple graph with the degree sequence 1, 2, 3, 4, 5, 6, x, y. What is the maximum number of edges of G? (Additional condition: the Havel-Hakimi algorithm cannot be used to prove that a certain degree sequence cannot be realized as a simple graph.)
- **6.** Can we put 15 knights on a 20×20 chessboard such that all of them
- a) attacks exactly 3 other knights?
- **b)** attacks exactly 2 other knights?
- 7. Construct a finite, connected graph with the following properties:
- a) has an edge e such that G-e is still connected; b) has a vertex v such that G-v is still connected;
- c) for any edge e: G e is connected;

- g) for any edge e: G e is not connected;
- d) for any vertex v: G v is connected;
- e) has an edge e such that G e is not connected; f) has a vertex v such that G v is not connected;
 - h) for any vertex v: G v is not connected.
- 8. Let G(V, E) be a simple, connected graph on $n \geq 2$ vertices, and $v \in V$. Prove that if G v is still connected then G has a spanning tree T such that v is a leaf of T.
- 9. Construct a tree such that there are only two distinct degrees: one of them appears 9 times, and the other one 92 times. What could be those two degrees?
- 10. How should we choose the value of x such that the following Prüfer code 2, 3, x, 3, 2, 4, 4, 3encodes a tree with only odd degrees?
- 11. Determine the Prüfer code of these trees:





- **12.** Draw the trees with Prüfer codes: **a)** 1, 2, 3, 4, 5, 4, 3; **b)** 2, 5, 10, 1, 9, 3, 8.
- **13.** Show that for positive integers $d_1 \le d_2 \le ... \le d_n$ the following holds: $\sum_{i=1}^n d_i = 2(n-1) \iff$ there exists a tree on n vertices such that $d(i) = d_i$.
- **14.** Consider a Prüfer code 1, 3, x, 3, 2, 2, x, 4, 5 of a tree T. What can be the smallest value of x such that $\Delta(T) \leq 3$? (also draw down T)
- 15. Consider n coins with pairwise different weights, and a two-arm scale. Prove that the heaviest can be identified with n-1 weighings but cannot be identified with less weighings! (The two-arm scale can compare the weights of two coins, it is not allowed to put more coins on it.)