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7Z: set of integers,
N: set of positive integers,

°
°
@ Z.: set of nonnegative integers,
@ R: set of real numbers,

@ R, : set of nonnegative real numbers,
o

C: set of complex numbers.

If Q isanonempty setand A is a subset of Q, then we will denote it
by AC Q (where C is not necessarily for strict inclusion, i.e.,
if AcC Q, then A=Q can occur as well).



Required knowledge of measure theory

Algebra, o-algebra

Let Q # () be a non-empty set. A set # C 29 consisting of certain
subsets of 2 is called an algebra if

(i) QeH,

(i) closed under the union of pairs of sets, i.e., forany A, B € H, we
have AUB € H,

AcH, wehave A:=Q\AecH.

An algebra A c 29 s called a o-algebra if the following stricter
version of (ii) holds:

(iii) closed under the complements of individual sets, i.e., for any

(i") closed under countable unions, i.e., forany Ay, Az,--- € A, we
have | J An€ A.
n=1
Then the pair (£2,.A) is called a measurable space.




Required knowledge of measure theory

Let Q # () be a nonempty set and # c 2 be an algebra.
A function p:H — [0, 0] is called

o finitely additive, if for any disjoint sets A, B € ‘H, we have
(AU B) = u(A) + u(B).
@ ameasure, if (@) =0 anditis o-additive, i.e.,

K (U An> = ZM(An)
n=1 n=1

for any pairwise disjoint sets Ay, Ay, - - - € H satisfying U A, e H.

n=1

If p:H — [0,00] is finitely additive, then, by induction, one can show
that for any n < N and any pairwise disjoint sets {Ax};_; C H, we
have pu(Uk—1 Ak) = >k—1 1(Ak)-



Required knowledge of measure theory

Let Q # () be a nonempty set, and #H c 2 be an algebra.
A measure p:H — [0,00] is called

@ finite, if 1(Q) < cc.
@ a probability measure, if 1(Q) =1.

o o-finite, if there exist sets Q1,Qp, - -- € H such that @ = ;2 { Qx,
and (k) < oo, k € N.

A function p: H — [—o0, 0] is called
@ a signed measure, if it can be written in the form u = 1 — o,
where 4, o are measures, and at least one of them is finite.

Let Q be a nonempty set. Foreach ne N, let A, C Q.

If Ay CAzC... and A:= | ] Ap, then we write that A, 1 A.

n=1

If Ay DA, D... and A:= ﬂ A,, then we write that A, | A.

n=1



Properties of a measure (e.g., continuity of a measure)

Let Q # () be a nonempty set, and # c 22 be an algebra.
Let P:H — [0,00] be a finitely additive function such that P(Q2) = 1.
Then
Q@ P(0) =0;
@ foreach Ae H, we have 0 < P(A) < 1;
© P is monotone, i.e., foreach A,Bc H, AcC B, we have
P(A) < P(B), and we also have P(B\ A) = P(B) — P(A);
Q foreach Ac H, we have P(A) =1 — P(A);
@ the following assertions are equivalent:
(a) P is o-additive.
(b) P is continuous from below, i.e., foreach A{,As,--- € H, A, T A
and A€ H, we have ni";o P(An) = P(A).
(c) P is continuous from above, i.e., foreach A{,As,---€H, Al A
and A< H, we have nango P(A,) = P(A).

(d) P is ,,continuous from above on the emptyset”, i.e., for each
Ay, As,--- €M and A, |0, we have nILm P(An) = 0.




Required knowledge of measure theory

Additivity, subadditivity of a measure

Let (©,.A) be a measurable space and P : A — [0,1] be a probability
measure. Then

@ P s finitely additive;
@ P is o-subadditive, i.e., for each A¢,As,--- € A, we have

e ([j A,,> <3 P(A).
n=1

n=1

One can check that the intersection of any nonempty family of o-algebras is a
o-algebra.

Generated o-algebra by a family of sets

Let Q +# 0 be a nonempty set, and H C 2% be an algebra. Let I £ ( and for each
v €T, let A, € H. The intersection of all the o-algebras containing the sets A,

v €T, iscalled the o-algebra generated by the family of sets A,, v € T. In
notation: o(A, :y er).

The definition of a generated o-algebra can be also given for an arbitrary family of
sets A, C Q, v €Tl (not necessarily belonging to an algebra).



Required knowledge of measure theory

Infact, o(A,: vy €T) isthe smallest s-algebra, which contains the
sets Ay, yeT.

Carathéodory extension theorem

Let Q # () be a nonempty set, and #H c 2 be an algebra.

Let p:H —[0,00] be a o-finite measure.

Then there exists a uniquely determined o-finite measure
v:o(H)— [0,00] such thatforeach A € #H, we have v(A) = u(A).

Probability space

By a probability space, we mean a triplet (2, .4,P), where (2,.A) is
a measurable space, and P : .4 — [0,1] is a probability measure.

v

The elements of Q are called elementary (atomic) events, and the
elements of A are called events. The set Q is called the sure
(certain) event, and the emptyset () is called the impossible event.



Required knowledge of measure theory

Random variable, and its distribution

Let (2,.A,P) be a probability space, (X,X) be a measurable space.
A function ¢ : Q — X is called a random variable, if it is measurable,
i.e., foreach B e X, we have

eY(B)={¢eB}={weQ:¢w)eBle A

The distribution of a random variable ¢ : Q — X is the function
P& X — R,

P¢(B):=P(( € B)=P(¢"'(B)), Beax,

which is a probability measure on the measurable space (X,X) (can
be checked easily).




Required knowledge of measure theory

Discrete and simple random vectors

A random variable ¢ :Q — X is called discrete, if its range, the set
&(Q2), is countable. A random variable ¢ : Q — X is called simple, if
its range is a finite set.

If £:Q— X and n:Q — X are random variables and P({ =7) =1,
then we write that £ =n P-a.s. (equality P—almost surely).

If X =R, or X =R, then we always choose X := B(R), and

X = B(RY), respectively. So in this lecture a function f: R — R is
called measurable if f~1(B) € B(R) for each B € B(R) (in measure
theory it is calld Borel measurability). If ¢:Q — R? is a random
variable, then we call it a random vector as well.

If (E,p) is a metric space, then we always furnish it with the
Borel-o—algebra B(E) (i.e., with the o—algebra generated by the
open sets).



Required knowledge of measure theory

Simple random vector

If £€:Q— RY is asimple random vector and its range
Q) ={xq,...,xk}, where Xxy,...,xx € RY are pairwise distinct, then

k
§= ZX/']lAj’
=

where A :={weQ:{w)=x}cA j=1,..., k, are pairwise
k

disjointevents and |J A; =, i.e., Aqy,..., A, is aso-called partition
=

J
of Q.




Required knowledge of measure theory

Generated o—algebra

Let ' be a nonempty set, and for each v €T let (X,,X,) bea
measurable space, and let &, : Q — X, be a random variable.
The o-algebra generated by the random variables {¢,:vy €T} :

oy :yer):= 0(551(8):76 r,BeX,).

The o—algebra generated by the random variables {¢, :~v €T} isthe
smallest o—algebra with respect to all the random variables
{& 1y €T} are measurable.

o—algebra generated by a single random variable
The o—algebra generated by the (single) random variable ¢ : Q — X:

o(¢) =€7(X) = {(B): Be X}.

This o—algebra consists of those events A which can be decided whether they occured or not
(w € A holds or not) by observing £ (in the knowledge of &(w)).



Required knowledge of measure theory

Note that if (&) = o(n), then in general it does not hold that

P(¢ =n) =1. Forexample, if n:=¢+1, then o(§) = o(n), but
P(=n)=P(¢=¢+1)=0.

The definition of a generated o-algebra can be given in case of a set
of not necessarily mesaurable functions as well.

For example, the generated o-algebra by an arbitrary function
g:Q— R

o(9) :=o(g '(B): Be BRY) =g " (BRY) = {g '(B) : Be B[R},

and o(g) is the smallest o-algebra with respect to g is measurable.

Measurability with respect to a sub-c-algebra

Let (2,.A,P) be a probability space, (X,X) be a measurable space,
£:Q — X be arandom variable and F C A be a sub-c-algebra. We
say that ¢ is F-measurable, if ¢~1(B)c F, VBc &, ie., o(&) C F.




Required knowledge of measure theory

Separable metric space

A metric space is called separable, if it contains a countable, dense
subset. A subset A of a metric space is called separable, if it is
separable as a metric space by restricting the domain of the original
metricto A x A.

Approximation by simple random variables

Let (E, o) be a separable metric space. For an arbitrary random
variable ¢ : Q — E, there exist simple random variables {£5}%° ,
such that for all w € Q, we have nli_}n;(jﬁ,,(w) =¢(w). If (E,|l.]]) isa
separable normed space, then &, can be chosen such that

1€nll < lI]l, ¥V neN.

| N\

Approximation by simple random variables
For an arbitrary nonnegative random variable n : Q2 — R, there exists
a sequence {np}>°; of nonnegative simple random variables such
that for each w € Q, we have n,(w) 1T n(w) as n — oc.




Required knowledge of measure theory

For example, one can choose the following sequences:

n2n
Nn = Z(] — 1)27nﬂ{(j_1)27n<,,7</‘2—n}, neN,
j=1
n2"
=Y (= 127" na-ncyejpry + Mpzny,  NEN.
j=1

Measurable function of a random variable
Let (X,X) be a measurable space, ¢:Q — X be arandom variable.

Q If (Y,)) is ameasurable space, g: X — Y is a measurable
function, then the composite function goé: Q — Y isa
o(&)—-measurable random variable, i.e., o(go&) C o(&).

Q If n:Q—RY isa o(¢)-measurable random variable, then there
exists a measurable function g: X — RY suchthat n=go¢.




Required knowledge of measure theory

,Good sets” principle

Let (22,.4) and (X, X') be measurable spaces, £ C X,and {: Q — X
be a mapping. Then o(¢71(€)) = ¢ 1(0(€)). Further, supposing that
o(£) = X, the mapping ¢ is a random variable if and only if £=(&) C A.

Measurability of vector-valued mappings

Let (Q,.A) be a measurable space. Then a mapping ¢:Q — RY isa
random vector if and only if {w € Q: ¢(w) < x} € Aforall x € RY,
For a mapping ¢ : Q — RY, the o-algebra o(¢) is the smallest
sub-c-algebra with respect to £ is measurable.

Let (2,.A) be a measurable space, d € N, and &;,...,&q: Q2 — R be
mappings. Let £ : Q — RY, £(w) := (&4(w), ..., &4(w)), w € Q.

Then ¢ is a R9-valued random vector if and only if &, i = 1,..., d, are
real-valued random variables.




Required knowledge of measure theory

Distribution function of a random vector

By the distribution function of a random variable ¢ : Q — RY,
£ =(&,...,&4), we mean the function F¢ :RY — [0, 1],

Fe(x) :=P(6 < X) =P(& < X1,.., €4 < Xg), X =(X1,...,%)" € RY.

Let g: R >R, a,b R, g < b, je{l,...,d}, and
() . Rd
A[aﬁbj)g.R — R,

(A&;bj)g)(x) =9(X1, ., Xj—1, b, Xj 1, - - -, Xd)

— (X1 Xj— 15 @iy Xj 1 - -+ 5 Xd), x € RY.
Then for each x € R?, we have
AL oy Dalsgg) = X (F1)glen....co)
(e1,-€0)€{0,1}9
where cx :=cexax + (1 —ex)bx, k=1,...,d.
Hence A ... A g is a constant function.

[a1,b1) * " " T [ag,bq) 18



Required knowledge of measure theory

If a,beRY then a< b, and a < b means that for each
j=1,...,d, we have ‘3,- < by, and a; < b;, respectively,
andlet[a,b) .= {x € R?:a< x < b}.

Characterisation of a multidimensional distribution function

A function F:R? — R is a distribution function of some random
variable ¢:Q — RY if and only if

(1) F is monotone increasing in all its variables,
(2) F is left-continuous in all its variables,
(3) lim F(x)=1, and

min{X1,...,Xg } —00

XiE}TOOF(Xh'--7Xi—17XiaXi+17"'aXd):0
forall ie{1,...,d} and Xxy,...,Xj_1, Xj41,..., Xg € R,
(4) foreach a,bcRY, a<b, wehave Al) . A9 F>o.

[31 7b1 ) ’ [advbd)




Required knowledge of measure theory
If d =1, then condition (4) is implied by condition (1).

Probability of belonging to a rectangle

If ¢€:Q — RY is arandom variable, then for each a,b € R?, a < b,
we have
;
Pe(la,b)) =P(E € [ab) = AL, ... A, Fe >0,
where F: denotes the distribution function of £. Hence P, is nothing

else but the Lebesgue-Stielties measure corresponding to the distribu-
tion function F;.

Equality of one-dimensional distribution functions

Let F:R—[0,1] and G:R — [0,1] be one-dimensional distribution
functions. If F(x) = G(x) for all the common continuity points x € R
of F and G, then F = G. More generally,if SC R is adense
subset of R such that F(x) = G(x) forall x € S, then F=G.

20



Independence, Kolmogorov 0—1 law

Independence of o-algebras, events and random vectors
Let (22, A,P) be a probability space, I # () be a nonempty set.
@ Foreach yeT, let 7, C A be asub-c-algebra.
We say that the sub-o-algebras {F, : v €'} are independent,

if for each finite subset {~1,...,vn} consisting of distinct
elements of I' and foreach A,, € F,,,...,A,, € F,,, we have

P(A,N...NA,) = P(A,)--P(A,,).

@ Foreach yeT, let A, € A. We say that the events {A,:y e}
are independent, if the corresponding sub-o-algebras
{{0, A,, Q\ A,, Q} : y €T} are independent.

@ Foreach vy €T, let (X,,4&,) be ameasurable space and
& : Q2 — X, be arandom variable. We say that the random
variables {¢,:~ €T} are independent, if the corresponding
(generated) o—algebras {a(gv) iy € r} are independent.

21



Independence, Kolmogorov 0—1 law

The random variables ¢: Q2 — R and n: Q2 — R are independent if
andonly if F¢,(x,y) = Fe(x)F,(y), x,y € R, where F¢,, F and F,
denotes the distribution function of (£,7), & and n, respectively.

Functions of independent random vectors are independent

Let (Q,.4,P) be a probability space. If the random vectors ¢ : Q — R¥
and n:Q — R’ are independent, than for all measurable functions

g :RF - R’ and h:Rf— RP, we have the random vectors
go&:Q— R and hon:Q — RP are independent as well.

o-algebras generated by independent algebras are independent
Let (2,.A,P) be a probability space. If the sub-algebras 7, C A and
Go C A are independent in the sense that for each A € 7y and
B h

< Yoy BIETE P(AN B) = P(A)P(B),

then the generated sub—o—algebras F := o(Fy) and G := o(Gy) are
independent as well.

29



Independence, Kolmogorov 0—1 law

Notation for o-algebra generated by sub-o-algebras

Let (Q2,.4,P) be a probability space, I # () be a nonempty set. For
each v e, let 7, be asub—o-algebra of A.
Let Fy :={0,Q} (i.e., the trivial o—algebra).

If ACT, A#0, then let
Fa=\ Fy=0(F:veN): (U]—")

YEN YEN

o-algebras generated by independent o-algebras are
independent

Let (Q2,.4,P) be a probability space, I # () be a nonempty set. If
{Fy :~v €T} areindependent sub—o—algebras of A, and Fy,F, are
finite, disjoint subsets of I, then Fr, and Fr, areindependent.

Let (2,.A,P) be a probability space, I # () be a nonempty set. If
{F, :~v €T} areindependent sub—o—algebras of A, and Fy,F, are
disjoint subsets of ', then Fr, and Ffr, are independent.

9



Independence, Kolmogorov 0—1 law

Tail-o—algebra

Let (Q2,.4) be a measurable space, ' # () be a nonempty set. For
each v T, let 7, be asub—o—-algebra of A. The tail-o—algebra
corresponding to the o—algebras {F, : v € '} is defined by

T = m ]:r\/:.
{F : F C T, Ffinite}

1. If T isfinite, then 7 = {0,Q}, and hence P(A) € {0,1}, A€ T.

2. For a sequence of sub—o—algebras {F,}°°,, the tail-o—algebra
is

= ﬂd(]‘—kZKZI?),
n=1

where o(Fx:k>n)lT as n— oc.

24



Independence, Kolmogorov 0—1 law

3. If (2, .A,P) is a probability space, ¢,, n€ N, are random
variables, then the following events belong to the tail-o—algebra
corresponding to the sub—o—algebras o(¢,), n € N:

{w €Q: nIi_}n;og,,(w) exists} ,

{wEQ: Iimsupgn(w)gx}, x eR,

n—o00

{w €Q: n”_T,o &n(w) exists and n'L”;o én(w) < x}, x eR,

{w €Q: lim G+ -+ (W) exists}.

n—o0 n

An event belongs to the tail-o—algebra in question if and only if its
occurrence does not depend on changing the values of finite number
of &,. Indeed, for each N e N,

ﬂ (& nits--0) = ﬂ0(§n75n+1,...).
n=1 n=N

28



Independence, Kolmogorov 0—1 law

However, the event
{weQ:{n(w):O, VneN}
does not belong to the tail-oc—algebra corresponding to the
sub—o—algebras o(¢n), ne N:
Tail-o—algebra for countably infinite T

Let T be a countably infinite set. Foreach v €T, let F, be a
sub—o—algebra of A. Further,let F, C T, ne N, be finite subsets of
I suchthat F, 1T as n— oo. Then the tail-o—algebra
corresponding to the o—algebras {F, : v € I'} takes the form

T: ﬂ .Fr\/:n.

n=1

In particular, in case of = N, we have 7 = (2 o(Fx: k> n) (as
we already saw).

2R



Independence, Kolmogorov 0—1 law

Kolmogorov 0—1 law

Let (Q2,.4,P) be a probability space, I # () be a nonempty set. For
each vy T, let 7, be asub-o—-algebra of A, and denote by 7 the
corresponding tail-o—algebra.

If the sub—o—algebras {F, : v €'} areindependent, then for each
AeT, wehave P(A)=0 or P(A)=1.

Kolmogorov 0—1 law

Let {&n}5e; be independent random variables and

let 7=y 0(& : k = n) denote the tail-o—algebra corresponding
to the sub—o—algebras {o(&n)}52 -

Then foreach A< 7, we have P(A) =0 or P(A) =1.

27



Independence, Kolmogorov 0—1 law

Example: If £,&,... are independent random variables and

5, . Gt Tt

p , neN,

then B
P ({S,,};’,":1 converges) € {0,1},

and there exist —co < a < b < oo such that

p (liminfé,, - a) -1, P <IimsupSn — b> —1.

n—o0 n—oo
So, if P({S,}>, converges) =1, then there exits ¢ € R such that
n=1
P(Iim §n:c) = 1.

n—oo

28



Independence, Kolmogorov 0—1 law

limsup and liminf of countably many sets

If Q0 isanonempty set, and foreach ne N, A, C Q, then let
limsup Ap:= (1) | Ak = {w € Q: w € A, forinfinitely many n e N},
=00 n=1k=n
liminf Ap := U1 kﬂ A ={w e Q:w e A, except finitely many ne N}
n= =n

i

Let {An}X, be events in a probability space (2,.4,P). Then the
events limsup,_,.. An and liminf,_,. A, are in the tail-o—algebra
corresponding to the o—algebras {0, A,, Q\ Ap, Q}, ne N.

If Ap, neN, areindependent as well, then, by Kolmogorov 0—1 law,
P(limsup,_,. An) € {0, 1}, i.e., either infinitely many of these events
occur with probability 1 or at most finitely of them occur with probability
1.

29



Independence, Kolmogorov 0—1 law

Borel-Cantelli lemmas (1909, 1917)
Let (2,.A,P) be a probability space, and Aq, Az,--- € A be events.
QIf ZP(An) < 00, then P (Iim supAn> =0

n—1 n—oo
(i.e., at most finitely many of these events occur with probability 1).

Q Ifthe events {A,}>, are independent and ZP(A,,) = oo, then
n=1

P (Iim supAp )| =1 (i.e., infinitely many of these events occur with
n—o0

probability 1).

20



Independence, Kolmogorov 0—1 law

Foreach w € Q, let N(w) be the number of events A,, n € N, for
which w € A, holds.

Then N(w) € {0,1,2,...} U{oo}, N =>724 14, N isan (extended
real valued) random variable, and using the properties of expectation
(presented later on), we have

E(N)=E (Z 11An) => P(An).
n=1 n=1

Part 1 of Borel-Cantelli lemma states that if the expectation of the
number of events occuring is finite, then the number of events occuring
is finite with probability one.

Further, since limsup,_,., An = {N = oo}, by part 2 of Borel-Cantelli
lemma, in case of independent events, if the expectation of the number
of events occuring is infinite, then A/, the number of events occuring,
is infinite with probability 1.

1



Expectation (expected value)

Expectation of simple random variables

Let £€:Q — R be a simple random variable, and £(2) = {x1,..., X},
where x4, ..., X, € R are pairwise distinct. Then the quantity

/§ P(dw) —ijP(szx,-)

J=1

is called the expectation of ¢.

One can check that the expectation is finitely additive and monotone
on the set of simple random variables.

Let ¢£: Q2 — R be a nonnegative random variable.

Q If ¢ and {n,}32, are nonnegative simple random variables, and
for each w € Q, we have np(w) 1 ¢(w) = ((w), then
limp—so0 E(170) = E(C)-

Q If {nn}>2, and {(p}52, are nonnegative simple random
variables, and for each w € Q, we have n,(w) 1 ¢{(w) and
Cn(w) 1T €(w), then limp_oo E(mn) = limp_soo E(Cp)-

292



Expectation (expected value)

Expectation of nonnegative random variables

Let £:Q — R be a nonnegative random variable. Let {{,}7°, be a
sequence of nonnegative simple random variables such that for each
w € Q, we have &p(w) 1&(w) as n— oo.

Then the quantity

E(©) 1= | €)P(d) = im E(n)

is called the expectation of &.

v

The expectation E({) € [0,00] of a nonnegative random variable ¢ is
uniquely defined. Further,

E(§) = sup{E(n) : n is a simple random variable such that 0 < n < ¢&}.

23



Expectation (expected value)

Decomposition of a r. v. by positive and negative parts

If £€:Q — R is arandom variable, then ¢ := max{¢,0} (positive part
of £) and £~ := —min{{,0} (negative part of &) are nonnegative
random variables as well, and & = ¢ — ¢, |¢| =& + €.

Expectation of a random variable

We say that there exists the expectation (integral) of a random
variable ¢ : Q — R, if the at least one of the expectations E(¢*) and
E(£7) is finite, and then

/ fw — E(¢%) — E().

We say that the expectation of ¢ is finite (¢ is integrable), if the
expectations E(£T) and E(¢7) are finite.

If £:Q — R is arandom variable and its expectation exists, then
E(¢) € [0, oc].

24



Expectation (expected value)
Let &, n, (&n)neny be random variables on the prob. space (€, A, P).

Properties of expectation

@ ¢ isintegrable if and only if |¢] is integrable.

Q If 3E() and c e R, then FE(ct), and E(c) = cE(¢).
Q IFIE()>—00and £<n P-as., then 3 E(n) and E(£) <E(n).
Q If JE(&), then |E(¢)] < E(|€))-

Q If JE(E), thenforall Ac A, we have JE(EL,); if € is
integrable, then for all A € A, we have {14 is integrable as well.

Q If JE(E), E(n) and the expression E(¢) + E(n) is meaningful
(i.e., it is not of the form oo — 0 Or —oo0 + 0),
then JE(¢ +n) and E(S +n) = E(S) + E(n).
@ If ¢=0 P-as., then E(&) = 0.
Q If 3E() and £ =7 P-as., then I E(n) and E(E) = E(n).
Q If £>0 P-as.and E(&§) =0, then £ =0 P-as.

25



Expectation (expected value)

Properties of expectation

@ Monotone convergence theorem: If for each n € N, we have
&n=n P-as., E(n) > —oo, and &, 1 ¢ P-a.s., then E(&,) 1 E()
as n— oo.

@ If {¢n}>2, are nonnegative, then E (Z 5,,) = E(%n).
n=1

n=1
@ Fatou-lemma:

(a) Ifforeach ne N, we have &, >n P-a.s.and E(n) > —oo, then
E (liminf, 00 &n) < liminfo oo E(&n).

(b) If foreach ne N, we have &, <7 P-a.s.and E(n) < oo, then
lim SUPp— o E(fn) < E (llm SUPp— o0 gn)

(c) Ifforeach ne N, we have |, <7 P-a.s.and E(n) < oo, then

E (Iim inf§n> < liminf E(&,) < limsup E(&y) < E (|imsupgn> :
n—oo n—oo

n—oo n—oo
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Expectation (expected value)

Properties of expectation

@® Dominated convergence theorem: If for each n e N, we have
l€nl < n P-a.s., E(n) < oo, and &, — £ P-a.s., then E([¢]) < oo,
E(¢n) — E(€) and E(|¢h—€|) — 0 as n— .

@ Generalized dominated convergence theorem:

(a) Ifforeach ne N, we have |&,| <, P-a.s., E(nn) < o0, & — &
P-a.s., n, — n P-a.s.,and E(n,) — E(n) as n — oo,
where E(n) < oo, then E(|¢]) < oo and E(&,) — E(¢) as n — oo.

(b) Ifforeach nec N, we have |{,| <n P-a.s., E(n) < oo, and
&n converges in probability to ¢ as n — oo, then E(|¢]) < oo,
E(¢n) — E(¢) and E(|€n —€]) — 0 as n— oo.

@® Cauchy-Schwarz inequality: If E(¢2), E(7?) < oo, then

E(1¢n]) < VE(?) E(n?).
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Expectation (expected value)

Properties of expectation

@ Jensen inequality:
(@) If E(J¢]) < oo, I CR is an open (not necessarily bounded) interval
suchthat P(¢ e /)=1, and g:/— R is convex, then E(¢) € /

and g(E(¢)) < E(g(¢))-

(b) Let C c R be a nonempty, Borel measurable, convex set,
g: C — R be a convex function, ¢ : Q — C be a random variable
such that E(|¢]) < oo and go§:Q — R is arandom variable as
well. Then E(¢) € C, the expectation E(g(¢)) exists and

E(g(£)) € (=00, +o0], further g(E(¢)) < E(g(¢))-
@ Lyapunov inequality: If 0 < s < t, then
(E(l)"* < ()"
@ Holder inequality: Let p, g € (1,00) be such that
p~'+q ' =1. If E(|¢|P) < 0o and E(|n]9) < oo, then
E([én]) < (E(IEIP)"P (E(In )"/
@ Minkowski inequality: If p € [1,00), E(|¢|P) < 0o and
E(InlP) < oo, then (E [¢ + nlP)'/P < (E(I£[P))"/P + (E(InlP))/P.
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Expectation (expected value)

Properties of expectation

. . E

@ Markov inequality: If £ >0 P-a.s.,then P(£ > c) < % for all
c>0.

@ Chebyshev inequality: If E(¢2) < oo, then
P(l¢ — E(€)| > ¢) < Y48 forall ¢ > 0.

@ If E(¢) exists, then

o) 0 %) 0
E(g):/o P(£>x)dx—[ P(;g<x)dx=/0 (17F§(x))dx7/7 Fe(x) dx

If 5 0 P-a.s., then
=Jo P §>de—fo (1 = Fe(x)) dx
In partlcular, if P(¢€Zy)=1, then
E(§) =201 P(E = n).
@ If E(J¢]) < o0, E(In]) < 00 and &, n are independent, then
E(|¢n]) < oo and E(&n) = E(E) E(n). If £ and n are nonnegative
and independent, then E(¢{n) = E(§) E(n).
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Expectation (expected value)

Transformation theorem

If ¢£:Q — R? isarandom vectorand g:R? — R is a measurable
function, then

E(9(6) = [ o6 P(@) = [ gb)Pe(n) = [ gx)dFe(x)

in the sense that, the integrals exist at the same time, and if they exist,
then they are equal.
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Expectation (expected value)

Expectation of a function of a nonnegative random variable

Let £ be a nonnegative random variable with distribution function F,
andlet g: Ry — R be a monotone and absolute continuous function
(i.e., foreach ¢ > 0, there exists § > 0 such thatif k € N,
O<aj<bj<a<ba<..<ax<b and Y1 (b—a) <3, then

>k 1g(by) — g(a)| < 2). Then

E(g(€)) = 9(0) + /0 T g (x0( - Fe(x)) dx,

which is understood in the sense that if one of the two sides is finite,
then the other side is finite as well, and the two sides coincide.
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Expectation (expected value)

Moments and moment generating function of a nonnegative
random variable

Let £ be a nonnegative random variable with distribution function F;.
(i) Foreach « > 0, we have

E(¢) = a/ooo X211 = Fe(x)) dx.

Further, if E(£*) < co with some a > 0 (i.e., if £ has a finite
moment of order « > 0), then

c a—1 _ a—104 —
XI|_>moox P> x)= XI|_>moox (1= Fe(x))=0.
In particular, if ne N, then a necessary condition for the

finiteness of the n"-moment of ¢ is that the tail probabilities

P(¢ > x), x >0, tend to zero at least of order x"~ (polynomially)
at infinity.
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Expectation (expected value)s

(i) Foreach r € R, we have
E(e) =1+ r/ e™(1 — Fe(x))dx.
0

Further, if E(e*) < co with some r € R (i.e., if the moment
generating function of ¢ exists at some point r € R), then

. rx BT x4 _ _
XILrgoe P > x) = XImee (1= Fe(x)) =0.

In particular, if r > 0, then a necessary condition for the
finiteness of the moment generating function of ¢ at the point r
is that the tail probabilities of ¢ tend to zero at least of order e
(exponentially) at infinity.
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Expectation (expected value)

Absolute continuity

Let (X,X) be a measurable space. We say that a mapping

X — [—o0,00] is absolutely continuous with respect to the
mapping v : X — [—oo, o], if for each B € X, v(B) =0, we have
wu(B) = 0. In notation: < v.

Density theorem
Let (X,X) be a measurable space, v: X — [0,00] be a measure,
g: X — R, be a nonnegative measurable function. Then the mapping
p: X — [0, 00],

W)= [ g)uex),  Be,

B

is @ measure, which is finite if and only if g is integrable. Further,
u < v, and for each measurable function h: X — R, we have

/x h(x)p(dx) / h(x)g(x) v(dx)

in the sense that the integrals exist at the same time, and if they exist,
then thev are eaqual.
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Expectation (expected value)

Radon—Nikodym theorem

Let (X,X) be a measurable space and v : X — [0,00] be a o—finite
measure. A signed measure p: X — [—o0,00] is absolutely
continuous with respect to the measure v if and only if there exists a
measurable function g : X — [—oo, 0] such that foreach B € X, we

have
u(8) = [ gt v().

The function g is v—a.s. uniquely determined, i.e., if
h: X — [—o0,00] is @ measurable function such that

/ h(x) v(dx)

foreach B e X, then v({x € X:g(x) # h(x)}) =0.

The (v-a.s. uniquely determined) function g in the Radon—-Nikodym
theorem is called the Radon—Nikodym derivative of the mesure pn with
respect to the measure v. In notation: 3—5.
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Expectation (expected value)

Absolutely continuous random variable

Let (X,X) be a measurable space, and v : X — [0,00] be a o—finite
measure. We say that a random variable £ : Q — X is absolutely
continuous with respect to the measure v, if P; < v. We say that
arandom vector ¢ : Q — R is absolutely continuous, if it is
absolutely continuous with respect to the d-dimensional Lebesgue
measure Ay (more precisely, with respect to the restriction of A4 to
B(RY)), and then its Radon—Nikodym derivative f; := % is called the
density function of &.

Absolutely continuous random variable

A random variable £ : Q2 — R is absolutely continuous if and only if its
distribution function F; is absolutely continuous, i.e., Ve > 0 there
exists i>0 such that if keN,ka1 <bi<a<b <...<a < bk
and > (b —aj) <d, then 3 " (Fe(b) — Fe(ay)) <e.
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Expectation (expected value)

Characterization of density function

A function f:RY — R is a density function of some d-dimensional
random variable if and only if it is (Borel) measurable, nonnegative
Lebesgue almost everywhere and [q f(x) dx = 1.

Connection between density function and distribution function

If a random vector X : Q — R? is absolutely continuous, then
fx(x) = 0y ...04Fx(x) Ag-a.e. x € RY.

Expectation of a function of an absolutely continuous random
vector

If ¢:Q — RY is an absolutely continuous random vector and
g: RY — R is a measurable function, then

E(9(9) = [ 900(x) dx

in the sense that the integrals exist at the same time, and if they exist,

then they are equal. (itis a consequence of Transformation and Density theorems.)




Expectation (expected value)

Injective function of an absolutely continuous random variable

Let £: Q — R be an absolutely continuous random variable with
density function f.. Let D C R be an open set such that P(§ € D) = 1.
Let g: D — R be a continuously differentiable function, which is
injective on D, and its derivative is not zero at any point. (It is known
that in this case g(D) C R is open, and the inverse function

h: g(D) — D is continuously differentiable with nonzero derivative.)
Then the random variable g(¢) is absolutely continuous as well, and
its density function

fe (g1 .
EDINY)| = Sy it v € a(D),
0, otherwise.

foe)(¥) = {
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Expectation (expected value)

Sum, product and ratio of independent absolutely continuous
random variables

Let ¢ and n be independent, absolutely continuous random variables
with density functions f- and f,, respectively. Then

(i) the random variable ¢ + 7 is absolutely continuous, and

(e}

fen(2) = /OO fe(x)f)(z—x)dx = / fe(z—y)f,(y)dy, A-ae. zeR.

— 00 —0o0

This formula is called a convolution formula as well.
(ii) the random variable &7 is absolutely continuous, and

fgn(z):/_ng(x)fn (;) “Z:/m f5<z)f( )’dyl A-ae. z €R,

—o0

(iii) the random variable % is absolutely continuous, and

(2= 2z [ 00% (5) IMax= [ E@)h0)lylay. Arae. zeR
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Expectation (expected value)

Sum, product and ratio of jointly absolutely continuous random
variables

If ¢ and n are jointly absolutely continuous random variables with
density function f,, then

(i) the random variable ¢ + 7 is absolutely continuous, and

feqn(2) = / fen(X, 2 — X)dx = / fem(z—y,y)dy, A-ae. zeR.

—00

(if) the random variable &7 is absolutely continuous, and
o0 z\ dx o0 z dy
= —-) == f; —= R,
@ = [t (o) = [ (Gr) o Araeze
(iii) the random variable % is absolutely continuous, and

1 [e.9] X [e.9]
f%(z) =5 /_Oo T (x, E> |x|dx = /_OO fen(zy,y)ly|dy, A-ae. zeR.




Expectation (expected value)

Concentration of a mesaure into a subset

Let (X,X) be a measurable space, p: X — [—oc0, 0] be a signed
measure. We say that the signed measure u is concentrated into a
set Bec X, if u(X\B)=0.

Support of discrete distribution

Let ¢£:Q — RY be a discrete random vector (i.e., £(Q) is a
countable set). We say that ¢ is concentrated into a set B € B(RY),
if P¢ is concentrated into B, equivalently P¢(B) = P(¢ € B) = 1.
The intersection of all the sets with this property (i.e., the smallest set
with this property) is called the support of the measure P.

In notation: supp(¢).

Then
supp(€) = {x eRY: Pe({x}) > o} - {x e R P(¢ = x) > o} ,

of which the elements are called the atoms of the measure P,.
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Expectation (expected value)

Distribution and distribution function of a discrete random vector

The distribution of a discrete random variable ¢ : Q — R is given by

Pe= > P(=x)dx,

xesupp(€)

where for each x € R9, §, denotes the Dirac mesaure concentrated
on the point x, i.e., 6x(A) =1, if x € A, and 6x(A) =0, if x ¢ A.
The distribution function of ¢ is given by

Fe(x) = > PE=y), xeR

{yesupp(§) : y<x}
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Expectation (expected value)

Expectation of a function of a discrete random vector

Let ¢£:Q — RY be a discrete random vector and g:R? - R be a
measurable function. The random variable g(¢) is integrable if and
only if

E(g@)) = D 19(x)IP(E=x) < oo,

xesupp(€)

and then
E(@€)= > gx)PE=x).

xesupp(€)

(This statement is a special case of the Transformation theorem.)
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Expectation (expected value)

Singularity

Let (X,X) be a measurable space. The measures p: X — [0, c0]
and v : X — [0,00] are called singular with respect to each other,
if there exist disjoint sets A,B € X suchthat p and v are
concentrated in the set A and in the set B, respectively.

In notation: p L v.

Singular random vectors

A random vector ¢ : Q — R? is called singular, if Pe L Ag, Where Ay
denotes the d-dimensional Lebesgue measure, equivalently,
3 B < B(RY) suchthat \y(B) =0 and P(¢ € B) = 1.

A discrete random vector is singular (can be checked easily).
Singular random variable

A random variable £ :Q — R is singular if and only if F{(x) =0
A-a.e. x € R.
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Expectation (expected value)

Lebesgue decomposition theorem

Let (X,X) be a measurable space, p and v be o-finite measures
on X. Then there exist a measurable function f: X — [0,00] and a
measure vs on X suchthat x4 L vs and

V(A):/Afdu—i—us(A), AcX.

Such a function f is uniquely determined p-almost everywhere, i.e.,
if g: X — [0,00] is a measurable function such that
v(A) = [,gdu+vs(A), Ac X, then

u({x € X : f(x) # g(x)}) = 0.

The above decomposition is called the Lebesgue decomposition of
v with respect to p.
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Expectation (expected value)

Decomposition theorem of distribution functions

Any distribution function F : R — [0, 1] can be uniquely decomposed
in the form

F = p1Fa+ p2Fus + psFis,

where py,p2,p3 >0, py+p2+p3 =1, Fq isadiscrete, Fy isan
absolutely continuous and Fg is a continuous singular distribution
function.

Let £€:Q — R be arandom variable.
@ Let a € R,. The o' absolute moment of ¢&: E(|¢]?).
@ If ke N andthe k' absolute moment of ¢ is finite, then
the k' moment of ¢: E(¢F) € R,
the k' central moment of &: E ((¢ — E(£))) € R.
@ If ¢ has a finite second (absolute) moment, then the second

central moment of ¢ is called the variance (squared deviation)
of & Innotation: Var(¢) := D?(¢) := E [(£ — E(€))?].




Expectation (expected value)

Expectation vector of a random vector

Let € =(&,...,&4) : Q — RY be a random vector.
If E(|&41]) < o0,...,E(|€4]) < o0, then the expectation vector of ¢ is

E(¢) := (E(&1),..,E(¢a))" €RY,

Multidimensional Jensen inequality

Let £:Q — R? be arandom vector such that E(||¢]|) < oc.

@ If K c RY is nonempty, convex, closed and P(¢ € K) =1, then
E(¢) € K.

Q If g:RY = R isconvex and E(|g(¢)|) < oo, then
9(E(€)) < E(9(€)).

57



Expectation (expected value)

Covariance matrix (variance matrix) of a random vector

Let &€ =(&,...,&4) : Q — RY be arandom vector. If E(||£]|?) < oo,
i.e., E(&2) <o, ..., E(£3) < oo, then the covariance matrix of ¢ is

Cov(€) = E [(€ — E(€))(§ — E()) ] e R™*,
of which the entries are E [(& — E(&))(& — E(&))] =: Cov(&;, &)).

Properties of covariance matrices

Let &€ =(&,...,&4) : Q — RY be a random vector with E(||¢]|?) < .
@ Cov(¢) is symmetric: Cov(¢)T = Cov(€).
@ Cov(¢) is positive semidefinite, i.e., for aII x € R we have

x" Cov(€)x = (Cov(¢ Z Z Cov(&;, &) xix =
i=1 j=1
o If AcR™9 and bc R’, then E(Af +b) = AE(¢) + b and
Cov(A¢ + b) = ACov(§)AT.
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Expectation (expected value)

Expectation of a complex valued random variable

We say that a complex valued random variable

¢ =Ref+ilm¢: Q — C has a finite expectation (it is integrable),
if the expectations E(Re&) and E(Im¢&) are finite, and then

E(§) :== E(Re&) +iE(Im&).

Expectation of a complex valued random variable

Let ¢£:Q — C be a complex valued random variable.
@ ¢ has a finite expectation if and only if E(|¢]) < oo.
o If E([¢]) < oo, then [E(E)] < E([¢]).

A\
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Expectation (expected value)

Independence of complex valued random variables

Let T # () be an (index) set, and foreach vy T let £&,:Q — C bea
random variable. We say that the random variables {¢, : v €T} are
independent, if the random variables {(Re&,,Im¢&,):yel} are
independent.

Independence of complex valued random variables

If &,...,&,: Q2 — C are independent random variables such that
E(J&]) < oo, i=1...,n, then E(|1---&n]) < oo and

E(&1---&n) = E(&1) - E(&n)-
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Characteristic function

Characteristic function

The characteristic function ¢y : R?—C of a random vector
X : Q—RY is defined by

wﬂw:E@“”%jéfW”FAM%=Hw#%Xm+4ﬂm“hﬂm

where t € RY.

If X is a discrete random vector with values {xx, k € N} and with
distribution {pk, k € N}, then

o
=> etp, teR
k=1

and if X is absolutely continuous with density function fx, then

(t)—/ Wf(x)dx,  teRY
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Characteristic function

Properties of a characteristic function

Q |px| <1, and px(0) =1.

@ oy is uniformly continuous.

© Foreach t e RY, we have ox(—t) = px(1), i.e., px is Hermite
symmetric.

@ Bochner theorem: A function ¢ : R? — C is the characteristic
function of some random vector if and only if ¢(0) =1, itis
continuous and positive semidefinite, i.e., for each n€ N and
ti,...,t € R, we have that the matrix (p(t — tg))jé:1 L ecmn
is positive semidefinite, i.e., for each zy,...,z, € C; we have

n n
SN et - t)ziz > 0.

j=1 £=1

B2



Characteristic function

Properties of a characteristic function

@ Foreach AcR™9 pec R and t € R", we have
@ax+b(t) = et py (ATH).

© Uniqueness theorem: Py = Py if and only if px = ¢y.

@ X : Q=R ..., X :Q—R% areindependent if and only if for
each t; e R%, ..., t, € R%, we have

PXq,.... X t17"'7 HQOX l}

Q If Xi,...,X :Q— RY are independent, then for each t € RY,
we have

Pxi++x(1) = HSOX,(T)
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Characteristic function

Properties of a characteristic function

Q If X=(Xi,...,Xy): Q2 = R? is arandom vector and
E(J|X]|") < oo forsome ne N, then ¢x is ntimes continuously
differentiable, and for any nonnegative integers ry,...,ry with
rn—+---+rqg<n, wehave

A .. 9 ox(t) =it E(XT .. X X))t e RY,

on...o9 0
E(X - X[9) = = d #x(0)

i+t ’
moreover,
e .
ex() = > T B X )+ Be(f), e RY
r4-4rg<n, T gk
[T <Y/

where Rn(t) = O(||t|"), t € RY, and Ru(t) =o(||t|") as t — O,
in a way that |Ra()| < 3L E(||X||"), and lim,_q 'HT(") — @
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Characteristic function

Properties of a characteristic function

@ If X:Q — R isarandom variable and wg?”)(O) exists and finite

for some neN, ie., ¢7(0) € R, then E(X2") < oo.
@ Ifforeach ne N, we have E(|| X]|") < o, and

1
R = S 0,00 )
lim sup /E([|X]|™)/n! ( ]
n—oo

then for each t € RY, ||t| < R, we have

s Xt E(X - X
‘PX(t):Z~--Z oy

tte
f1:0 rdZO
@ Inversion formula: If ox € L'(RY), i.e., [po|ox(t)|dt < oo, then
X is absolutely continuous, and its density function
1 :
fx(X) = —— —HEX) oy (1) dt x € RY.
X0 = o353 | Pextat

Then fy is bounded and continuous.
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Characteristic function
Properties of a characteristic function

@® Let d=1. Then px(t) e R, t R, ifand only if X is symmetric,
e, X2 -X.

v

Pélya theorem

If ¢:R — [0,00) is a function such that it is continuous, even,
©(0) =1, limoo () = 0, and ¢fjo,) is convex, then ¢ is the
characteristic function of some random variable X : Q — R.

\

Using Pélya theorem one can easily give examples for characteristic
functions which coincide on a finite interval, but the distribution
functions corresponding uniquely to them do not coincide.

Characteristic function of a standard normally distributed

random variable

If X ~N(0,1), then ¢x(t)=e"2, teR.
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Characteristic function

Convergence in distribution of random vectors

Let X,:Q >R neN, and X:Q — RY be random vectors.
We say that the sequence (X,)n>1 converges in distribution to X,
if Fx,(x) — Fx(x) at every continuity point x of Fx.

In notation: X, 2, x.

Continuity theorem (Paul Lévy)

Let X,:Q — RY neN, berandom vectors.

@ If there exists a random vector X : Q — RY such that X, L. x
as n— oo, then ¢x, — px as n— oo, uniformly on each
bounded interval.

@ Iffor each t € RY, there exists limp o0 0x, (1) =: ©(t), and ¢ is
continuous at the point 0 € R, then there exists a random vector

X:Q —RY suchthat px = ¢, and Xn3>X as n— oo.
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Characteristic function

Generating function

If the coordinates of the random vector X : Q — R? are nonnegative
integers, i.e., X is concentrated in the set Z9, i.e., P(X € Z9) =1,
then the generating function of X = (Xi,..., Xy) is the d-variable
complex power series (where it exists):

Gx(2) = GXM 7Xd(z1,...,zd) = E(2X) == E(z] - 2))
= Z Z P(Xi = ki,..., Xy = kg) 2} - 28,
ki=

This power series is absolutely convergent on the set
{(z1,...,29) € CY: |z]| < 1,...,|zql <1},
and the characteristic function of X is the periodic function
ox(t) = ox(ty, ..., tg) = Gx(e', ..., &%),  t=(t,...,ty) € R
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Characteristic function

Properties of a generating function

Q@ Gx(1,...,1)=1.
@ Gy is analytical on the set

{(z1,...,29) €CY: |z{| < 1,...,|zq] < 1}.
© Foreach ky,...,ky € Z,, we have
o5 ... 95 Gx(0,...,0)

P(Xi = Kiy..., Xy = kg) =

Ki!- - kg

© Uniqueness theorem for generating functions:
Px =Py < Vxec[-1,1]9 forall Gx(x)= Gy(x).

@ If X and Y areindependent, then Gx, y(z) = Gx(z)Gy(z) on
the set {(z1,...,24) €CY: |z| < 1,...,|zg| < 1}.
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Characteristic function

Properties of a generating function

© Foreach ry,...,ry € Z,, we have
E(X[ - XT) <oo <« 8. 90%Gx(1—,...,1=) < o0,
and
o .. 0 Gx(1—,...,1-)
—EXG (X —1) (X —r 1) Xg(Xg = 1) (Xg — rg + 1))

| \

Continuity theorem for generating functions

Let X:Q = R? and X,:Q — R9 neN, berandom vectors such
that P(X € Z9) =1 and P(X,cZd)=1, neN.
Then the following assertions are equivalent:

o X, P X as n— .

@ P(X,=k)— P(X=k) as n— oo forall ke Z9.

@ Gy (x) — Gx(x) as n— oo foreach x e [-1,1]°.
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Characteristic function

Laplace transform

If the coordinates of the random vector X = (Xi,...,Xy) : Q — R
are nonnegative, i.e., X is concentrated in the set Ri, i.e.,

P(X € RY) = 1, then the Laplace transform ¢x : R? — R of X is
defined by

Ux(8) 7= ¥x;,.. X, (81, Sa) = E(e )
/ / _31)(1_...—Sd)(ddFX17 ,Xd(X17"'7Xd)7

where s € RY.

If P(X €Z9)=1, then
Ux(St,...,84) = Gx(e™S',...,e7%),  (s1,...,84) €RY,
GX(X17"'7Xd):wX(_IOgXM"'a_lOng)v (X17"'7Xd)6(071)d‘
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Characteristic function
Properties of Laplace transform

Q 0<yx <1, and ¥x(0) =1.
@ vy is analitic on the set (0, 00)7.
© Uniqueness theorem for Laplace transforms:
Px =Py ifand only if ¢¥x = 1y.
Q If X and Y areindependent, then ¢x.y = ¥xiy.
© Foreach ry,...,ry € Z, we have
E(X{" - X)) <oo <= 07...08¢x(0+,...,0+) < oo,
and 07 ...08Yx(0+,...,04) = (—1) T FHE(X] - X[?).

Continuity theorem for Laplace transforms

Let X:Q—R? and X,:Q —RY neN, berandom vectors such
that P(X eRY)=1 and P(X, e RY) =1, neN.
Then the following statements are equivalent:

o X,,AX as n— oo,
@ x (s) = ¥x(s) as n— oo forall seRY.
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Notable distributions

Bernoulli distribution with parameter p

Let p €[0,1]. A discrete random variable X is called Bernoulli
distributed with parameter p, if it can have values: 0 and 1, and its
distribution is

P(X=1)=p, P(X=0)=1-p.

1 if A occurs,

0 if A does not occur,
is Bernoulli distributed with parameter P(A).

If Ac A isanevent, thenther.v. 1,4:=

Generating function
Gx(z)=1—-p+pz=1+p(z—1), zeC.

Laplace transform
Yx(8)=1—-p+pe*=1-p(1-e"°), scR;.

Characteristic function
ox() =1—p+pel =14 p(e't —1), t € R.
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Notable distributions

Binomial distribution with parameter (n, p)

Let ne N and p € [0,1]. Adiscrete random variable X is called
binomial distributed with parameter (n, p), if it can have values:
0,1,...,n, and its distribution is

P(X = k) = (Z)pkﬁ —p)" k. ke{01,....n.

v

If we carry out n independent experiments related to an event Ac A
and
i=1 n

PIIRICIN Y Y

)1 if A occurs atthe i repetition,
"7 10 otherwise,

then the random variable X = Xj + --- + X, is binomial distributed
with parameter (n,P(A)), and Xj,..., X, are independent, Bernoulli
distributed with parameter P(A).
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Notable distributions

Let X be a binomial distributed random variable with parameter
(n,p), where ne N and p < [0, 1].

Generating function

Gx(z2)=(1—-p+pz)"=1+p(z—1))", zeC.

v

Laplace transform

Yx(8)=(1—-p+pe®)'=(1-p(1-e%)"  seR,. )

Characteristic function

ox()=(1—p+peh)"=(1+pEt-1)", teR.

v




Notable distributions

Hipergeometric distribution with parameter (n, M, N — M)

Let n,N,M € N be such that M < N. A discrete random variable X
is called hipergeometric distributed with parameter (n, M, N — M),
if it can have values those integers k forwhich 0 < k< n, k<M
and n— k < N— M, and its distribution is

M\ (N—M
i = iy = (L)
(n)
If there are M red and N — M black balls in an urn, and we choose n
balls without replacement, and X denotes the number of red balls
chosen, then X is a hipergeometric distributed random variable with
parameter (n, M,N — M).

v
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Notable distributions

Negative binomial distribution with parameters p and r

Let re N and p € (0,1]. A discrete random variable X is called
negative binomial distributed with parameters p and r, ifit can
have values: 0, 1, ..., and its distribution is

P(X = k)= <kj_—_r1_1>p'(1 - p), ke{0,1,...}.

A negative binomial distribution with parameters p and 1, is called a
geometric distribution with parameter p as well.

If we carry out independent experiments related to an event A< A
and r + X denotes the number of repetitions needed for the rt"

occurence of A, then the random variable X is negative binomial
distributed with parameters P(A) and r.
Convolution of geometric distributions
If the random variables Xj,..., X, are independent and have

geometric distribution with parameter p, then the random variable
Xi + - -+ + Xy is negative binomial distributed with parameters p and r.




Notable distributions

Let X be a negative binomial distributed random variable with
parameters p and r, where r ¢ N and p € (0,1].

Generating function

|

(P Y i
6x(d= (=)« 2€C A<
1

where in case of p =1, we define T—p = 0.

Characteristic function

p r
ox(t) = <w> , teR.
Memorylessness property of geometric distribition

If X is a random variable having geometric distribution with paramater
p, then

PX>k+0|X>k=P(X>0), kte{0,1,..}.

|

|




Notable distributions

Poisson distribution with parameter A

Let A € Ry. Adiscrete random variable X is called Poisson
distributed with parameter ), if it can have values: 0, 1, ..., and its
distribution is

P(X = k)

N

:Fe y k€{0,1,}

Generating function

Gx(z) =e’® ), zeC.

Characteristic function

ox(t) = A=), teR.

Approximation of binomial distribution by Poisson distribution
If X,, neN, are binomial distributed random variables with parame-

ter (n,pn), and np, — X € (0,00) as n— oo, then X, L2, X as
n — oo, where the random variable X is Poisson distributed with
narameter \. Eq




Notable distributions

Uniform distribution on the set {0,1,... ., N —1}
A discrete random variable X is called uniformly distributed on the
set {0,1,...,N— 1}, if

PX=kK)=-, ke{01,... ,N—1}

Generating function

1 12 it zeC\ {1},
GX(Z):N(1+z+'”JrZI\I_1):{4\12_1 ifz_1\{}

Characteristic function

| A\

Te=tl it et e C\ {1},

1 . . :
= —(1+ it 4t it(N—1) — ) N eit—1 .
px(t) = (1 +e e )=14 it et — 1,

where t € R. )
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Notable distributions

Uniform distribution on the interval (a, b)

Let a,b € R suchthat a < b. An absolutely continuous random
variable X is called uniformly distributed on the interval (a, b), if its
density function is

. xe(ab)
f x) = b—a’ ’ )
x(x) {0, otherwise.

Characteristic function

ibt iat
et 4y
b = i(b—a)t’ ’
ex(t) {1, t—0.

|

Approximation of continuous uniform distribution
If X,, neN, are uniformly distributed random variables on the sets

{0,1,...,n—1}, n€N, then %o P, X as n— oo, where the
random variable X is uniformly distributed on the interval (0,1).
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Notable distributions
Exponential distribution with parameter

Let A > 0. An absolutely continuous random variable X is called
exponentially distributed with parameter ), if its density function is

() = e ™™ x>0,
X o0, otherwise.

Memorylessness property of exponential distribution

If the random variable X is exponentially distributed with parameter
A, then

Laplace transform

>/|

seR,.

Yx(8) = PRIY

Characteristic function

|

1
¢X(t):<1—i;> . teR




Notable distributions

Normal distribution with parameter (m, o)

Let me R and o > 0. An absolutely continuous random variable X
is called normally distributed with parameter (m, o2), if its density
function is 1 _x=m?

2

de Moivre CLT, approximation of binomial distribution by normal
distribution
If X,, neN, are binomially distributed random variables with

Xn—np D
Vp(1—p)
n — oo, where the random variable X is normally distributed with
parameter (0,1).

parameter (n,p), where p € (0,1), then
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Multidimensional normal distribution

Multidimensional normal distribution

@ Arandom vector Y : Q — RY is called standard normally
distributed, if Y = (Yy,...,Yy), where Yi,....Yy: Q=R are
independent, standard normally distributed random variables.

@ Arandom vector X : Q — RY is called normally distributed, if
the distribution of X coincides with the distribution of AY + m,
where Y :Q — RY is standard normally distributed, A € R9*9

and m e RY. )

24



Multidimensional normal distribution

Characteristic function, density function

@ Arandom vector X : Q — RY is normally distributed if and only if
its characteristic function has the form

ox(t) = exp {i(m, ) — %(Dt, t>} , teRY,

where me R9, and D € R9*9 is a symmetric, positive
semidefinite matrix, i.e., D" = D, and for each t € RY we have
(Dt, t) > 0. Further, m=E(X), D= Cov(X).

@ If D isinvertible, then X is absolutely continuous and its density
function is

1 1,
fX(X):Wdet(D)exp{—z(D 1(x—m),x—m>}, x € RY.

A random vector X : Q — R? is called normally distributed with
parameters (m, D), if the characteristic function of X has the form

given in the theorem above. In notation: X 2 N(m, D).
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Multidimensional normal distribution

Linear transform of multidimensional normal distribution

If X2 N(m, D) is a d-dimensional normally distributed random

vector, and a € RY, B € R*9, then a+ BX 2 N(a+ Bm,BDB") is
an /¢-dimensional normally distributed random vector.

Characterisation of multidimensional normal distribution

A random vector X : Q — R is normally distributed if and only if for
each ¢ € RY, the random variable ¢ X is normally distributed.
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Multidimensional normal distribution

Independence of coordinates of multidimensional normal

distribution

Let (Xi,..., Xk, Y1,..., Ye) bea k+ ¢-dimensional normally
distributed random vector, and let us suppose that for each
ie{l,...,k} and je {1,...,¢}, we have Cov(X;, Y;) =0. Then the
random vectors (Xi,...,Xx) and (Yi,...,Y,) are independent.

Independence of linear combinations

Let Xi,..., Xy be independent, standard normally distributed random
variables. The linear combinations a; X; + --- + azXy and

by Xy + -+ bgXy are independent if and only if the vectors
(ai,...,aq) and (by,...,by) are orthogonal.
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Convergence of random vectors

Let X:Q —R? and X,:Q —RY neN, berandom vectors.
We say that the sequence Xi, X2,... converges to X

@ almost surely (in notation X, = X or X, — X P-a.s.), if
P(Jim Xp=X) =1;

n—oo
o stochastically (in notation X, —— X), if for each ¢ > 0, we have
lim P(||Xn— X]|| =€) =0;
n—oo

e in distribution (in notation X, — X), if
Jim Fx,(x) = Fx(x)
for each point x € R9, where Fx is continuous;

@ in rth mean, where r > 0 (in notation X, m X or Xni>X),
if E(]|X]|") < oo, E(||Xnl|") < o0, n€N, and
Jim_ E([1X —X|I") = 0.
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Convergence of random vectors

Connection between modes of convergences

Let X:Q > RY and X,:Q — R, neN, berandom vectors.

o If X, 2% X, or X, 5 X forsome r> 0, then X, - X.
o If x, Il
X, s x

X for some r > 0, then for each s € (0,r), we have

Limit of stochastic convergence is uniquely determined

f X: Q=R Y: Q=R X,: Q=R and Y,:Q—=RY neN,
are random vectors such that X, Pox , Y LN Y, and X, =Y,
P-a.s. foreach ne N, then X =Y P-a.s. In particular, if X, 2% X,
Y, 25 Y and X, =Y, P-as.foreach neN, then X =Y P-as.
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Convergence of random vectors

An equivalent formulation of convergence in probability

Let X,:Q — RY neN, berandom vectors. Then X, converges in

probability to some random vector X : Q — R? as n — oo, if and only
if for all £ > 0, we have

lim sup  P(||Xm — Xp|| >¢)=0.

N300 {meN: m>n}

Montone decreasing sequence converging in probability to 0

Let X,:Q — R, neN, berandom variables. If X, P.0asn— 00,
and P(0 < X,11 < X;) = 1foreach neN, then X, 230 as n— .
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Convergence of random vectors

Convergence of random vectors

Let X:Q > R? and X,:Q — R neN, berandom vectors.
@ The following statements are equivalent:
(@) X, = X as n— oo,

(b) sup |IXk—X|| =>0 as n— oo, ie.,
{keN: k>n}

lim P< sup ||Xk—X||>E>=0, Ve >0,

e {keN: k>n}

() sup |IXk—X|| >0 as n— 0.
{keN: k=n}

91



Convergence of random vectors

@ The following statements are equivalent:
(@) (Xn)nen converges almost surely to some d-dimensional random

vector,
(b) sup || Xk — Xu|| =0 as n— oo, ie.,
{keN: k>n}
lim P( sup || Xk — Xq| >€) =0, Ve>D0,
h=es {keN: k>n}
() sup ||Xk — Xnl| 230 as n — oo.
{keN: k>n}

(o)
@ S P(|Xk—X||=2e)<oo forall e >0 = X, X.
k=1
P .
@ X, — X as n— oo <= for each sequence of positive
integers ny < n, < ... there exists a subsequence
Nk, < Mg, < ... suchthat X, 2% X as | — .
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Convergence of random vectors
Convergence of continuous functions of random vectors

Let X: Q=R Y: Q=R X,: Q- RY and V,: Q - R, neN,
be random vectors and g : RY x R — R’ is a continuous function.

o If X, X5 X and Y, =3 Y, then g(Xn, Yn) == g(X,Y).

o lIf X, X and Y, —= Y, then g(Xn, Yn) — g(X,Y).
Connection between modes of convergences and operations
Let X:Q—>RY Y: Q>R X,:Q—>RA and Y, :Q — RY,

n € N, be random vectors.
o lf X 25 X and Y, 23 Y, then X+ Y, =3 X+ Y and
X, Yn) 255 (X, Y).
o If Xo =5 X and Y, = Y, then X,+ Yn — X + Y and
(Xn, Yn) = (X, Y).

o If xn&x and Ynm Y forsome r > 0, then
Xo+ Yo 1l x4y,

[ele!



Convergence of random vectors

Uniform integrability of random vectors

Let (2,.A,P) be a probability space, I # () be a nonempty set, and
foreach v €T, let X,:Q — RY? be a random vector. The family
{X, : v €T} is called uniformly integrable, if

X112 gx,>k3) = O

lim supE
K—ro00 yer

If T 0 is anonempty finite set, then the uniform integrability of the
random vectors {X, :y €T} isequivalentto sup.,cr E([|X,]) < oo.

Especially, if X,, ne€ N, is a sequence of identically distributed,
integrable random vectors, then {X,: n € N} is uniformly integrable.

In case of an infinite set I, the next theorem gives a set of necessary
and sufficient conditions.
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Convergence of random vectors

Uniform integrability

Let (Q,.4,P) be a probability space, I # () be a nonempty set, and
foreach v €T, let X,:Q — R? be arandom vector. The family
{X, : v €T} is uniformly integrable if and only if

sup E([| X [[) < o0
el

and

l E(||X,|1a) =0
pATH0 1P (1X,]114) = 0,

which is understood in a way that Ve > 0 there exists § > 0 such

that E(||X,||14) <e forall vy €l and for all events A € A satisfying
P(A) < 0.

o]



Convergence of random vectors

Uniform integrability
Let (22, A,P) be a probability space, I # () be a nonempty set, and
foreach v €T, let X,:Q — R Y,:Q— R? be random vectors.

o If there exists r > 1 such that sup,r E([| X, |") < oo, thenthe
random vectors {X, : vy €'} are uniformly integrable.

@ If the random vectors {X,:v €T} and {Y,:yeTl} are
uniformly integrable, then the random vectors {X, + Y, :y T}
are uniformly integrable as well.

@ If the random vectors {Y, :~v €'} are uniformly integrable and
foreach v €T, wehave |X,| <|Y,| P-as., thenthe random
vectors {X, :y €T} are uniformly integrable as well.

Momentum convergence theorem (Vitali)
Let X, X;,Xo,... be d-dimensional random vectors, and r > 0.

The convergence X, m X is equivalent to that X, P, X andthe
uniform integrability of the random vectors {||X,||" : n € N}.
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Convergence of random vectors

Weak convergence of probability measures

Let un, n€N, and p be probability measures on the measurable
space (RY, B(RY)).

We say that the sequence u,, n €N, converges weakly to

(in notation: jun = p), if lim jn(A) = u(A) foreach A€ B(RY) such

that (0A) = 0, where A = A~ \ A° denotes the boundary of the set A.
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Convergence of random vectors

Portmanteau theorem

Let up, n€ N, and p be probability measures on the measurable
space (RY B(RY)). The following assertions are equivalent:

I|m / a(y) pn(dy) = / 9(y) u(dy) for all bounded and
contlnuous functions g: RY — R.

I|m / a(y) pn(dy) = / 9(y) u(dy) for all bounded and

unlformly continuous functions g : RY — R.
@ limsup un(F) < p(F) for all closed sets F € B(RY).
n—oo

(% ] liminf 11,(G) > (G) for all open sets G € B(RY).
Q lim yun(A) = u(A) for all AcB(RY) such that u(0A) =0

v

The word "portmanteau” originally means a big travel suitcase. Nowadays, in linguistics it means
blend of words: a new word is formed by combining two existing words that relate to a singular
concept (for example: breakfast + lunch -> brunch or Hungarian + English -> Hunglish).
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Convergence of random vectors

Connection between weak convergence and convergence in

distribution
Let X,: Q = R9 neN, and X: Q — R? be random vectors.
The following assertions are equivalent:
Q X, = x.
Q Py, = Px.
Qo nIi_}moO E(g(Xn)) = E(g(X)) for all bounded and continuous
functions g: RY — R.
() nIi_}mg() E(g(Xn)) = E(g(X)) for all bounded and uniformly
continuous functions g : R — R.
@ limsupP(X, € F) < P(X € F) for all closed sets F € B(RY).

n—oo

Q liminfP(X,€G) > P(X€G) for all open sets G € B(RY).

Q@ lim P(X; € A)=P(X € A) for all Borel sets A€ B(RY) such
that P(X € OA) = 0. |




Convergence of random vectors

For a measurable function h:RY — Rf, let Dy, be the set of
discontinuity points of h, i.e.,

Dy := {x € RY :there exists a sequence (Xp)neny in RY such that x, — x,

but h(xp) - h(x)}.

From measure theory it is known that Dy, € B(R?).

Mapping theorem

Let X:Q > RY, X,:Q—=RY neN, berandom vectors, and
h:RY - R’ be a measurable function.
If X, 2> X and P(X € D) =0, then h(X,) — h(X).

If X, 2> X and h is continuous, then Dy =, and h(X,) — h(X),
and in this case the mapping theorem is called continuous mapping
theorem as well.
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Convergence of random vectors

Cramér—Slutsky lemma

Llet X: Q>R X,: Q=R neN, and Y,:Q >R neN, be
random vectors.
If X, 25 X and X,— Y, —0, then Y, 2 X.

A\

Joint convergence in distribution

Let X: Q> RY X,: Q=R Y,:Q—>RY neN, berandom
vectors, and ¢ € RY. If X, 2+ X and Y, — ¢, then
(Xn, Yn) = (X, ©).




Convergence of random vectors
Convergence of random vectors

let X: Q>R X,: Q=R Y,: Q>R and Z,:Q—> R neN,
be random vectors, and a € RY, b e R.

o If X, X, then X, 2 X.

@ (Cramér-Slutsky) If X, 2, X, Y P, band Zn N a, then

Yo Xy + Zn 25 bX + a. Especially, if X, = X, and a, a, € RY,
neN, b,b,ecR,neN, suchthat a, —+a and b, — b, then

bnXn + an —» bX + a.
e X, — a ifandonly if X, = a.

Mapping theorem (for stochastic convergence)

Let X,:Q — RY neN, berandom vectors, h: R? — R’ be a
measurable function, and x € R9. If X, . x and x ¢ Dp, then
h(Xp) — h(x).




Convergence of random vectors

Continuous mapping theorem (for stochastic convergence)

Let X,: Q=R neN, and X : Q — RY be random vectors, and
h:RY — R’ be a continous function. If X, LN X, then
h(Xn) — h(X).

Mapping theorem (for expectation)

Let X,: Q2 — R, neN, berandom vectorsand h: R — R be a
bounded and measurable function such that P(X € Dy) = 0.

If X, = X, then E(h(X»)) — E(h(X)).

A\




Convergence of random vectors

Let X:Q—=R and X,: Q2 — R, ne N, be random variables.
If X, 25 X, then E(|X]) < liminfn_eo E(|Xn])-

Convergence in distribution and uniform integrability, |

Let X: Q=R and X,:Q — R, ne N, berandom variables.

If X, 2 X and {Xn : n € N} is uniformly intregrable, then
E(|X]) < o0 and E(Xp) — E(X).

Convergence in distribution and uniform integrability, Il

Let X:Q—R and X,:Q — R, neN, berandom variables.
If X,>0, neN, X >0, E(Xy) < oo, n€N, E(X) < oo, X=X
and E(Xnp) — E(X), then {X,: ne N} is uniformly integrable.
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Conditional probability, conditional expectation

Let (2, A,P) be a probability space.

Conditional relative frequency

If we carry out n independent experiments, then the conditional
relative frequency of an event A € A given that the event B¢ A
occured is k(AN B)  ra(ANB)

kn(B) — m(B) ’

where k,(AN B) and ky(B) denotes the frequency of the event An B,

and B, respectively, and r,(A N B), and r,(B) denotes their relative
frequencies.

rm(A| B) :=

Conditional probability

Let B € A be an event such that P(B) > 0. The conditional
probability of an event A€ A giventhe event Be A (i.e., if we
know that the event B occured) is

P(An B)

P(AIB) = —5 g
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Conditional probability, conditional expectation

Conditional probability

Let (©2,.A,P) be a probability space, and B € A be such that

P(B) > 0. Then the mapping Qg : A — [0,1], Qg(A) :=P(A|B),

A € A, is a probability measure on the measurable space (£2,.4), i.e.,
(Q,A,Qp) is a probability space.

Conditional probability

Let (2,.A,P) be a probability space, and B € A be such that

P(B) > 0. Further,let Ag:={ANnB:Ac A}. Then Ag isa
o-algebra and the mapping Qg : Ag — [0,1], Qg(A) :=P(A|B),

A € Ag, is a probability measure on the measurable space (B, Ag),
i.e., (B, Ag,Qp) is a probability space.
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Conditional probability, conditional expectation

Conditional distribution, conditional expectation, conditional
variance of a discrete random variable

Let B be an event having positive probability. If X is a discrete
random variable with distribution P(X = xx), k=1,2,..., then the
conditional distribution of X given B is

P(X:Xk|B):QB(X:Xk), k:1,2,...,
the conditional expectation of X given B is

E(X|B) : Zxk P(X =x¢|B)=> Xk Qa(X = Xk),
k

provided that this series is absolutely convergent, i.e.,
>k Xk - P(X = xx | B) < o0, and the conditional variance is

Var(X|B) := E [(X — E(X|B))?|B] = E(X?|B) — [E(X|B)]?
2
= xg-P(X =xk|B) - <ZX/< =Xk\B)>,
K

provided that the series >, x2 - P(X = x« | B) is convergent.




Conditional probability, conditional expectation

@ If X is adiscrete random variable, then the sequence
P(X = xx| B), k € N, is a probability distribution, since these
numbers are nonnegative and their sum is 1:

> P(X=x|B)= ZP{X Xk} N B)
k
_ e X=x)nB)| =" p X = NB
= 56 LkJ({ = Xk} N B) = B(B) <LkJ{ —Xk}>
1
P(B)P(QmB) 1.

@ Especially, if B is an event such that P(B) =1 (e.g., B=1Q),
then the conditional distribution, expectation and variance of X
given B coincides with the distribution, expectation and variance
of X.

@ If E(|X]) < oo, then for each event B having positive probability,
we have E(|X||B) < oc.
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Conditional probability, conditional expectation

Let us roll two fair dices. What is the conditional distribution of the
difference of the numbers shown on the dices given that their sum is ¢?

Denote by X and Y the two numbers. Then ¢ € {2,3,...,12} and

=1
5 itexexy,
P(X+Y_£)_{1§gf if 7<e<12

Further, |X — Y| can have values: 0,1,2,3,4,5, and for ¢ € {2,...,6},
the conditional probabilities in question are:

PIX-Y|=0|X+Y=2)=1, P(X-Y|=1|X+Y=38)=1,

P(]X—Y]:O]X+Y:4):;, P(\x—yy:2|x+yz4):§,
PUX Y| =1]X+Y=5)= 1 P(X-Y|=8[X+Y=5)=_

1 2
PIX~Y|=0|X+Y=6)=z,  P(X-Y|=2|X+Y=6)=c,

2

PIX - Y| =4|X+Y=6)=_.

109



Conditional probability, conditional expectation

Conditional distribution and conditional expectation of an

absolutely continuous random variable

The conditional distribution function of a real-valued random
variable X given an event B having positive probability is
FX|B ‘R — [0,1],

Fxia(x) = P(X < x|B)=Qg(X < x), x€eR.

If there exists a Borel mesaurable function fx g : R — R such that

Fx|a(x) = /X fxip(u) du

forall x € R, then the function fy g is called a conditional density
function of X given B.

The conditional distribution function Fyx|g is nothing else but the
distribution function of the probability measure Qg. The conditional
density function fx g, provided that it exists, is Borel measurable,
nonnegative Lebesgue almost everywhere, and [~ fxg(u)du =1,
and hence it is (usual) density function.
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Conditional probability, conditional expectation

Conditional variance of an absolutely continuous r. v.
If there exists a conditional density function fy|g, then the conditional
expectation of X given B is

E(X|B) := /Oo x - fyg(x) dx

—00
provided that this improper integral is absolutely convergent, i.e.,

S5, Ix] - fxg(x) dx < oo; and the conditional variance is of X given
B is

Var(X|B) == E [(X — E(X|B))?|B] = E(X?|B) - [E(X|B)]?

— /_sz - fy(x) dx — (/_Zx-fxw(x)dx)z,

provided that [ x? - fx g(x)dx < oco.

v

If there exists a conditional density function fxg and E(|X]) < oo, then

for each event B having positive probability, we have E(|X||B) < . »



Conditional probability, conditional expectation

Example: Let X be a standard normally distributed random variable,
and B:={X >0}. Then P(B)=1/2, and

F (x)—M— 0 if x <0,
XBY = TR(X>0)  |2P0< X <x) if x>0.

If x >0, then

Fxia(x) = 2(®(x) — #(0)) = \/E/OX e /2 qu.

Hence the conditional density function of X given B is

2e-x2/2 if x>0,
fx1a(x) = {\ﬂe

0 if x<O.
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Conditional probability, conditional expectation

Consequently, the conditional expectation of X given B is

E(X\B)_/ X - fya(x dx_/ \fxﬁdx
- %[ XZ/Z}O _\/;'

Further, if Y :=|X], then

if x <0,
Fy(x) = P(X| < x) = Trs0
P(—x < X <x) if x>0,
0 if x <0,
= = Fxg(x), x e R,
{2P(0<X<x) f x>0, XX

i.e., the conditional distribution of X given B coincides with the
distribution of |X|.
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Conditional probability, conditional expectation

Conditional density function and conditional expectation given
an absolutely continuous random variable
Let (X,Y) be an absolutely continuous random vector with density

function fx y. Then the conditional density function of X given
Y = y is defined by

fx,y(x,y) .
fav(x1y) { AL TS
h(x) it fy(y) =0,

where fy is the density function of Y and h is an arbitrary density
function.

the conditional distribution function of X given Y =y is

X
PIX<x|Y=y) ::/ fxy(uly)du, x € R.
the conditional expectation of X given Y =y is

E(X|Y = y) = / x - fyy (X]y) dx,

—00




Conditional probability, conditional expectation

Conditional variance and regression curve given an absolutely

continuous random variable
The conditional variance of X given Y =y is
Var(X|Y = y) = E[(X — E(X|Y = y))|Y = y]

—E(X?|Y =y) - [E(X|Y = y)]?
0 oo 2
— [ tvtnyax— ([ x-savtrinax) |

provided that [ x?- fxjy(x|y)dx < oco.
The regression curve of X given Y is
the function R > y — E(X|Y = y).

This minimizes the quantity E [(X — f(Y))?], i.e., if E(X?) < oo and
f:R — R is a measurable function such that E [f(Y)?] < oo, then

E[(X — E(X|V)2] <E[(X—f(Y))?].
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Conditional probability, conditional expectation

Theorem of total expectation given a partition of Q
If By, By, ... is apartition of Q suchthat P(B;)) >0,/ N, X isa
random variable and E(|X]) < oo, then

=Y E(X|Bk) - P(By).
k

Proof. Let X be a discrete random variable having possible values
X1, Xo, .. Then

ZE(X|Bk) P(B) = ZZX/P(X—X/|BK) P(Bk)

k

- ZZ)(,P({X_)(,}mBk) > x5 PHX =x}NB)
j k
_Zx] X = x)) = E(X),

where we used the condition E(|X]|) < oo for interchanging the sums.
The case of an absolutely coninuous random variable X can be
handled similarly.
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Conditional probability, conditional expectation

Conditional expectation of a discrete random variable given a
partition
Let X be a discrete random variable such that E(|X|) < oo, and let
G :={By,By,...} beapartition Q such that P(Bx > 0), k € N. Then
the conditional expectation of X given G is the discrete random
variable

E(X[G) :=> E(X|Bx)lg,.

K

v

The random variable E(X | G) takes the value E(X | Bk) on the event B.
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Conditional probability, conditional expectation

Example:

We roll a fair dice until we see 6 as the result.

Let X be the number of times we have to roll.

Then X is geometrically distributed with parameter %, so E(X) =6.
In what follows we determine E(X) using the theorem of total
expectation as well.

Then By := {thefirstrollis k}, k=1,...,6, is a partition of Q
consisting of events having positive (1/6) probability.

By the theorem of total expectation, since E(|X]|) < oo, we have

6

E(X) =Y E(X|By)-P(B)

k=1
We show that

1+E(X) if 1<k<5,

E(X|Bk):{1 it k=6.
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Conditional probability, conditional expectation

Then P(X=1|Bg) =1 andso E(X|Bg)=1-1=1.
If 1 <k<5, then

EX[B) =E(1+X—1[B)=1+EX—1|B¢) =1+ E(X),

where at the last step we used that the conditional distribution of X — 1
given By (k=1,2,3,4,5) coincides with the distribution of X, since

B _P(X-1=n,By) gP(X=n) B
P(X—1=n|Bx) = P(BY) =5 ] =P(X=n), neN
Hence 1

E(X) = 6(1 +5(1+ E(X))),
yielding

E(X) = 6.
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Conditional probability, conditional expectation

The conditional expectations E(X | By),
calculated directly (by definition).

If 1 <k<5, then P(X=1|B) =0 and

P(X=n|Bx) =

Sofor k=1,...,5, we have

o0

E(X | By) 52 1 B\ o1&,
| Bk) ann 1 —gZ” 6 ZEZ(X
n=2 n=2

B ixn/ 1 X '
N s x=5/6 5 \1—x/ Ix=
o 12x—x? B

- 5(1 —x)2Ix=5/6

Hence E(X)=3(1+5-7)=6

1 < k <5, can be (also)

x=5/6
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Conditional probability, conditional expectation

Further, the conditional expectation of X given the partition
G :={B;y,...,Bg} consisting of events with positive probability is
the discrete random variable

E(X|g):7(]151+"'+]185)+1 '156:7']19\56—’_1‘]156'

That is
7 if w¢ B,

EX19)(w) = {1 if we Bs.
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Conditional probability, conditional expectation

Another property of expectation

Let (2,.A,P) be a probability space and F C A be a sub-o-algebra.
Q If (:Q — R isan F-measurable random variable such that

E(|¢]) < oo and E((1s) >0 foreach A€ F, then ¢ >0 P-a.s.

QIf £&:Q—R and :Q — R are F-measurable random variables
such that E(|£]) < oo, E(|n]|) < oo, and E(£14) < E(nl,a) for
each Ae F, then ¢ <n P-a.s.

QIf ¢:Q—R and :Q — R are F-measurable random variables
such that E(|¢]) < oo, E(|n]) < oo, and E({14) = E(nla) for
each A€ F, then ¢ =n P-as.
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Conditional probability, conditional expectation

Conditional expectation given a o-algebra

Let (,.A,P) be a probability space, F C A be a sub-o-algebra, and
X :Q — R is arandom variable such that E(|X|) < oc.
A random variable X : Q2 — R is called a conditional expectation
of X given F, if

@ Xy is F-measurable (i.e., o(Xr) C F) and E(|Xx|) < oo,

Q@ foreach Aec F, we have E(Xrla) = E(X14).

Conditional expectation given a o-algebra

Let (2,.A,P) be a probability space, F C A be a sub-o-algebra, and
X :Q — R be arandom variable such that E(|X]) < oc.

Then there exists a conditional expectation Xr : Q — R, which is
uniquely determined P-a.s.

In notation: E(X | F) denotes the equivalence class of the random
variable Xr with respectto P, and its arbitraty representative as well.
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Conditional probability, conditional expectation

Properties of conditional expectation

Let (©2,.A4,P) be a probability space, F C A be a sub-c-algebra.

Q@ IfE(|X]) < oo, E(]Y]) < coand X < Y, then E(X | F) < E(Y|F).

Q If E(|X]) < oo, then |[E(X|F)| < E(|X]|F).

Q If E(|X]) < oo, then E(X|A) = X.

Q If X is F-measurable and E(|X|) < oo, then E(X|F) = X.

Q If E(|X]) < oo, then E[E(X|F)] = E(X).

Q If E(JX]) <> and X isindependent of F, then E(X | F) = E(X).

@ Tower rule: if E(]X|) <oco and G C F is a sub-o-algebra, then
E[E(X|F)|G] = E[E(X|9) | F] = E(X[9).

Q If E(|X]) < oo and E(]Y]) < oo, then foreach a,b € R, we have
E(aX + bY | F) = aE(X|F) + bE(Y|F).

Q If E(]X]) < oo, E(]XY]) <o and Y is F—measurable, then
E(XY|F) = YE(X|F).
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Conditional probability, conditional expectation

Properties of conditional expectation

Q@ If Xi, Xo, ... are P-integrable, X, 1 X P-a.s.and X is
P-integrable as well, further there exists a random variable Y
such that for each ne€ N, we have X, > Y P-a.s. and
E(|Y]) < oo, then E(X,|F) T E(X|F) P-as.

@ If Xi, X5, ... are P-integrable, foreach nc€ N, we have X, > Y
P-a.s., where Y is a random variable such that E(]Y]|) < oo, and

£ (
@ If X, &5 X, and there exists a P-integrable random variable Y
such that for each n € N, we have |X,| <Y P-a.s., then
E(Xn| F) 2% E(X| F), and E(| X, — X||F) = 0.
@ If Xi, Xo, ... are P-integrable, foreach ne N, we have X, >0
o0

Iimiann> < o0, then E (|iminfxn|f) < liminf E(X, | F).
n—oo n—o0 n—oo

P-a.s.,and > X, is P-integrable as well, then
n=1

E(éxn\f> ZEE(XHM).
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Conditional probability, conditional expectation

Multidimensional conditional Jensen inequality
Let (2, A,P) be a probability space, F C A be a sub-c-algebra, and
X =(Xq,...,Xy) : Q — RY be a random vector such that E(||X||) < oc.
@ If K c RY is nonempty, convex, closed and X € K P-a.s., then
E(X|F):=(E(X1|F),...,E(Xq|F)) € K P-as.
Q If g:RY R isconvex and E(]g(X)|) < oo, then
9(E(X|F)) < E(9(X) | F).

Conditional probability given a o-algebra

Let (2, A,P) be a probability space and F C A be a sub-o-algebra.
The conditional probability of an event A € A given F is given
by P(A|F):=E(1a|F).

Conditional expectation given a random vector

Let (Q2,.4,P) be a probability space, X : 2 — R be a random variable
such that E(|X]) < oo, and Y : Q — RY be a random vector. Then the
conditional expectation of X given Y is E(X|Y) :=E(X|o(Y)).
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Conditional probability, conditional expectation

Conditional expectation given a random vector

There exists a measurable function f: RY — R such that
E(X|Y)=1(Y).

This is the Py-a.s. uniquely determined measurable function
f:RY — R such that for each B € B(RY), we have

/B f(y) Py(dy) = E(X1y-1(5)),

where Py denotes the distribution of Y, i.e., Py(B):=P(Y € B) for
all B ¢ B(RY).

v

In notation: f(y) =E(X|Y =y), y € R%.

Here f is nothing else but the Radon-Nikodym derivative of the finite,
signed (i.e., not necessarily nonnegative) measure

Q(B) := E(X1y-1(g)), B e B(RY), with respectto Py on the
mesurable space (RY, B(RY)).
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Conditional probability, conditional expectation

Monotone class

A family C of subsets of a nonempty set Q is called a monotone
class,if ApeC,neN and A, 1A as n— oo yield AeC.

Monotone class theorem

Let Q # (), H be an algebra consisting of some subsets of , and
C be a monotone class of some subsets of Q suchthat # c C.
Then o(H) C C.
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Conditional probability, conditional expectation

Properties of conditional expectation given a random vector

Let (2, F,P) be a probability space, X : Q — R be a random
variable such that E(|X|) < oo, and Y : Q — R? be a random vector.
@ If g:R?Y - R is a measurable function such that
E(IXg(Y)[) < oo, then E(Xg(Y)|Y =y)=g(y)E(X|Y =y).
@ If X and Y areindependent,and g: R xRY - R isa
measurable function such that E(|g(X, Y)|) < oo, then
E(9(X, Y)Y =y) =E(9(X,y)| Y =y) =E(g(X,y)) and
E(9(X, V)| Y) =E@(X,9)|,_y-
Q If g:R xRY— R is a measurable function such that
E(lg(X, Y)|) < oo, then E(g(X,Y)|Y)=E(g(X,y)|Y)|

y=Y'
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Conditional probability, conditional expectation

Conditional probability given a random vector

Let (Q,.4,P) be a probability space, and Y : Q — R? be a random
vector. The conditional probability of an event A € A given Y is

P(A[Y) :=P(Alo(Y)) := E(1a|o(Y)).

As we saw earlier, there exists a Py-a.s. uniquely determined
measurable function f: RY — R such that P(A|Y) = f(Y).

The equivalence class of this function f with respectto Py, and its
arbitrary representative as well, is denoted by

P(AlY =y)=E(1alY =)
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Conditional probability, conditional expectation

Properties of a conditional density function

Let (Q,4,P) be a probability space, and (X, Y): Q — R? be an
absolutely continuous random vector. Denote by fx y the density
function of (X, Y). Let us define the function fyy : R? — [0, c0),

xy(xly) = { o) fv(y) # 0,
h(x) if fy(y) =0,

where fy is the density function of Y, and h: R — [0,00) is an
arbitrary density function. Then the following assertions hold:

@ Foreach y € R, the function R > x fx y(x|y) is a density
function.

@ Foreach Ac B(R), we have P(X € A|Y =y) = [, fxv(x]y)dx.

Q If g: R — R is a measurable function such that E(|g(X)|) < co
then E(9(X)|Y =y) = /= g(x)fxv(x]y)dx.

The 2nd and 3rd statements hold for Py-a.e. y € R. ,
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Conditional probability, conditional expectation

Conditional density function

Let (Q,.A,P) be a probability space, and (X, Y): Q — R? be an
absolutely continuous random variable. The function fy|y defined
above is called a conditional density function of X given Y.

Theorems of total probability and total expectation

Let (2, A,P) be a probability space, and Y : Q — R be arandom
variable.

@ Then for each event A € A, we have

P(4) = [ PALY =) Py(ey).

—00

Q If X:Q — R isarandom variable such that E(|X]|) < oo, then

oo

E(X) = / E(X| Y = y) Py(dy).

—00
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Conditional probability, conditional expectation

Continuous version of Bayes theorem

Let (Q,4,P) be a probability space, and (X, Y): Q — R? be an
absolutely continuous random vector. Then for each Borel set
A € B(R), we have

fyix(Y1x)fx(x) dx
PXecAlY=y)=—4 Py-a.e. y € R.
| xtynt ax
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Conditional probability, conditional expectation

Best mean squared, F-measurable prediction

Let (2, A,P) be a probability space, F C A be a sub-c-algebra, and
X :Q — R be asquare P-integrable random variable. A random
variable Y :Q — R is called a best mean squared, F-measurable
prediction of X, if

@ Y is F-measurable and square P-integrable,

© for each F-measurable square P-integrable random variable
Z:Q— R, wehave E((X — Y)?) <E((X — 2)?).

In fact, given the vector X € L2(Q, A, P) we search for a vector

Y € L2(Q,F,P) suchthat |X — Y|z <X — Z|;2 holds for all

Z € L?(Q, F,P), and this is of course the orthogonal projection of X
onto the closed, linear subspace L?(Q, F,P).

Best mean squared, F-measurable prediction

There exists a best mean squared, F-measurable prediction of X,
namely, E(X|F) (which is square integrable).
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Conditional probability, conditional expectation

Best mean squared linear prediction

Let (Q2,.A4,P) be a probability space, and X, Yi,...,Y,: Q — R be
square P-integrable random variables. A random variable Y:Q — R
is called a best mean square linear prediction of X given
Yi,..., Yp, if

@ VY is an element of the closed, linear subspace L2(Yj,...,Y,) of
the Hiloert space L2(R,.4,P) which consists of the linear
combinations of Yi,..., Yn,

@ foreach Z ¢ L2(Yy,...,Ys), we have E((X — Y)?) < E((X — 2)?).

In fact, given the vector X € L?(Q, A, P), we search for a vector

Y € L2(Yy,...,Y,) suchthat | X — Y|z < ||X —Z|;2 forall

Z c L2(Yy,...,Yys); and this is of course the orthogonal projection of

X onto the closed, linear subspace L?(Y;,...,Yy). Since
L2(Yy,...,Ys) is containedin L2(Q,0(Y4,..., Yn),P), abest mean
squared linear prediction given Yy,..., Y, isin general "worse” than a
best mean squared, o(Yj,..., Yn)-measurable prediction, which has the
form f(Yi,...,Ys) with some Py, .. v,-a.e. uniquely determined measurable function
f:R" = R. .




Conditional probability, conditional expectation

Best mean squared linear prediction

Let (X,Yi,...,Yn) bea n+ 1-dimensional normally distributed
random variable, and let us suppose that

E(X) =E(Y7) =...=E(Yn) = 0. Then the best mean squared linear
prediction of X given Yi,..., Y, coincides with the best mean
squared, o(Yi,..., Yn)—measurable prediction, so it is

E(X|Yy,...Yn) aswell
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Conditional probability, conditional expectation

Example: Let (X, Y) be a normally distributed random vector such
that D?(Y) > 0. Then

E(X| Y = 1) = EX) + iy 1y~ E(Y))

i.e., the regression curve is a line.

Further, if the covariance matrix of (X, Y) is invertible, i.e.,
D2(X)D?(Y) — (Cov(X, Y))? > 0, then the conditional distribution of X
given Y =y is normal distribution such that

B > B (Cov(X, Y))?
N(E(X\Y_y),D(X) —D2( ] >
Hence (Cov(X Y))2
DAX| Y =) = D*(X) — 5y

which does not depend on .
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Weak laws of large numbers

Let Xi,Xo,... be random variables, and let

X1+ +Xp

Sn::X‘]_'_""l_Xn, Yn:: n

L,-convergence of arithmetic mean

If E(X2) < oo foreach nc N and E(XxX;) =0 for k # ¢, then for
all e>0 and ne N we have

— 1 1
P(|Xn| =€) < —E(X ) < —5 sup E(X).
ne? 21

Especially, if supE(X?) < oo, then X, 2 o, and hence X, - 0.
1




Weak laws of large numbers

Chebyshev theorem

If Xi,Xo,... are pairwise uncorrelated such that sup Var(X;) < co
1

and E(X,) = m foreach nc N, where mc R, then X, Uil m, and
hence X, — m.

Markov theorem

If Xi,Xo,... are pairwise uncorrelated such that sup Var(X;) < co
=1

and 3 nli_)m E(Xp) = meR, then X, iz m, and hence X, — m.

Khinchin theorem (1929)

If Xi,Xo,... are pairwise independent, identically distributed random
variables and E(|Xi|) < oo, then X, —— E(X;).
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Weak laws of large numbers

L;-convergence of arithmetic mean
If Xi,Xo,... are uniformly integrable, (totally) independent random
variables, then

Xn —E(Xp) Iy 0, and hence X, — E(X)) P.o.
Especially, if Xi, Xs,... are independent, identically distributed

random variables and E(|X;|) < co, then X, Iy E(Xi), and hence
v P




Strong laws of large numbers

L4- and P-a.s. convergence of arithmetic mean

If Xi,Xo,... areindependent random variables and E(X,) =0 for
each neN, thenforall e >0 and ne N, we have
4
_ E(X,) 3 4
P(|Xn| > 8) < 4 < n2c4 32[1) E(XZ )

Especially, if sup E(X?) < oo, then X, 114 0 and X, % 0.

21

A strong law under second order moment assumption

If X1, Xo,... are pairwise independent, identically distributed random
variables and E(X?) < oo, then X, = E(X)).

Kolmogorov inequality

If Xi,...,X, are independent random variables and E(X2) < oo for
each ke {1,...,n}, thenforall £ >0, we have

P < max |Sx — E(Sk)| > &?) < Va;(ZSn)‘

1<k<n




Strong laws of large numbers
Kolmogorov one series theorem

If Xi,Xz,... are independent random variables and > Var(Xj) < oo,
n=1

<Z(Xn E(Xp)) is convergent) =1.

then

Kolmogorov two series theorem

3
»

If X1, Xz, ... are independent random variables such that > E(Xj) i

n=1
convergent and > Var(X,) < oo, then

n=1
P (Z X, is convergent) =1.

n=1
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Strong laws of large numbers

Kolmogorov three series theorem
If Xi,Xo,... areindependent random variables and there exists
¢ > 0 such that

(1) ioj E(X!?) is convergent,

n=1

() ._ _ ) Xes i | Xal <o,
X = Xnlxo|<c} = {0 if | Xl >c

then

P (Z X, is convergent) =1.

n=1




Kronecker lemma

Let by, bo,... be a sequence of positive numbers such that by, 1 oo,
and foreach ne N let 38, := b, — b,_1, where by := 0.
@ If s1,s0,... isareal sequence and s, — s € R, then

bln > i1 Bese — s. Especially, for a convergent sequence, the
sequence of its arithmetic means converges to the same limit.

@ If x1,x,... isareal sequenceand 7, z* is convergent, then
1 n
b > 1 Xe — 0.

© (Discrete L'Hospital rule) Let us suppose that 8, > 0, n € N,
and let (xn)nen be a real sequence such that % — ceR. Then

Ze 1Xe
Xy — C.
bnz Zz 15@

The reason for calling it as discrete LHOspital rule is that the
condition ’6(" — ¢ € R can also be written in the form

(26:1 f)

A (22:1 5€)

where AX, := Xp — Xp—1, N €N, with x5 :=0.

— Cc € R,
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Strong laws of large numbers

Kolmogorov theorem (1929)
Let Xi,Xo,... beindependent random variables. Let b1 bo,... bea

sequence of positive numbers such that by, 1 co. If Z Var(x") < 00,

then

1 ¢
b > (X —E(X0) = 0.
=1

Especially, if > Y% < oo, then X, — E(Xn) *% 0.
n=1

Kolmogorov theorem (1933)

Let Xi,X5,... be independent, identically distributed random
variables.

@ If E(|X1]) < oo, then X, 2 E(X7).
@ If P((Xn)n=1 converges) >0, then E(|X;]) < <.
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Strong laws of large numbers

Etemadi (1981)

Let Xi, Xa,... be pairwise independent, identically distributed random
variables such that E(|X;|) < co. Then X, =% E(Xy).

Chandra and Goswami (1992)
Let Xj, Xo,... be pairwise independent random variables such that

/ sup P(| Xp| > ) dt < occ.
0 neN

Then Sn=E(5n) 2%, g
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Central limit theorems

Degenerate random variable

Let (Q, A, P) be a probability space. A random vector X : Q — R is
called degenerate, if there exists xo € R? such that P(X = x) = 1.
Foreach neN, let X,4,..., Xk, beindependent (real-valued)
random variables such that not all of them are degenerate and
E(Xﬁ,j) <o0o,j=1,...,kp. Foreach neN and j=1,...,kp, let

@ opji= \/Var(Xnvj),

@ Spi= Xn,1 +eee Xn,kna

@ D, :=/Var(S,) =

® S,:=(Sy—E(Sn))/Dp. Then E(én) =0 and Var(S,) = 1.

@ In:= Di 3X1<j<kn On,js

® Ln(c) =5 Y E [( — E(Xn)))?1{ X, —E(X,,)| D0} |» € > O.
Let Y ~ AN(0O,1).
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Central limit theorems

Lindeberg theorem
Foreach neN, let X,4,..., Xk, beindependent random variables
such that not all of them are degenerate and E(Xﬁ,j) < 00,
j=1,...,ks. Let g: R — R be athree times continuously
differentiable function.

@ Foreach ne N and ¢ > 0, we have

Elg(8n)] — EGO]| < (5 + 2) 19" oo + La(@)l1g 1

where ||h||« := sup |h(x)| forany h:R — R.
XER

Q If |9l < 0, [|g"”|lc < oo, and the so called Lindeberg
condition holds, i.e., nILm Ln(e) =0 foreach £ > 0, then

lim E[g(Sn)] = Elg(Y)].




Central limit theorems

Lindeberg central limit theorem for triangular arrays

Foreach neN, let X,4,..., Xk, beindependent random variables

such that not all of them are degenerate and E(Xﬁ’j) < 00,

j=1,... k. If nli_>m Lnh(e) =0 foreach ¢ >0, and g: R - C isa
o

continuous function such that

19(x)|
i!ﬁi 1+ x2

< 00,

then R
im E[g(Sn)] = E[g(Y)]-
Especially, S, -2+ A(0,1).




Central limit theorems

Lindeberg central limit theorem for triangular arrays

Foreach neN, let X,4,..., X, beindendent random variables
such that not all of them are degenerate and E(X‘2 ) < 00,
j=1,... ks |If nILm Ln(e) =0 foreach ¢ > 0, and gn:R— C,

n € N, are continuous functions such that

9n(x)|

X2

sup sup
neN xeR 1

and g, converges uniformly on compact sets to some continuous
function g: R — C as n— oo (i.e., for each compact set K C R, we
have gn|kx converges uniformly to g|x as n— oo, i.e., for each
compact set K C R, we have limj_.o supyck |gn(Xx) — g(x)| = 0),
then

< 00,

lim_E[gn(Sn)] = Elg(Y)]-
Especially, S, -2+ A(0,1).

150



Central limit theorems

Lyapunov central limit theorem for triangular arrays

Foreach neN, let X,4,..., Xk, beindependent random variables
such that not all of them are degenerate. If for some § > 0, we have
E(|1Xnj?™°) <00, n€N, j=1,...,k, and

k

1 n
275 2 E|1Xn) — Ea )] =0, as n— o,

n j:1

then S, = 500 2, Af(0,1). (Here Dp = /Var(Sy), neN)

Lévy central limit theorem: independent, identically distributed case

Let Xi, Xo, ... be independent, identically distributed random
variables, and let S, := Xj +--- + X.

If E(X2) < 0o and Var(X;) >0, then S2=EGn) Py ar 1),

\/V Sn
Further,

Sn— E(Sn) >
P _=—""cx)-o 0, asn .
sup ( Wars, X)) oW e

51



Central limit theorems

Foreach neN, let X,1,..., X,k beindependent random variables
such that not all of them are degenerate, and E(X2j) < 00,

j=1,..., ks Ifthe Lindeberg condition holds, i.e., L,(¢) — 0 for
each e > 0, then the so called uniformly asymptotically negligible
condition holds, i.e., for each ¢ > 0, we have

Xni — E(X,;
max P(n’/(n/) 25)%0.
1<j<kn

Var(Sp)
The uniformly asymptotically negligible condition is called
infinitesimality condition as well.

Feller theorem (1935)

Foreach neN, let X,4,..., Xk, beindependent random variables

such that not all of them are degenerate, E(X2 ) <oo, j=1,... .k,
Sn E(s,,)

andlet Sp= X1+ -+ Xpg,. If S, = m—)N(O ,1) and the

uniformly asymptotically negligible condition holds, then the Lindeberg

condition holds.




Central limit theorems

Foreach neN, let X,1,..., X,k beindependent random variables
such that not all of them are degenerate, E(Xﬁj) <oo, j=1,...,kn,
andlet Sp = Xp1 +--- + Xk,

(i) If = Dln maxi<j<k, onj — 0, as n — oo, then the uniformly
asymptotically negligible condition holds.
(i) If the uniformly asymptotically negligible condition holds, then

S, 25 N(0,1), as n— oo holds if and only if the Lindeberg
condition holds.




Central limit theorems

Lindeberg multidimensional central limit theorem for triangular

arrays

Foreach neN, let X,4,...,Xyk, beindependent d-dimensional
random vectors, and E(||X,[]?) < oo, j=1,..., ks
If

Kn
Q@ > Var(X,) > £ as n— oo, where ¥ € R9*9 jsinvertible,
j=1
@ foreach € > 0, we have
kn
2
2 E [HXn,j — E(Xn)) ]l{”xn‘j_E(an)”;g} — 0,
j:
then S, — E(Sy) N N(0,%), where N(0,%X) denotes a
d-dimensional normal distribution with mean vector 0 € R? and
covariance matrix ¥ € R9*9,
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Central limit theorems

Multidimensional central limit theorem: IID case
Let X,, ne N, be independent, identically distributed d-dimensional

random variables, and let S, = X; +--- + X,, n € N, denote the
partial sums. If E(||X{]|?) < co and Var(X;) € R9%? is invertible, then

1

(S —E(Sn) 2, N(0,Var(X;))  as n— oo,
where N(0,Var(X7)) denotes a d-dimensional normal distribution
with mean vector 0 € RY and covariance matrix Var(Xj).




Central limit theorems

Poisson convergence theorem

Foreach neN, let X,1,...,Xyk, be independent random variables
such that P(X,; =1) = p,” =1-P(X,;=0), j=1,...,ky, and let

Sni=Xp1+ -+ Xk, If anj—>>\eR+ and  max pnj — 0,

/_ \]\ n

then S, 2> Poisson( ).

An auxiliary lemma for estimation of difference of products
If meN and ay,...,am,by,...,bm € [-1,1], then

Ha/ Hb/
==

15R



Stochastic processes

Stochastic process

Let (2,.A,P) be a probability space, T be an arbitrary nonempty set,
andforeach te T, let &:Q — R be arandom variable. Then the
family {&::te T} is called a stochastic process. We say that T is
the parameter set (or index set) of the process, and R is its phase
space (or state space).

We say that a stochastic process {{;:t€ T} isinthe state x ¢ R at
the parameter t € T, if for a realized outcome w € Q, we have

¢t(w) = x. For denoting the value of the process, we will use £(t)(w),
and ¢(t,w), te T,w € Q as well (since a process can be naturally
considered as a single mapping £: T x Q — R: £(t,w) := &(w) ).

Trajectory (realization, sample function)

For a fixed w € Q, the mapping T > t+— &(w) € R iscalled a
trajectory (realization, sample function) of the process.
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Stochastic processes

Discrete and continuous time processes

Let TCR; and {&:te T} be areal valued stochastic process. We
say that the process is of discrete time, if T is a countable set. Then
usually T =7Z,, so the process is a sequence of random variables.
The process is called a continuous time process, if T is a finite or
infinite subinterval of the nonnegative real line. Then for example
T=Ry; or T=][0,1].

Finite dimensional distributions

Let T C R. By the finite dimensional distributions of a stochastic
process {{::te T}, we mean the distributions of the random vectors:

{(ft1,...,€tk)2k€N, t1,...,tk€ T}




Stochastic processes

Modification, indistinguishability
Let T be a nonempty set. The stochastic processes {¢& :t€ T} and
{nt:te T} are called
@ equivalent in the wide sense, if their finite dimensional
distributions coincide.
© equivalent, if they are defined on the same probability space and
P(& =mn:) =1 holds forall t € T. The equivalent processes are
also called modifications of each other.
@ indistinguishable, if they are defined on the same probability
space and P({=mn;, VEe T)=1.




Stochastic processes

@ |[f the stochastic processes {&:te T} and {n;:te T} are
equivalent (i.e., modifications of each other), then they are
equivalent in the wide sense as well (i.e., their finite dimensional
distributions coincide).

@ If the stochastic processes {&:t€ T} and {n;:te T} are
indistinguishable, then they are equivalent as well (i.e.,
modifications of each other).

Independent, stationary increments

A stochastic process {¢;: t > 0} is said to have independent
increments, if P({ =0) =1, and for any k € N and any time points
0<t<b<..<lUl, theincrements &, &, — &y --., & — &, are
(totally) independent. A stochastic process {{;: t > 0} is said to have
independent, stationary increments, if it has independent
increments, and the distribution of the increments is invariant with
respect to time translation, i.e., for any time points t, h > 0, the
distribution of &, — & does not depend on t (and consequently it
coincides with the distribution of &).
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Stochastic processes

Convolution of distribution functions

Let X and Y be independent (real valued) random variables with
distribution functions F and G, respectively. Let H denote the
distribution function of X + Y, which is called the the convolution of
the distribution functions F and G, anditis denoted by F x G.
Then

H(z) = /_OO F(z—-y)dG(y), ze€R.

Finite dimensional distributions of processes with independent

increments

The finite dimensional distributions of a stochastic process {&;: t > 0}
with independent increments is uniquely determined by the
distributions of the increments & — &, 0 < s< L.
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Stochastic processes

Finite dimensional distributions of processes with independent

and stationary increments

The finite dimensional distributions of a stochastic process {¢;:t > 0}
with independent and stationary increments is uniquely determined by
the distributions of the random variables &, t > 0 (i.e., by the
one-dimensional distributions).

Further, for the family {F¢, : t > 0} of distribution functions, it holds
that Fe,, = F¢, + F¢, forall s,t >0 (where x denotes the
convolution of distribution functions).

One-parameter convolutional semigroup of distribution functions

A family {F;:t> 0} of (one-dimensional) distribution functions is
called a one-parameter convolutional semigroup, if Fs;: = Fsx F;
forall s,t >0, and Fy = 1(g)-
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Stochastic processes

Expectation and covariance function

Let T#0 and {& :te T} be areal valued stochastic process such
that E(|¢:|) < oo, t€ T. Thenthe function m: T — R, m(t) := E(&),
t € T, is called the expectation function of the process. Further, if
E(¢2) < oo, t€ T, thenthe function K: T x T — R,

K(s t) :=Cov(¢s, &), (s,t) e Tx T,

is called the covariance function of the process.

Let T#0 and {&:te T} be areal valued stochastic process such
that E(¢2) < oo, t€ T. Then

Q@ K(s, t)=K(t s),s,teT (i.e., K is symmetric),
Q@ VkeN, VH,....,t €T, Y)i,..., x €C, we have

k
> ANK(t, ) > 0.
ij=1
Especially, foreach k€ N and t,...,t% € T, the matrix
(K(%,1))j,1=1,..k is positive semidefinite.
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Kolmogorov consistency and existence theorem

Let ¢ :={¢& :te T} be areal valued stochastic process, where T is
a nonempty index set.
Let RT := {x|x: T — R}.

The stochastic process ¢ can be also considered as a function which
is defined on the sample space €2, and it can take values in the space
R’, namely

Q=R Q3w Ew),

where {(w): T =R, Tt {(w)(t) = &(w).

It were convenient if ¢ would be a random element of the space R,
i.e., if the function ¢: Q — R7 would be measurable with respect to
some appropriately defined measurable structure.

We furnish the space R7 with a o-algebra denoted by ¢(C), with a
o-algebra generated by the so called cylinder sets.

For this, first we introduce the so called (finite dimensional) projections.
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Projections

Kolmogorov consistency and existence theorem

Let T be anonempty index set, ne N and S={sy,...,s,} C T.
A mapping ps: R’ — RS,

(ps(X))(si) == x(s1),  i=1,...,n,  x€R,
is called the projection onto RS.
(The mapping ps(x) can be written in an abbreviated form
(Xs,---,Xs,) as well, where xs; denotes the value x(s;) of the
mapping x at the point s; in an abbreviated form, where i =1,...,n.)

Product of measurable spaces

Let (Xi,A¢) and (X»,.42) be mesaurable spaces. The elements of
the set

T = {A1 X A : Ay € A1, As € ./42}
are called measurable rectangles, and the measurable space
(X1 x X2,0(T)) is called the product of measurable spaces (Xj,.A1)
and (X2,A2). The o-algebra o(7) is usually denoted by Ay x As
(or A1 ® A»). 165




Kolmogorov consistency and existence theorem

Product of measurable spaces, cylinder sets

The previous definition can be extended to the product of finitely many
measurable spaces (Xj,.4;), i=1,...,n, as well in an obvious way.

If (X.,Aa)acT are infinitely many measurable spaces, where T is an
arbitrary (not necessarily finite) index set, then by their product we
mean the measurable space (X,0(C)), where X :=[][,.r X. and
o(C) isthe o-algebra generated by the so called cylinder sets.

By a cylinder set, we mean aset C c X for which there exist n € N,
at,...,an €T, ajF# oy, it i£), i,je{l,...,n}, and

B e [[h_i Aoy = Aa, X -+ x Aa, such that

C={xeX:(Xay,---1Xa,) € B}.

The indices a4, ...,an are called the base points (coordinates) of C,
and the set B is called a base set (a base) of C.
The collection of cylinder sets is denoted by C.




Kolmogorov consistency and existence theorem

Example for a cylinder set
Let T:={1,2,3} and X;:=R, i=1,2,3. Thenforeach r > 0, the
set {(x1,x2,x3) eR3:x2+x2 < rz} is a cylinder set, since

{(x1,x2,x3) eR3: X2+ X5 < rz} = {(x1,x2,x3) eR3: (x1,%) € B},
where B denotes the disk in the plane (xi, x2) having center as the
origin and with radius r (including its boundary as well).

This cylinder set is nothing else but the cylinder which is rotation
invariant with respect to the coordinate ax x3 and has radius r.

This cylinder set can be also given in the form

{(X1,X27X3) eR®: xP+x5 < fz}Z{(Xth,Xs) eR®: (X1, X0, X3) € BXR}

so, we can see that a cylinder set can be given in different forms.




Kolmogorov consistency and existence theorem

The collection of cylinder sets, denoted by C, is an algebra. )

Product measurability

Aset B C X is measurable, i.e., B € ¢(C) holds if and only if there
exist (ax);®, and B e [[;2; Aa, such that p@1k);-;1(3) = B, where

Pla)e, [Toer Xa = Tzt Xaws P(av)i2, (%) == (X )iZ1> X € [Laer Xa
(i.e., the set B depends ,only on countably many coordinates”).

Incase of X, =R, a € T, the previous result means picturesquely
that a set B C R" is o(C)-measurable if and only if the functions
belonging to B are defined in a way that their values are commonly
given at countably many points, while they can take arbitrary values at
other points.

After this it is meaningful to ask whether a mapping ¢ : Q — R7 is
measurable or not.
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Kolmogorov consistency and existence theorem

Measurability of a stochastic process

Let ¢ :={¢& :te T} be areal valued stochastic process, where T is
a nonempty index set. Then ¢:Q — R is measurable with respect
to the measurable spaces (Q2,.4) and (R',o(C)).

Distribution of a stochastic process

By the distribution of a (real valued) stochastic process
&:={& :te T} (where T is anonempty index set), we mean the
following probability measure defined on the space (R7,c(C)):

Pe(M) :=P(¢ € M)=P(¢'(M)), Meoa(C).
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Kolmogorov consistency and existence theorem

Connection between the distribution and finite dimensional
distributions of a stochastic process

Let £ :={& :te T} be a(real valued) stochastic process, where T
is a nonempty index set.

(i) Then the distribution of ¢ uniquely determines the finite
dimensional distributions of &.

(i) If n:={n::te T} is a (real valued) stochastic process such that
its finite dimensional distributions coincide with those of &, then
the distributions of £ and 7 coincide, i.e., P = P,,.

Hence the finite dimensional distributions of a stochastic process
uniquely determines its distribution on the space (R7,(C)).

In what follows we investigate the question raised earlier: what is a
minimal condition under which a family of probability distributions
coincides with the family of the finite dimensional distributions of some
stochastic process.
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Kolmogorov consistency and existence theorem

Consistent family of probability measures

Let T # 0 be an index set. Let

T = {(t1,...,tn)e T":neN, t#£8, it i#], i,je{1,...,n}},

and for each (t,...,t;) € T*, let us given a probability measure

P,....t, onthe measurable space (R", B(R")).

The family {P,..1,: (t4,...,t) € T*, n € N} is called consistent if it
satisfies the following two conditions:

(a) permutation invariance: if = is a permutation of (1,2,...,n),
then for all Borel measurable sets A; € B(R), i=1,...,n, the

probability measures Py, . ;, and Pt,rm,...,tw(n) satisfy the equation

Pry,eta(A1 X Ap XX An) = Pr gyt (A1) X An() X+ X Ar(n));
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Kolmogorov consistency and existence theorem

(b) compatibility condition: foreach ne N, (4,...,t,t1) € T*
and for each A € B(R"), we have

Pt t.(A) = Pttt (A X R).

The condition (a) means picturesquely that the measure of a
rectangular cuboid does not depend on the order of its coordinates.
The condition (b) is a generalization of the principle ,the volume of a
prism is the product of the area of the base and the height”. One can
call it compatibility condition, since it is about a connection between
probability measures on Euclidean spaces with different dimensions.

Example for a consistent family of probability measures

Let T+#0, f:R — [0,00) be a density function, and for each
(t,...,tn) e T, neN, and A e B(R"), let

Pt11---7tn(A) = /A f(X1) T f(Xn) dxidxs . ..dxp.
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Kolmogorov consistency and existence theorem

Let T # () be anindex set. Let P be a probability measure on the
product space (R',o(C)), where o(C) denotes the o-algebra
generated by the cylinder sets. For each (t,...,t,) € T*,ne N, let

Py . (A) =P ({x eRT: (Xy,...,x;) € A}) . AcBR).

Then the family {Py,_ 4 : (t,...,th) € T*, n € N} consisting of
probability measures is consistent.

Kolmogorov consistency theorem

Let T # 0 be an index set, and for each (t,...,t,) € T*, n € N let
P,....t, be a probability measure on the measurable space

(R", B(R™M)). Let us suppose that the family

{Pt..t,:(t,....ta) € T*, n € N} is consistent. Then there exists a
unique probability measure P on the measurable space (R',s(C))
(where o(C) is the o-algebra generated by cylinder sets) such that for
each (4,...,t) € T, ne€ N, we have

Pt1 ..... tn(A) =P ({X eRT: (Xt1 yo e ,th) € A}), vV Ac B(Rn)
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Kolmogorov consistency and existence theorem

In the proof of Kolmogorov consistency theorem, the following results
from measure theory play important roles.

Inner regularity of a measure

Let X #0, A be a set of some subsets of X, and p: A — [0,00] be
a function. We say that p is inner regular with respect to a system
KK C A, if foreach A € A, we have p(A) = sup{u(K) : K C A,K € K}.

o-compact family

A family K consisting of some subsets of X # () is called
o-compact, if for each sequence K, € K, n € N, satisfying
N>, K, =0, wecanfindan N e N suchthat NN, K, = 0.

Let X #0, A be an algebra of some subsets of X, p:.A— [0, 0)
be a finitely additive function having finite values, and £ C A be a
o-compact family. If p is inner regular with respect to the system

K C A, then u is o-additive on the algebra A.




Kolmogorov consistency and existence theorem

Kolmogorov existence theorem

Let T C [0,00) be anonempty set. Foreach k e N, ty,..., k€ T,
< - <l let F . 4 :RF [0,1] be a k-dimensional distribution
function. Let us suppose that the family

{Fitpt KeEN b, b, teT, i <t <--- <t}

is compatible, i.e., forany ke N, t,...,tx € T, ¢€{1,... .k}, and
integers 1 <ii <hb <...<i <k, we have

- Elezr?h " Fto ot (X1, Xk) = Ft,.1,_._7tie(x,-1,...,x,-e), v Xj,,...,X, €R.
i El 900y

Then there exist a probability space (£2,.4,P) and a real valued

stochastic process {{;:t € T} onitsuch that forany k € N,
t,...,.,ke T, 4 <--- < lx, we have the distribution function of

§t1 000 7§tk is Ft1,...,tk-
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Kolmogorov consistency and existence theorem

Existence of a stochastic process with independent and
stationary increments corresponding to a given one-parameter
convolution semigroup

Let {F::t> 0} be aone-parameter convolution semigroup of
distribution functions. Then there exist a probability space (£, .4, P)
and a stochastic process {{;:t > 0} with independent and stationary
increments on it such that F¢, = F; forall t > 0.

Then, as we saw eatrlier, the finite dimensional distributions of
{&t : t > 0} are uniquely determined by the family {F;:t > 0}.
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