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Abstract

An explicit formula is derived for the Fourier transform of a Gaussian measure
on the Heisenberg group at the Schrodinger representation. Using this explicit for-
mula, necessary and sufficient conditions are given for the convolution of two Gaussian
measures to be a Gaussian measure.

1 Introduction

Fourier transforms of probability measures on a locally compact topological group play an
important role in several problems concerning convolution and weak convergence of probabil-
ity measures. Indeed, the Fourier transform of the convolution of two probability measures
is the product of their Fourier transforms, and in case of many groups the continuity theo-
rem holds, namely, weak convergence of probability measures is equivalent to the pointwise
convergence of their Fourier transforms. Moreover, the Fourier transform is injective, i.e., if
the Fourier transforms of two probability measures coincide at each point then the measures
coincide. (See the properties of the Fourier transform, e.g., in Heyer [7, Chapter 1.].) In case
of a locally compact Abelian group, an explicit formula is available for the Fourier trans-
form of an arbitrary infinitely divisible probability measure (see Parthasarathy [11]). The
case of non-Abelian groups is much more complicated. For Lie groups, Tomé [16] proposed a
method how to calculate Fourier transforms based on Feynman’s path integral and discussed
the physical motivation, but explicit expressions have been derived only in very special cases.

In this paper Gaussian measures will be investigated on the 3-dimensional Heisenberg
group H which can be obtained by furnishing R? with its natural topology and with the
product

1
(91, 92, 93)(h1, ho, h3) = <g1 +hi1,92 + ha, g3 + ha + §(g1h2 - 92h1)>~
The Schrodinger representations {m1y : A > 0} of H are representations in the group of
unitary operators of the complex Hilbert space L?*(R) given by

[ra(g)u)(z) = ¥ g tVARztA9192/2)y (1 1 (/X)) (1.1)
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for g = (g1,92,93) € H, u € L*(R) and z € R. The value of the Fourier transform of a
probability measure g on H at the Schrodinger representation 7., is the bounded linear
operator fi(msy) : L*(R) — L*(R) given by

fitraui= [ molgunde), e L)

interpreted as a Bochner integral.

Let (ut)i>0 be a Gaussian convolution semigroup of probability measures on H (see
Section 2). By a result of Siebert [13, Proposition 3.1, Lemma 3.1], (f(7xy)),5, is a
strongly continuous semigroup of contractions on L?*(R) with infinitesimal generator

N(mey) = anl + asx + azD + au2® + as(zD + Dz) + agD?,

where «,...,ag are certain complex numbers (depending on (p);>0, see Remark 3.1),
I denotes the identity operator on L?*(R), z is the multiplication by the variable z, and
Du(x) = u/(z). One of our purposes is to determine the action of the operators

() :etN(W:tA)7 t>0

on L%(R). (Here the notation (e*4);>o means a semigroup of operators with infinitesimal
generator A.) When N(m.,) has the special form 3(D? — z?), the celebrated Mehler’s
formula gives us

_ (¢® +¢?) cosht — 2xy

1
= — ex - u d
vV2msinht /]R P { 2sinht } (y) dy

forall ¢ >0, ue L*(R) and z € R, see, e.g., Taylor [15], Davies [4]. Our Theorem 3.1 in
Section 3 can be regarded as a generalization of Mehler’s formula.

et(D27x2)/2u(x)

It turns out that fi(mey) = e™V(™) >0 are again integral operators on L?(R) if
g 1s a positive real number. One of the main results of the present paper is an explicit
formula for the kernel function of these integral operators (see Theorem 3.1). We apply a
probabilistic method using that the Fourier transform 7i(7+)) of an absolutely continuous
probability measure g on H can be derived from the Euclidean Fourier transform of p
considering 4 as a measure on R3 (see Proposition 4.1). We note that a random walk
approach might provide a different proof of Theorem 3.1, but we think that it would not be
simpler than ours.

The second part of the paper deals with convolutions of Gaussian measures on H.
The convolution of two Gaussian measures on a locally compact Abelian group is again a
Gaussian measure (it can be proved by the help of Fourier transforms; see Parthasarathy
[11]). We prove that a convolution of Gaussian measures on H is almost never a Gaussian
measure. More exactly, we obtain the following result (using our explicit formula for the
Fourier transforms).

"

Theorem 1.1 Let i/ and p” be Gaussian measures on H. Then the convolution ' * u”

1s a Gaussian measure on H if and only if one of the following conditions holds:



(C1) there exist elements Yy, Yy, Y1, Yo in the Lie algebra of H such that [Y1,Y3] =0,
the support of ' is contained in exp{Yy +R-Y; +R-Ys} and the support of p’ is
contained in exp{Yy +R-Y1 +R-Ys}. (Equivalently, there exists an Abelian subgroup
G of H such that supp (¢') and supp(y”) are contained in “Eucledian cosets” of

G.)

(C2) there exist a Gaussian semigroup (ui)i>o and t',t" >0 and a Gaussian measure v
such that supp (v) is contained in the center of H and either p' = py, p' = pp *v
or p = ppxv, p' = holds. (Equivalently, p' and p" are sitting on the same
Gaussian semigroup modulo a Gaussian measure with support contained in the center

of H. )

We note that in case of (Cl), u/ and p” are Gaussian measures also in the “Euclidean
sense” (i.e., considering them as measures on R?). Moreover, Theorem 6.1 contains an
explicit formula for the Fourier transform of a convolution of arbitrary Gaussian measures
on H.

The structure of the present work is similar to Pap [10]. Theorems 1.1 and 3.1 of the
present paper are generalizations of the corresponding results for symmetric Gaussian mea-
sures on H due to Pap [10]. We summarize briefly the new ingredients needed in the
present paper. Comparing Lemma 6.1 in Pap [10] and Proposition 5.1 of the present paper,
one can realize that now we have to calculate a much more complicated (Euclidean) Fourier
transform (see (5.6)). For this reason we generalized a result due to Chaleyat-Maurel [3] (see
Lemma 5.2). We note that using Lemma 6.2 one can easily derive Theorem 1.1 in Pap [10]
from Theorem 1.1 of the present paper.

It is natural to ask whether we can prove our results for non-symmetric Gaussian measures
using only the results for symmetric Gaussian measures. The answer is no. The reason for
this is that in case of H the convolution of a symmetric Gaussian measure and a Dirac
measure is in general not a Gaussian measure. For example, if a = (1,0,0) € H and (p)i>0
is a Gaussian semigroup with infinitesimal generator X2+ X2, then using Lemma 4.2, one
can easily check that puy x ¢, is not a Gaussian measure on H, where ¢, denotes the
Dirac measure concentrated on the element a € H. (For the definition of an infinitesimal
generator and Xy, Xo, X3, see Section 2.)

We note that if the convolution of two Gaussian measures on H is again a Gaussian
measure on H, then the corresponding infinitesimal generators not neccesarily commute,
nor even if the infinitesimal generator corresponding to the convolution is the sum of the
original infinitesimal generators. Now we give an illuminating counterexample. Let p’ and
1" be Gaussian measures on H such that the corresponding Gaussian semigroups have
infinitesimal generators

1 1
N = 5(X1 + X,)? and N = 5(X1 + X5)? + X1 X3, respectively.

Using Theorem 6.2 and Lemma 6.2, ' * u” is a symmetric Gaussian measure on H such
that the corresponding Gaussian semigroup has infinitesimal generator N’ + N”. But N’
and N” do not commute. Indeed, N'N” — N"N' = —(X; + X5) X3 # 0.



At the end of our paper we formulate Theorem 1.1 in the important special case of
centered Gaussian measures for which the corresponding Gaussian semigroups are stable in
the sense of Hazod. This kind of Gaussian measures arises in a standard version of central
limit theorems on H proved by Wehn [17]. In this special case Theorem 1.1 can be derived
from the results for symmetric Gaussian measures in Pap [10].

2 Preliminaries

The Heisenberg group H is a Lie group with Lie algebra H, which can be realized as the
vector space R?® furnished with multiplication

[<p17p27p3)7 <QI7 q2, Q3)] = (07 Oap1q2 — p2Q1)-

An element X € H can be regarded as a left—invariant differential operator on H, namely,
for continuously differentiable functions f:H — R we put

Xf(g) = limt™ (Flgexp(tX)) — f(9), g€,

where the exponential mapping exp : H — H is now the identity mapping.

A family (p):>0 of probability measures on H is said to be a (continuous) convolution
semigroup if we have pg* iy = pgyy for all s,£>0, and limyop = po = €., where
e =(0,0,0) is the unit element of H. Its infinitesimal generator is defined by

(NF)(g) := lim ¢t /H (Flgh) — f(9)m(dh), g eH,

t10

for suitable functions f : H — R. (The infinitesimal generator is always defined for infinitely
differentiable functions f : H — R with compact support.) A convolution semigroup (zi)i>0
is called a Gaussian semigroup if limyot'u,(H \ U) = 0 for all (Borel) neighbourhoods
U of e. Let {Xj, X5, X3} denote the natural basis in H (that is, exp X; = (1,0,0),
exp Xy = (0,1,0) and exp X3 = (0,0,1)). It is known that a convolution semigroup (zi):>0
is a Gaussian semigroup if and only if its infinitesimal generator has the form

3 3 3
N =Y X+ % DD bikXi X, (2.1)
k=1

j=1 k=1

where a = (a1, a2,a3) € R* and B = (bjx)1< k<3 is a real, symmetric, positive semidefinite
matrix. A probability measure p on H is called a Gaussian measure if there exists
a Gaussian semigroup (p);>0 such that g = 3. A Gaussian measure on H can
be embedded only in a uniquely determined Gaussian semigroup (see Baldi [2], Pap [9]).
(Neuenschwander [8] showed that a Gaussian measure on H can not be embedded in a
non-Gaussian convolution semigroup.) Thus for a vector a = (ay,as,a3) € R* and a real,
symmetric, positive semidefinite matrix B = (b;x)1<jk<3 We can speak about the Gaussian
measure g with parameters (a, B) which is by definition p := py, where (p)i>o is
the Gaussian semigroup with infinitesimal generator N given by (2.1). If v is a Gaussian
measure with parameters (a, B) and (vg)s>o is the Gaussian semigroup with infinitesimal

4



generator N given by (2.1) then 1, is a Gaussian measure with parameters (ta,tB) for
all t>0, since us:= vy, s=>0 defines a Gaussian semigroup with infinitesimal generator
tN. Hence v; = uy, so it will be sufficient to calculate the Fourier transform of .

Let us consider a Gaussian semigroup (p);>o with parameters (a,B) on H. Its
infinitesimal generator N can be also written in the form

d
1 2
N_Y0+§§1Yj, (2.2)

where 0 <d<3 and

3

3
Yo=Y aXy, Y;=) op;Xp 1<j<d,
k=1 k=1

where ¥ = (04;) isa 3 xd matrix with rank (X) = rank (B) = d. Moreover, B=%-%".
Then the measure p; can be described as the distribution of the random vector Z(t) =
(Z1(t), Zo(t), Z3(t)) with values in R3, where

d d
Zy(t) =ait+ Y o Wilt),  Zo(t) =ast+ Y 02, Wi(t),
k=1 k=1

Zs(t) = ast + > _ o5 Wi(t) + % /Ot( Z1(5)dZs(s) — Zo(s) dZ(s))

k=1

d
= agt + Z o3, Wi(t) + > (a0 — a1 ) Wi(t) + Y (014020 — 01,0024) Wie(t),
k=1

k=1 1<k<t<d

where (Wi (t),...,Wy(t))i>o is a standard Wiener process in R? and

W) ( Wi(s ds—/otdek( ))

Wie.o(t) (/ Wi (s) dWo(s /Wg ) dWi(s )>

(See, e.g., Roynette [12].) The process (Wi(t))i=0 is the so—called Lévy’s stochastic area
swept by the process (Wi (s), Wi(s))sepg on R2.

3 Fourier transform of a Gaussian measure

The Schrodinger representations are infinite dimensional, irreducible, unitary representa-
tions, and each irreducible, unitary representation is unitarily equivalent with one of the
Schrodinger representations or with x,s for some «,3 € R, where x,ps is a one-
dimensional representation given by

Xap(g) = e'@nt02) g = (g, gy, g3) € H.



The value of the Fourier transform of a probability measure g on H at the representation
Xa,8 1S

Alxas) = / Ye() p(dg) = / e0+052) 1 (dg) = fi(ar, §,0),

where [ : R?® — C denotes the Euclidean Fourier transform of u,

e, B,7) == / el(0ort0o479) 1y (dg).
H

Let us consider a Gaussian semigroup (p);>o with parameters (a,B) on H. The
Fourier transform of p := p; at the one-dimensional representations can be calculated
easily, since the description of (u);>¢ given in Section 2 implies that

ﬂ(Xaﬁ)—EeXP{ (ay + Bag) + (Oézalka +ﬁZUQka )}

for a,3 € R. The random variable

(Z o1 Wi (1 Z o2, Wi (1 )

has a normal distribution with zero mean and covariance matrix
01,1 021
o e ona| | L biy bip
. . - 9
021 ... 024 bz,l bz,2
01,d 024
since X" = B. Consequently,

I(Xa,8) = €xp { (aay + Bag) — —(b1 1?4 20 203 + by f3 )}

One of the main results of the present paper is an explicit formula for the Fourier trans-
form of a Gaussian measure on the Heisenberg group H at the Schrodinger representations.

Theorem 3.1 Let p be a Gaussian measure on H with parameters (a,B). Then

/Kj:A z,y)u(y)dy if by >0,
[M(Wi,\

Li)\( ) (l’ -+ \/_Cll) ’Lf b171 = O,
for ue L*(R), v €R, where

1
K:t)\(l’,y) = C(:I:/\(B) eXp {_§ZTD:I:>\(G'7 B)Z} ) zZ = (ZL‘, Y, 1)T7
where, with 6 := Q/b171b272 — b%,27 51 = b171b273 — bl,gbLg, (52 = CleLQ — 0J2b171,
( 1
if 6=0,

\/ 27T>\b171

5 |
k\/ 2 sy 100

6

C:t)\(B) =




and Diy(a,B) = (df,i‘(a, B))i<jk<s are symmetric matrices defined for by; > 0 and
0=0 by

AL+ b 1 A LFib
dit,i\(aa B) = Tma df;‘(a, B) = _)\bll’ d;;(a,B) = TLQ’
ditg(a, B) — aq :l:Z/\bLg :I:Z\/X627 détg(a, B) — _CL1 :l:’l)\bl’g :EZ\/X52,

’ \/Xbu 2b1 1 ’ \/Xbl,l 2b1 4

((ll + Z./\b173)2 i /\2(55

d;?))\(aa B) = bLl 12()1’1 + /\2b3’3 F 2i)\a3,
and for § >0 by
) COth()\é) + Zbl 2 ) ) COth()\a) F Zbl 2
dit(a, B) = : di)(a,B) == ——————, diy(a,B) = :
1,1 (CL, ) bl,l ) 1,2 (a7 ) 6171 smh()\é) ) 2,2 (a7 ) bl,l ’
dfé(a, B) — aq + Z'/\b1’3+ >\(51 + 2(52 ’ détg(a7 B) — _(1,1 + i)\bLg )\51 + ’L(SQ ,
’ VAbir VAbp 16 coth(AG/2) ’ VAbir Vb 16 coth(A5/2)
4 o (a1 + i>\b173)2 (/\51 + i52)2 2 .
4o B) = TS S (m _9 tanh(M/Z)) 4 A%by 5 F 2ias,
and

ivA A2 )
Li/\(l') = exp + T (\/X(Qag + Cllag) + 2&233) — E<3b373 —+ 3a162,3 + a1b272)

)\3/2

A
— 7(262,3 + a1b272)x - 51)2,21’2}.

We prove this theorem in Section 5.

Remark 3.1 Consider a Gaussian convolution semigroup (u);>o with infinitesimal gen-
erator N given in (2.1). Siebert [13, Proposition 3.1, Lemma 3.1] proved that (/./If\t(ﬂ'i)\))t>0
is a strongly continuous semigroup of contractions on L?*(R) with infinitesimal generator

3 3
1
N(myy) = E apXe(men) + 5 E E bj kX (man) Xp(men),
k=1 j=1 k=1

where
X(man)u = PI% ! (Wi,\(exp(tX))U - U)

for all differentiable vectors u. Hence
X, (man)ul(2) = VA () = VADul(z),
X (man)ul(z) = +iv/Aeu(x),
[ X3 (men)u](z) = £idu(x)

for all x € R. Consequently,

N(mr) = ayl + agw + azD + auz® + as(xD + Dx) + agD?,
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where

1
ap = —5)\2[)373 + i)\ag, Qg — —)\3/2b273 + i)\l/2a2, Qg3 — )\1/2a1 + Z'>\3/2b1’3,

1 i 1
gy = _§Ab2,27 a5 = j:é)\b].ﬂ? Qg = 5)\b171'

4 Absolute continuity and singularity of Gaussian

measures

A probability measure g on H is said to be absolutely continuous or singular if it
is absolutely continuous or singular with respect to a (and then necessarily to any) Haar
measure on H. It is known that the class of left Haar measures on H is the same as the
class of right Haar measures on H and hence we can use the expression ”a Haar measure
on H”. It is also known that a measure v on H is a Haar measure if and only if v is the
Lebesgue measure on R* multiplied by some positive constant. The following proposition
is the same as Proposition 2.1 in Pap [10]. But the proof given here is simpler, we do not
use Weyl calculus.

Proposition 4.1 If u is absolutely continuous with density f then the Fourier transform
f(mey) is an integral operator on L*(R),

[fi(me))u /Kﬂxy y)dy

with kernel function K.y :R? — C given by

ot = i (3 (25). ).

where
f2,3(31,§2,§3) IZ/ ei(9252+e383)f(51,82783)d52 dss, (31,§2,§3) cR?
]R2

denotes a partial Fuclidean Fourier transform of f.

Proof. Using the definition of the Schrodinger representation we obtain

[f(mey)u)(z) = / eii(A53+ﬁ52$+’\5152/2)u($ +VAs1) f(s1, $2, 53) dsy dsy dss
RS

:ti(A53+\/Xs2ac+\/X(y—$)S2/2)u( <u )

v)f , So2,83 | dydssdss
f R? VA

/ Kax(z,y)u(y) dy,

where

Kix(z,y) = \/1— .

(e () )

eEi(As3+VA(z+y)s2/2) ( 32,33) dsy dss




Hence the assertion. O

The partial Euclidean Fourier transform f;,g can be obtained by the inverse Euclidean
Fourier transform:

= ~ ~ 1 —is o~ g~ ~ ~
f2.3(s1,52,83) = %/e 18 £ (51, So, 53) ds, (s1,52,53) € R?, (4.1)
R

where fv denotes the (full) Euclidean Fourier transform of f:

f(51,82,53) = / el(@rs1esatesss) £ () 5y 53)ds) dsydss
]R3

for (51,%,53) € R% Moreover, fi(myy) is a compact operator. If the density f of pu
belongs to the Schwarz space then [(myy) is a trace class (i.e., nuclear) operator.

In order to apply Proposition 4.1 we shall need the description of the set of absolutely
continuous Gaussian measures on H. Using a general result due to Siebert [14, Theorem 2]
one can prove the following lemma as in Pap [10, Lemma 3.3].

Lemma 4.1 A Gaussian measure p on H with parameters (a,B) is either absolutely
continuous or singular. More precisely, p s absolutely continuous if by 1by o — b%,z >0 and
singular if by1bys — b7, = 0.

The next lemma describes the support of a Gaussian measure on H.

Lemma 4.2 Let ()0 be a Gaussian semigroup on H with infinitesimal generator N
given by (2.2). According to the structure of N we can distinguish five different types of
Gaussian semigroups:

(i) N=Yo+ (Y2 + Y2 +Y]) with Y, Yo and Y3 linearly independent. Then the
semigroup 1is absolutely continuous and supp () = H for all t > 0. Moreover,
rank (B) = 3, b171b272 - b%,Q 7é 0.

(i) N=Yo+3s(Y2+Y}) with Y1 and Y, linearly independent and [Y1,Ys] # 0. Then
the semigroup is absolutely continuous and supp (u;) = H for all t > 0. Moreover,
rank (B) = 27 b171b272 — b%,2 7é 0.

(iii) N = Yo+ 5(Y? +YZ) with Yy and Y, linearly independent and [Y,Ys] = 0.
Then the semigroup is singular, it is a Gaussian semigroup on R® as well, and it is
supported by a ‘Fuclidean coset’ of the same closed normal subgroup, namely,

supp () = exp(tYp + R - Y1 + R - Y3)
for all t>0. Moreover, rank(B) =2, by1bys — b7, =0.

(iv) N=Yy+ %Yf. Then the semigroup is singular, it is a Gaussian semigroup on R3 as
well, and it is supported by a “Fuclidean coset” of the same closed normal subgroup,
namely,

supp (1) = exp(tYp + R - ¥y + R - [, Y3))

for-all t>0. Moreover, rank(B) =1, bi1byy—b7,=0.
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(v) N = Yy. Then the semigroup is singular and consists of point measures, namely,
Mt = Eexp(tYo) fOT’ all t > 0.

Proof. From general results due to Siebert [14, Theorem 2 and Theorem 4], it follows that
a Gaussian measure p on H is absolutely continuous if and only if G := L(Y,[Y;, Y] :
1<i<d,0<j<k<d)=R3 where L£(-) denotes the linear hull of the given vectors, and
Y; € H, 0<i<d are described in (2.2). Moreover, the support of i, is

supp (pt) U (M exp ( )) for all t >0,

where M is the analytic subgroup of H corresponding to the Lie subalgebra generated
by {Y;:1<i<r} and the bar denotes the closure in H. Clearly [V;,Y;] =0, [¥;,Y;] =
(01,025 — 01,j02,) X5 for 1<i<j<d and [Y,Z] € L(X3) forall YV,Z e H.

We prove only the cases (iii) and (iv), the other cases can be proved similarly.

In case of (iii) we have G = L(Y7,Ys, [Y0, Y1), [Y0,Y2]). Since [Y,Y3] = 0, we have
01,1022 — U%,z =0, so Y] and Y5 are linearly dependent in their first two coordinates, thus
their linear independence yields X3 € L£(Y1,Y2). Moreover, [Yo,Yi],[Yo,Ys] € L(X35) C
L(Y1,Ys). So G=L(Y},Y3) #R? ie., the semigroup (u;);>o is singular.

To obtain the formula for the support of pu, it is sufficient to prove that
(Mexp (%%))n =exp(tYo+ R-Y; +R-Y3) forall ¢t >0 and n € N, where now
M =exp(R-Y; +R-Y3). The multiplication in H can be reconstructed by the help of the
Campbell-Haussdorf formula

exp(X) exp(Y) = exp <X +Y + 2[X Y]) X,Y e H.
Applying induction by n gives the assertion. Indeed, for n =1 we have M exp (tYy) =

exp(R-Y) + R-Ys)exp(tYy) = exp(tYo + R-Y; + R -Ys), since X3 € L£(Y1,Y5). Suppose
n—1
that (M exp (- YO)) =exp(tYp+R-Y;+R-Y3) holds. Using the Campbell-Haussdorf

formula and the induction hypothesis we get (M exp (i%))n = exp (%th +R-Y,+R-
Ya) exp (LYo +R- Y1 +R-Y3). Since X3 € L(Y1,Y2) and [V, Z] € L(X;) forall Y, Z € H,
application of the Campbell-Haussdorf formula once more gives the assertion.

The case (iv) can be obtained similarly. Indeed, we have G = L(Y7,[Yy,Y1]) # R3,
M =exp(R-Y7), hence supp (u) =exp(tYp+R-Y; +R-[V1,Y]) forall ¢> 0. O

5 Euclidean Fourier transform of a Gaussian measure
and the proof of Theorem 3.1

Now we investigate the processes (W) (t))i>0 and (Wie(t))i>0 (defined in Section 2).
Let ¢ >0 be fixed. We prove that W} (t) and Wy ,(t) can be constructed by the help

of infinitely many independent identically distributed real random variables with standard
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normal distribution. Because of the self-similarity property of the Wiener process it is
sufficient to prove the case t = 2.

Lemma 5.1 Let (Wi(s),..., Wa(s))sep2n be a standard Wiener process in R? on a prob-
ability space (Q, A, P). Let us consider the orthonormal basis f,(s) = (2r)"1/2e™s, s €
0,27], n € Z in the complex Hilbert space L*([0,27]). If (g(s))sepo2n i$ an adapted,
measurable, complex valued process, independent of (Wi(s),...,Wa(s))scp2n such that

E( 027r |g(s)|2ds> < oo then

/Wg(s)de(s) gfn/ Fls)dWi(s) as.  G=1l....d  (5.1)
0 nez

where (-,-) denotes the inner product in L*([0,27]) and the convergence of the series on
the right hand side of (5.1) is meant in L*(Q, A, P).

Proof. Let 1<j<d be arbitrary, but fixed. First we prove that the right hand
side of (5.1) is convergent in L*(Q2, A, P). Using that the processes (g(s))sep2- and
(Wi(s), ..., Wa(s))scp2n are independent of each other, for n,m € Z, n # m, we get

(10 ) [ A T [ BT a)
= E((g, fu) {9, fm)) </ fu(s) dWj(s /fm ) dW( ))

=ﬂ@¢%dﬁ»l”m@»&ﬁm=o

Using again the independence of (g(s))sco,2r) and (Wi(s),..., Wa(s))sejo,2x], We have

2

E@J@A”h@&%@ ~ i fE] [ (s

(0. £ [ a0 ds = El (g, )

Since E (f% lg(s)]? ds) < 0o, Parseval’s identity in L?([0,27]) gives us that

0
Z’gfn’—/ (s)]*ds a.s.

ne”

This implies that

21

Sl ff < [ lats)ds < oc,

nez
Hence the right hand side of (5.1) is convergent in L?*((2, A, P).
We show now that

4AWM$WM$—§}mM " fu(s) dW(s)

nez 0

2

=0,
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which implies (5.1). We have

2

S RCELACES SUNAY AFASEUAN

:E‘ JRECELACIRE:) SR AY REACEUAS

—2ReE(/O ﬂg(s)d%(s)Z(g,f@ ﬂfn(s)de(s)) = Ay + Ay — 2Re As.

nez 0

2
+E

Then we get

27
A=E [ lg(o)Pds,
0

2= E‘(Q,m @

2 T

= STEl(g, ) —E/ 19(s) 2 ds,

nez nez
to= S [Ta a0 [ )
Let us denote the o-algebra generated by the process (g(s))scp2rn by F(g). Then we
obtain
=Yg [T 6kl [ RG] Fo)
nez 0
= E n s)dW;(s W?d (s
%(w (/ @awe) [ F0) )
2m - T
=S(l0d) | aonGIes) = el )l = / 9(s) [ ds.
nez neL
Hence the assertion. O

The next statement is a generalization of Section 1.2 in Chaleyat-Maurel [3].

Lemma 5.2 Let (Wi(s),..., Wq(s ))86[0 ox] be a standard Wiener process in R%.  Then
there exist random vamables aq(l), b , neN,j=1,....d with standard normal distri-
bution, independent of each other and of the random varmble (Wh(27), ..., Wa(2m)) such
that the following constructions hold

Won2m) =3 % {bﬁf) (agf) - %Wk@ﬁ)) e (a;ﬁ - %Wj(zw))} as, (52)

n=1

Wy (2m) ——2\/_2— a. s. (5.3)

forall 1<j<k<d and ¢ =1,...,d, where the series on the right hand sides of (5.2)
and (5.3) are convergent almost surely.

12



Proof. Retain the notations of Lemma 5.1 and let us denote ¢’ := 027r fn(s)dW;(s),
ne€Z, j=1,...,d. Then c,(f), ne€Z, n#0, j=1,...,d are independent identically
distributed complex random variables with standard normal distribution, i.e., the decom-

() ;)
positions c(J) = "J%;b"], n€Z n+#0,7=1,...,d hold with independent identically

distributed real random variables a,; G) b(J , n€Z,n#0,7=1,...,d, having standard
normal distribution. Specifying ¢ as the indicator function 14 of the interval [0,¢]
(t € [0,27]) in Lemma 5.1, we have for all ¢ € [0, 27]

. A0
S 0L (Fal) — folt) + \/% as,  (=1,...d (5.4)

n€Z,n#0

In fact, there is a set Qp with P(€) = 0 such that (5.4) holds for all w ¢ Qp and
for almost every t € [0,27] (see, e.g., Ash [1, p. 107, Problem 4]). Applying (5.1) with
g = Wy and the construction (5.4), Chaleyat—-Maurel [3] showed that (5.2) holds. Choosing
g(s) = slpy(s), (t€[0,2r]) in Lemma 5.1 it can be easily checked that

t 9 in RO 2
/OSdWAs): > Call Dy ) - S SR )+

0
n n
nEZ, n#0 nEZ, 0 2V2m

By It6’s formula we get Wj(t) = 1tW,(t) — fot sdW,(s). Using the construction (5.4) of
Wy(t) and the definition of &P a simple computation shows that (5.3) holds. By Lemma
5.1 the series in the constructions (5.2), (5.3) and (5.4) are convergent in L*(Q, A, P). Since
the summands in the series in (5.3) and (5.4) are independent, Lévy’s theorem implies that
they are convergent almost surely as well. Finally we show that the series in (5.2) is also
convergent almost surely. For this, using that >, b0 /n is convergent almost surely for
all £ =1,...,d, it is enough to prove that the series

f:l bal® — a0 (5.5)

n=1

3

) _ ) 0)

is convergent almost surely. Here va an’, n € N, are independent, identically

distributed real valued random variables with zero mean and finite second moment. Hence
Kolmogorov’s One-Series Theorem yields that the series in (5.5) is convergent almost surely.
O

Taking into account Proposition 4.1 and the representation of a Gaussian semigroup
(t)t=0 by the process (Z(t)):>0 (given in Section 2), in order to prove Theorem 3.1 we
need the joint (Euclidean) Fourier transform of the 9-dimensional random vector

(Wi (t), Wa(t), Wa(t), Wy (1), W5 (), W5 (), Wia(t), Wis(t), Was(t)). (5.6)
Proposition 5.1 The Fourier transform F, : R® — C of the random vector (5.6) is

ﬁt(nla 2,73, Cl? CZ) C37 51,27 51,37 52,3) =

L exp{ r (1_ 21 ><§Q \|§HQ|\77\|2+/<6<€,?7>2—jn(1+m)|]§|12}

cosh(t[¢][/2) 4/1€]1 £2(1€]2 2(1+ w)|l]?

13



for & = (&2, =13, 612) " € R® with §#0, where n = (n,m,ms)" € R, ¢ =
(C1,82,¢3) T €R3, and

~ ~ 0 §12 &1
t||€ t)|€ _ Wik ’ ’
K= ycoth (#) -1, n:= iE ||2§C +iviy, &= —&a 0 &Hal. (B7)
—&13 —&3 0
(Here || -|| and (-,-) denote the Euclidean norm and scalar product, respectively.)

To calculate the Fourier transform of (5.6) we will use the constructions of the processes
(WiE(t))e=0 and (Wie(t))>o (see Lemma 5.2) and the following lemma.

Lemma 5.3 Let X be a k-dimensional real random vector with standard normal distri-
bution. Then we have

1
e
det (I +2sB)

Eexp {(7, X) — s(BX, X)} = Xp {%@, (I+ sz)—lm} , (5.8)

for all 7€ Ck, s € Rt and real symmetric positive semidefinite matrices B. (Here I
denotes the k x k identity matriz.)

Proof. Consider the decomposition B = UAU ", where A isthe k x k diagonal matrix
containing the eigenvalues of B in its diagonal and U is an orthogonal matrix. Then the
random vector Y := U'X has also a standard normal distribution. This implies that

Eexp {(,X) — s(BX,X)} =Eexp {(7,UY) — s(AY,Y)}

= Lo {@un s —Suu f @

where y = (y1,---,uyr) € R¥. Let Ay, ---, )\ denote the eigenvalues of the matrix B.
A simple computation shows that

_ 1 |
(0, Uy) = Ay, ) = S{wy) = =D (SA]- + 5) v+ Z (U Re);y; +zz (UTIm7);y;

Jj=1 j=1

k k k T 2
. 1+ 2s); (UTRe7); \? (U'Ren);
— UTl s — I |y = T
Z;( )Y ; 2 (yﬂ 1+ 25N, ; 2(1+25\;)

Using the well-known formula for the Fourier transform of a standard normal distribution

éexp {z’xt— <x2_2n) }dx—\/_aexp{ ; Qtz}, (5.9)

for all t,mm € R and o > 0, we obtain

Eexp {(7,X) — s(BX, X)}

1 L (UTRem);(UTIMT);, o~ (UTImm)? &L (UTRed)?
\/Hlfl(lJrQSAj)eXp{Z; 1+ 25\, _]22(1+23A)+22(1+23A)

14



Hence the assertion. O

Proof of Proposition 5.1. Because of the self-similarity property of the Wiener
process, the random vectors (Wk(t),Wé*(t),WM(t) 1<k l<d, 1<p < q< d) and
(7 Y2Wi(ct), ¢ 3PWi (ct), e " Wyg(ct) + 1<k, 0 <d, 1<p<g<d) have the same distri-
bution for all ¢>0 and ¢ > 0. Hence

Ft(nh 12, M3, C17 §27 <37 51 25 51 3 52 3

[t / / t\*? t\? ¢t t '
_ F _ — N -
o 277771’ 772, 7737 ( > C1, ( W) G2, (27r) (35 2#51’2’ 27?51’3’ Qﬂfz,g

so it is sufficient to determine ﬁgﬂ. By the definition of the Fourier transform we get

ﬁQﬂ(nb 2,13, Cla C27 <37 61,27 61,35 52,3)

— Eexp{ (Zm (2) +ZQW* @m)+ > gj,kmk(zn))}.

j=1 1<j<k<3

(5.10)

For abbreviation let Fh, denote ﬁzw(nl,nzwmC1,C27C3,51,2,51,3752,3)- Define the random
vector x = (X1,X2,X3)T by

1= —51,2LW2(27T) — 51,3LW3(27T) —2V/7(y,

VT VT

X2 ‘= 51,2%1/[/1(27) - 52,3%1/[/3(27) - 2\/EC27

1 1
3= flsﬁWl(QW) + f2,3ﬁW2(27T) — 2y/7(s.
Substituting the expressions (5.2), (5.3) for W, ;(27) and W (27) into the formula (5.10),

taking conditional expectation with respect to {W;(2m), ), 1<j<3, n> 1}, and using
the identity E(E(X]|Y)) = EX (where X,Y random variables, E|X| < o0), we obtain

p— {exp {i(n1W1(27T) + e Wa(27) + n3W3(27r))}

><E<exp{i21(§ an + X, by }'W (2m), () ,1<j <3, n>1)}

n=1

where a, = (a,(ll),a%),as’)) and b, := (bn1 b ,bg))T. Taking into account that

b§}’, bE?’, b are independent of the condition above and of each other for all n € N,
using the dominated convergence theorem and the explicit formula for the Fourier transform

of a standard normal distribution we get

Fyr = E [exp{ (mWi(2m) + 1 Wa(2m) + nsWs(27)) } HeXP{ 7112 1€ - an + X||2}] :

Since ¢ is a skew symmetric matrix, there exists an orthogonal matrix M = (m;x)1<k<s
such that

0 p O
M"¢M=|—p 0 0| = P.
0 00

15



The orthogonality of M implies M~'= MT, hence ¢M = MP. We have
—pmia pmyg 0
MP = | —pmss pmao; 0| = [—pmy,pmy, 0],
—pmsza pmz; 0

where m;, i = 1,2,3, denotes the column vectors of M, that is, M = [m;, my, m;].
Obviously, ¢M = [€my,{my, Emyg], hence {ém; = —pmy, £my = pmy, {mz = 0. Taking

into account that M is orthogonal, we have |mgs|| =1, hence
1
mj; =+ > 5 5 (€23, —§1,3751,2)T-
\/61,2 +&is+ &
Moreover, &2m; = £(ém;) = £(—pmy) = —p?m;. The only nonzero eigenvalue of &2 is

—(&ls + & + &), hence p = i\/ﬁ%z + &34+ &3 and M can be chosen such that
m; = £/||€]l, p=Il€]|, and thus

(my,u)? + (mo, u)* = | M Tul]® — (mg,u)* = [Jul]® - HfHQ< w)?, (5.11)
for all u € R®. We also get
I 0o
—E2=M| 0 |7 o| M = MAMT,
0 0 0

To continue the calculation of the Fourier transform of (5.6) we take conditional expectation
with respect to {W;(27), Wa(27), W5(27)}. A special case of Lemma 5.3 is that

- 1
Eexp{ _ SZYJQ} = ) exp {<(252D1/2(I +2sD)"tDY? — s[)m,m>}
j=1

det (I 4+ 2sD

for all s € R*, where Y = (Y},---,Y;)" isa k-dimensional random variable with normal
distribution such that EY =m and VarY = D. Applying this formula for Y =¢-a, + x
with s=(2n?)"!, m=x and D=¢-¢" = -2 = MAM" we get

F,.=E [exp {i(n1W1(27r) + neWh(2m) + 773W3<27T))}

H - /det (T +n—2A) o {%<(n‘4\/K(] 70T VA =) My M_1X>H '

Clearly det (]+n*2A) (1+n72||¢|[%)2. Using that | Pt ka2 T =% gcothr—1=

2 g2 sinh 2’

Y . m, x € R (see [5], formulas 1.431 and 1.421), the identity (5.11) and the fact
that (£, x)% = 4n(C, f) we obtain

S R
(i) L &R W2||€H2< /

X Eexp {Z(H1W1(27T) + 772W2(27T) + 773W3(27T)) 4”5”2 ||X||2}

16



where r = 7||€] coth(r||€]|)) — 1. A simple computation shows that
1
HX||2 :; ((5%2 + §%3>W12<27T) + (5%2 + 533)W22<27r) + (533 + 5%3)W32(27T)> + 47THC”2
2
+ - <€1,352,3W1(27T)W2(27T) — &1,26,3W1 (2m)W3(27)) + 51,251,3W2(27T)W3(27T))

— 4(&12C + §13G) W (27) 4+ 4(&12C — £2,3C)Wa(27) 4 4(&1,3C0 + £2,3C) Wa(27).

Using Lemma 5.3 with 7 = @”{Q%—i\/ 2mn, B = —2£2 s = 4H§I|2 and taking into account

that /det (I +2sB) =1+ x we conclude
Ao @ {_gi(g_ ?v)cfw}
= mysmea) ST e T )

- gt 0- ) )
ep{ e ¢ nm2> !
Using (5.11) we get

7(1— K £2 1~> 2 4 K < 77>2‘
<"< GE ) )= sl T+r |

Hence the assertion. O

Proof of Theorem 3.1. We prove only the case rank (B) = 3. The cases rank(B) =1
and rank (B) =2 can be handled in a similar way. In case rank (B) =3 the measure pu
is absolutely continuous and so Proposition 4.1 implies that the partial Euclidean Fourier
transform ]?;73 of the measure p has to be calculated in order to obtain the Fourier
transform  fi(myy). Let (u)i>0 be a Gaussian semigroup such that pu; = g and let
p1 1= 01,1022 — 012021, P2 i= 01,1023 — 013021, P3 = 012023 — 013022 by definition. In
case rank (B) =3, the representation of (p):>0 by the process (Z(t))i>0 (see Section 2)
gives us

3 3
Zy(1) =ay + ZUl,ka(l), Z5(1) = az + 202,ka(1)7

k=1 k=1

Z3(1) = a3 + Z o3, Wi(1) + Z (a201k — a102,) Wi (1) + p1Wia(1) + p2Wis(1) + psWaa(1).

k=1 k=1

This implies that the (full) Euclidean Fourier transform of the measure g is

f(31,%2,33) =Eexp { (512:(1) + 5, 25(1) + 5323(1))} = exp {i(5101 + S2a, + S3a3) }

3 3
X Eexp {Z(Z(O’l k$1 + 09, kSQ -+ 03 kSg)Wk + Z A201 k 109 k)Sng( )
k= =1

—_

+ 53p1 Wi 2(1) + s3p2 W1 3(1) + §3P3W2,3(1)> }

17



Proposition 4.1 shows that we may suppose s3 # 0. Using Proposition 5.1 and the facts
that

d
2 2 2
E (@201 — a102)" = bysaj — 2by sa1as + by 143, d=1,2,3,

k=1
(5.12)
p1(a1023 — as013) — p2(a1022 — ag012) + p3(aro21 — azoy 1) =0,
6% = pi + py + 13,
we get
o 1 e e K
T3 %) = ST /2) P {Z(slal + 520 + 5303) — 55 (ba20] — 2012010 + by 103)
b gl 4 g T
2(1+ k) 20+k) 02 J’
where <15 15
m_|§|0%h<B§:>_1a ﬁ:_é%@hWﬂ%f*”zTg
with

vy = p1(a1099 — a2012) + pa(a1023 — 201 3),
Vg = —P1(611<72,1 - a201,1) + P3(a102,3 - a20173),

U3 = —P2(a102,1 - a201,1) - P3(a102,2 - (1201,2);

and 3 := (51,59,33)", &:=(p3,—p2,p1)". It can be easily checked that

(€,7)? = —F2det B,

_ _ K2 Ko - -
1711* = —(B5,3) + ﬁ@ﬂ’) - 22_((51611 + 5202)0% + 33(a103 + a251)),

62
.
52 5, |5
51 04l 155]°

where d3 := by 3bao —b12bas and 0y := by 1033 — 6%73. Using (4.1), the identities above and

S  bioSa+ b330 1 |3
STBS:bLl (31—1— 1,252 + 1,383) n 2

b b

53

(5.9), the partial Fourier transform ﬁg can be calculated as follows

~ - s3]0 K
o559 = iy ]~ s e~ s

T
1 gg 52 51 gg 1+k aq 2

PdetB— - -

530¢ gg 2b171 1+k o1

2(1 + H)bl,l §3 (51 54
_haSa gty (@ s1 | + i 202 + S3a3 — L(§2@252 + 53(a103 + a251)) .
b1 1 1+k (14 k)62

_ "
2(1 + 162
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Finally Proposition 4.1 implies that the Fourier transform i(71y) is an integral operator
on L?*(R),

[(mn)u /Kﬁ:A z,y)u(y) dy,

where K., has the form given in Theorem 3.1. O

6 Convolution of Gaussian measures

The convolution of two probability measures p’ and p” on H is defined by

(5 1) (A) = /H W (hA) g (dh),

for all Borel sets A in H.

First we give an explicit formula for the Fourier transform of a convolution of two Gaus-
sian measures on [H.

Theorem 6.1 Let p/ and p” be Gaussian measures on H with parameters (a’, B')
and (a”,B"), respectively. Then we have

(1% 1T (xes) = oD { ((d, + ) + (a + a))

1
= 5 (0 0007 4 200, 4 ¥ a)ad + 05+ 1500°) .

Lix(z)u (33 + \/_(‘h + a/f)) if b1 1= b//1 =0,

[(u’ ") (mn)u ,
/Ki,\ x,y)u(y)dy otherwise,

where Liy(z) is given by
exp { + i()\(ag +aj + (dhab + afay)/2) + VN ah + ay)a + )xa’lag)

)\2
— T (B + W+ b+ (205 + )b+ ((5)2bh + (a)265,) /3 + (0} + a})b), )

3/2 A
— Tx(2bl273 + 2b,2/73 + allb/272 + (2Cl/1 + alll)b/2/72> - E'xz(bIQ,Z + b/2/72)}7

and Kiy(z,y) :=Cexp {—%ZTVZ}, z:= (z,y,1)", with
(A (B) it %, >0 and b/, =0,
C = C:t)\(B”) if bll,l =0 and blll,l > 0,

C:t)\(B/)Ci)\<B//> 2

W’ﬁd,{l if bll,l >0 and bll,,l >0

\
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(taking the square root with positive real part) and
( 0 0 —VAdld,
Dyx(d, B') + 0 Abj 5 D23 if Viy>0 and b, =0,
—\/Xalfdll,z D32 D33

)‘b/2,2 0 q1,3
V= 0 0 VAdid],| + Dxa(a”, B") if by =0 and b/, >0,
431 \/Xaid/fg 43,3

di; 0 dy g
1" " UU—r : / "
O d272 d273 — W Zf bl,l > 0 and bl,l > 0,
i 1" i " 2,2 11
_d3,1 d3,2 d3,3 + d3,3

\
where dj; = d;%,;\(a’,B’), diy = d;f,i‘(a”,B”) for 1<j,k<3 and
U:= (d/1,27 d/2/,17 dg,z + dg,l)Ta
P23 ‘= P32 = _\/Xallldlzg + )‘3/2(25,2/,3 - a/1/b/2/,2)/2 + z'\/Xa’Q’,
P33 = —\/_a (dy3 4 d35) + A} )2 dy 2t A2 (bgs ayly 5 + (aq)ng,2/3) F iX(2a3 — ajay),
Q13 :=(q31 = \/Xaid/ﬁ + )\3/2(a'1b/272 + 205 3)/2 F z'\/Xa’Z,
433 = \/Xag(d/f:a d'3’1) + Aa ) d,1/1 + N’ (5/33 + alb,Q 3+ + (a ,1)2[7,2,2/3) + i/\(2a’3 + alla/2>-

Proof. If b}, >0 and bf; >0 then the assertion can be proved as in Pap [10, Theorem
7.2]. If bi, >0 and b7, =0 then by Theorem 3.1

[/; (Tex)u /Ki)\ z,y)u(y) dy
with ,
K;I:A(m7y) = C:N:A(B/) €xXp {—§ZTD:|:>\(CL/, B/>Z} ) VAR (x,y, 1)T7

and
2

[ (mea)u)(y) = exp { + % (\/X(Qag ay ”) + 2a ) 6 (3b§73 + 3a’1’b/2'73 + (all/)QbIQ/,z)

)\3/2 /! 1.1 )\ /! 2 1
- 7(252,3 +ayby o)y — 552,29 }U(Z/ + \/Xal)'

Clearly we have
(¢ Tlman)u] 2) = @ rar i (mon)ul(@) = [ Ko (o) ()l )

Using the formulas for ,17’ (m+y) and p” (m£y) an easy calculation yields that Ky, has the
form given in the theorem. The other cases by, =0, b7, >0 and b, = b}, =0 can be
handled in the same way. O

We need two lemmas concerning the parameters of a Gaussian measure on HI.
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Lemma 6.1 Let us consider a Gaussian semigroup (p)i>o0 such that py is a Gaussian
measure on H  with parameters (a,B). Then we have

a; = EZZ, 1= 1,2,3, bi,j = COV(ZZ', ZJ) Zf (Z,j) 7A (3,3),
and

1
bog = VarZs — (Var21VarZ2 — Cov(Z,, 22)2)
1
- E (Vang (EZl)Q - QCOV(Zl, Zg) EZ1 EZQ + VarZ1 (EZQ)2>,
where the distribution of the random vector (Zy, Zy, Z3) with values in R3 is py.

Proof. Let Z(t) := (Zi(t), Z2(t), Z5(t)), t>=0 be given as in Section 2. Taking the
expectation of Z(1) yields that E(Z;(1)) = a;, ¢ =1,2,3. Using again the definition of
Z(1) and the fact that B =X-XT we get

U

Var(Z;(1

M&

d
E : § : 2
UlkO'lgE Wk O'lk—bll
k=1 (=1 =1

Similar arguments show Var(Zy(1)) = bao and Cov(Zi(1), Z2(1)) = by2. We also obtain

d
Cov(Z1(1), = E{ZUU ; (203 Wi(1 —l—Z 207 _(110'2,k)W]:(1))
k=1

d
+ Z o1, Wi(1) Z (016020 — UI,ZUQ,k)Wk,Z(1>:| )
i=1

1<k<t<d

which implies that

COV(Z1 Z 01,k03 k + Z Z O1,i 3201 ke — 102 k)E(W (UWI:(D)

=1 k=1

+Z > 01018020 — 014002, E(Wi(1)Wip(1)) = by 3,

=1 1<k<t<d

since W;(1), 1 <i<d are independent of each other and

E(W,(1)W; (1)) = EW;()Wee(1)) =0, 1<i<d, 1<k</(<d. (6.1)
Indeed,
(W)W (1)) = 5 Tim E LS (Wil s = 5 = s (Wa(s™) — Wk<s§-@1>))]7
EVL (Wi (1)) = 5 Jim E| 7 Z (Wil (Wals™) = Wisy)

— Wils{™)) (Wi(s\”) — Wk<s§-"’1>))}
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forall 1<i<d, 1<k < {<d, where {s(n) :7=0,---,n} denotes a partition of the

interval |0, 1] such that maxlgjgn(sg-”) - sg )1) tends to 0 as n goes to infinity. We can

obtain Cov(Zy(1), Z5(1)) = ba3 in the same way. Using again the form of Z(¢), (6.1) and
the facts that

Cov(W, (1), Wie(1)) =0 for all

<d, 1<k<<d, (i,§) # (k,0),
Cov(Wi (1), W; (1)) =0 for all d

1<i<y
1<k (<d, k#/,
we get

d d
Var(Z3(1)) Z o3+ Z (agoyk — a109,)*Var(Wi (1))
k=1 k=1

+ Z (Ul,k‘72,€ — 01,5027k)2Var(Wk7g(1)).

1<k<t<d

Lévy proved that the (Euclidean) Fourier transform of Wy (1), 1<k < ¢<d (i.e., the
characteristic function of Wy ) is

. 1
E (elth,e(l)) — m7 1<k<t<d

for all ¢ € R (this follows also from Proposition 5.1), so

d? 1
Var(Wpe(1)) = Tde (M)

Clearly W} has a normal distribution with zero mean and with variance Var(W} (1)) =

t=0

127
1 <k<d. Using (5.12) we have
1
Var(Zg( )) = b33 -+ 4([?1 1b2 2 — bi?) —+ E(a%bgg — 2@1@2[)172 + CL%bLl).
Hence the assertion. O

Lemma 6.2 Let /' and p” be Gaussian measures on H with parameters (a',B’)
and (a”,B"), respectively. If the convolution ' * p” is a Gaussian measure on H with
parameters (a, B) then we have

/ " !/ " / " ! n ! n
ap = a; + ap, az = as + ay, a3:a3+a3+§(a1a2—a2a1),
by = b, bia =V, b = by + by
1,1 11a 1,2 127 2,2 2,2 2,25

1
N // "1/ "1/ AN /AN
bz = b1,3 + b1,3 + §(a2b1,1 - a161,2 + a1b1,2 - a2b1,1)>

1
_ 1t /! VAN "1/ /AN
bas = 2,3+b2,3+§(a2 1,2 — a1 22+a1 o — U 1,2>a

VAN /AN AN
bs 3 ~|—b33+a213 a123—|—a123 2b1,3
/i

1
"yl "M\21/ IAVAR/ "y /ASNIAN) " 1l
+ 6<—a1a by + (ay) b272+(a1) b22 _ala b +a1a2b12+a1a2b12 2alazbl,Q

/! / "nyn n_ran AN M2/ IAVAR/ /NN
2a}anby , + 2 T 10507 5 + aya307 5 — anal 11T (a3) 11t (a3) 1,1 — Qolg 1,1>-
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Proof. Let 7' = (Z;,75,75)" and Z" = (Z,Z4,Z%)" be independent random variables
with values in R3 such that the distribution of Z’ is g/ and the distribution of Z” is

1", respectively. Then the convolution p’ * p” is the distribution of the random variable

1
(Z{ + 2}, 23+ 23, 24 + 24 + 5(Z12 — Z{’Z;)) — (74, 2o, 7).

Using Lemma 6.1 we get
a; =EZ, =EZ] +EZ] = a} + a,

ay = EZy = BZ) + EZ) = aj + aj,

1 1
az =EZ3s = EZ, + EZY + §(EZ{EZ§’ —EZVEZ}) = ay + df + §(a/1a,2/ — ayal),

since Z' and Z" are independent of each other. Similar arguments show that

by = VarZy = VarZ; +VarZ] = by, + ],

by = VarZy = VarZy 4 VarZy = b , + by,

bio = Cov(Z1,25) = b/1,2 + blll,z-
We also have
bis = CovlZa, Zs) = Cow(Z4, Z4) + Cov( 21, Z4)

1
+5 (cov(Z;, 717 — Cov(Z,, ZLZ!') + Cov(Z!, Z,2Z0) — Cov(Z!, Z;’Zg)).

Using this and Lemma 6.1 the validity of the formula for b3 can be easily checked. For
example we have

Cov(Zy, 212y) = E((21)°Z3) — BZ\E(Z1Z3) = (Vh, + (a1)*) a3 — (a))*ay = azbh ;.
The validity of the formula for by 3 can be proved in the same way. Lemma 6.1 implies that

1 1
VarZ3 = b373 + Z(b171b272 — big) + E(a%blg — 2&1(1251,2 + a%bu) = COV(Zg, Zg)

— Cov(Z,, Z}) + Cov(ZY, Z') + Cov(Z,, Z, Z1) — Cov(ZL, ZI'Z4) + Cov(ZY, Z, ZY)

1
— Cov(Zy, 21 Z}) + 1 <Cov(Z{Z§’, Z173) — Cov( 212y, Z1 Z)
— Cov(Z!'Z}, Z,2Y) + Cov(Z!' Z), z;fz;)).

Using again Lemma 6.1 and substituting the formulas for b1, b1 2, b22, a1 and as into
the formula above, an easy calculation shows the validity of the formula for bs 3. O

Our aim is to give necessary and sufficient conditions for a convolution of two Gaussian
measures to be a Gaussian measure. Using the fact that the Fourier transform is injective
(i.e., if p and v are probability measures on H such that [i(xas) = V(xas) for all
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a,f € R and [i(myy) = U(mey) for all A > 0 then p = v), our task can be fulfilled
in the following way. We take the Fourier transform of the convolution of two Gaussian
measures ' and g’ with parameters (a/, B’) and (a”, B”) at all one-dimensional and
at all Schrodinger representations and then we search for necessary and sufficient conditions
under which this Fourier transform has the form given in Theorem 3.1. First we sketch our
approach to obtain necessary conditions. By Theorem 6.1, (u * p” )A(ﬂ'i)\) is an integral
operator for b, +0b7, >0, and it is a product of certain shift and multiplication operators
for o}, +0f, = 0. If the convolution g’ * y” is a Gaussian measure with parameters
(a,B) then, by Theorem 3.1, (i %z} (r+,) is an integral operator for by; > 0, and it
is a product of certain shift and multiplication operators for b;; = 0. By Lemma 6.2, we
have by; =0}, +0b],, hence b;; =0 if and only if b}, +b7, =0. Henceif b; >0, the
integral operator (i =+ p” )A(ﬂ':t ») can be written with the kernel function given in Theorem
3.1 and also with the kernel function given in Theorem 6.1. In the next lemma we derive
some consequences of this observation.

Lemma 6.3 Let p/ and p" be Gaussian measures on H  with parameters (a',B') and
(a", B"), respectively. Suppose that ' *p" is a Gaussian measure on H with parameters
a=(a;)1<i<s, B = (bjr)i<jk<s such that by > 0. Then dji,;\ = vji,;\ forall 1<7,k<3
with (j,k) # (3,3) and for all X\ >0, and

1 1
@ABMW{—fg}—Cmp{b@;} A0,

where Cyy\(B), dj[,;\ = df,i‘(a, B), 1<j,k<3 and C,V =: (Uf;‘)lgj’kgg are defined in
Theorems 3.1 and 6.1, respectively.

Proof. The Fourier transform (1 % ") (m1y) is a bounded linear operator on L%(R), and
since by; > 0, Theorem 3.1 yields that it is an integral operator on L?*(R),

[(/j 1" (max)u /Ki,\ z,y)u(y) dy, u € L*(R), z € R, (6.2)

where .
Kaix(z,y) = Con(B) exp {—ézTDi,\(a, B)z} . oz=(z,y,1)".
Let us write dj, =: d;f,;\(a’, B’) and dj, =: d;f,;\(a”, B") for 1<j,k<3 asin Theorem

6.1. By Lemma 6.2, we have by, = by, +0},, hence b;; > 0 implies that b, >0 or
by, > 0. Using Theorem 6.1 we have

[0 5 T (/Kﬂmy y)dy, ueLX(R), v €R, (6.3)

where

~ 1
K:I:)\<x7y) :Cexp{—§zTVz}, zZ= (x7ya1)T'

Using (6.2) and (6.3), we have
0= / (K:I:)\(xay) - [}ik(x,y))u(y) dya u € LQ(R)7 reR.
R
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We show that if
/ \Kﬂ(x,y)IQ dy < oo, / ]I?i,\(:v,y)\z dy < oo, z€R, (6.4)
R R

then Kiy(z,y) = [?i,\(az,y), x,y € R. Indeed, for all x € R, the function y € R +—
Kix(z,y) — Kea(z,y) isin L*(R). Hence

0= / |Kin(z,y) — Kax(z,y)[? dy, z €R.
R

Then we get
/ / | Ka(r,y) — [?i/\<xay)|2 dzdy =0,
R JR

which implies that Kiy(z,y) = [?i,\(:c,y) for almost every x,y € R. Using that K,
and K1, are continuous, we get Kiy(z,y) = Kix(z,y), z,y € R. Now we check that
(6.4) is satisfied. Using the forms of K., and Ky, it is enough to check that

/Rexp {-2z"Re(Dsx(a,B))z} dy < oo, z€R, (6.5)

/exp {-z"Re(V)z} dy < o0, z€R, (6.6)
R

where z = (z,y,1)". Here Re(Diy(a,B)) and Re(V) are real, symmetric matrices. Let
us consider an arbitrary real, symmetric matrix M = (m;;)1<ij<3 With mgs > 0. Then

z' Mz = my 2% 4 2my o2y + maooy® + 2my sz + 2mo 3y + mas

2
1
(myox + m273)> — —— (M7 + my3)?
ma 2

= (\/ngy +

/122
2
+ miax + le’gl’ + ms3.

Hence

1
/ exp {—ZTMZ} dy = exp {m—(ml,gx +ma3)? — myga® — 2my 3T — mg’g}
R 2,2

2
X /exp {—(./mggy + (m1,2SE + m2,3)> } dy
R

v M22

1

2 2

= exp {_m (Mmy2x 4+ mas)” —my1x” — 2my 38 — ms3
2,2

1 t2
expq —— o dt
2mo o Jr 2

s 1
2 2
= [——exp{ ——(my 20 + ma3)” — My 2° — 2my 3z — ms3 o,
ma.2 ma.2

which yields that

X

/exp{—zTMz} dy < oo, ze€R.
R
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Hence in order to prove that (6.5) and (6.5) are valid we only have to check that the (2,2)-
entries of the matrices Re(D+x(a, B)) and Re(V) are positive. For example, if b}, >0
and b}, >0, then
| (d5,)?
Re (V =Re(d,,) —Re | ———|.
(Re ( »23 e (dz) —Re <d§2+*%4)

It b11,1b12,2 - (5/1,2)2 = b/1/,1b/2/,2 - (blll,z)Q =0, then

. T
7 77
(Re (V))Q 2 = 1// - 2 1// 2 Abl’l 2 Abl‘l{/ ’ 2"
’ )\blyl )\ (blvl) ( % + %) + (b/l+2 - I)}J)
b 4 AbY 4 b7 4 b4

Hence (Re(V)),, >0 if and only if

1 1 \2 /v, bL\? 1 1
b — —n - = > :
[(Ab’u i Abaa) " (b&tl ba,l) Ny, T,
A simple calculation shows that the latter inequality is equivalent to
af 1 1 Mo bo)’
—= N (=== >0
i1 ()‘bll,l " /\blll,l) A% <b/1/,1 b/1,1> 7
which holds since b}, >0, b7, >0 and A > 0. The other cases can be handled similarly.
Hence (6.5) and (6.6) are satisfied, and then Kiy(z,y) = Kia(z,y), =,y € R.

Using the forms of K., and [N(i,\, we get
1 1. .
Cix(B)exp —5Z Diy(a,B)z y = Cexp —5Z Vzy, z=(z,y,1) .

Putting z = (0,0,1)" gives

Cia(B)exp {—%dfg}} = C'exp {—%vfg}} : (6.7)
Substituting z = (1,0,1)T implies
Cer(B) exp {—%(dﬁ 2+ dg,g)} ~ Cexp {—%(vff Fout v;;g)} |
Using (6.7) we have
At + 2d75 = i} + 2073, (6.8)
With z = (0,1,1)" a similar argument shows that
33 + 2d33 = v3) + 2v33. (6.9)
Putting z = (1,1,1)" and using (6.7) we obtain
diy 4 2d5 + 2d75 + diy + 2d53

(6.10)
= vﬁ\ + 21}3 + 21}3) + v%\ + 2115%3’)\.
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Using (6.8),(6.9) and (6.10), we have dlié\ = vlié If z=(2,0,1)" then using (6.7) we have
dﬁ‘ + dikg = vﬁ\ + vlig)\

Using (6.8) we have di3 =vy3. If z=(0,2,1)7 then
dgig‘ + d;g = v%\ + v%\

Using (6.9) we have dy3 = v;3. O

Using Lemma 6.3 we derive necessary conditions for a convolution of two Gaussian mea-
sures to be a Gaussian measure and prove that they are also sufficient. The above train of
thoughts will be used in the proof of Proposition 6.1 and Theorem 6.2.

Remark 6.1 By Lemma 4.2, it can be easily checked that a Gaussian measure p admits
parameters (a, B) with b;, =0 for 1<j,k<3 with (j,k) # (3,3) and a; =ay =0 if
and only if the support of p is contained in the center of H.

Now we can derive a special case of Theorem 6.2 which will be used in the proof of
Theorem 6.2.

Proposition 6.1 If u” is a Gaussian measure on H with parameters (a”, B") such that
the support of u” is contained in the center of H then for all Gaussian measures ', the
convolutions ' xp” and p"«p' are Gaussian measures with parameters (a'+a”, B'+ B"),
and ILL/ */,L// — [1/// *ILL/

Proof. Let p be a Gaussian measure with parameters (a’+a”, B'+B”). By the injectivity
of the Fourier transform, in order to prove that p'* y” = p is valid, it is sufficient to show

that (i * 1") (Xas) = f(Xap) for all a, 8 > 0 and (i % p") (7)) = fi(msy) for all

A~

A > 0. Theorem 6.1 implies that (' * 1) (Xa.3) = i(Xa,s) is valid for all one-dimensional
representations Xa,5, @, 3 € R. Suppose that b}, # 0 and b} b5, — (b’1’2)2 # (0. By
Theorem 6.1, to prove (u/  p") (r2)) = fi(wey) for all A > 0 it is sufficient to show that

0 0 0
D:l:)\(aljB,) + 0 O 0 — DiA(a,‘f‘a/,’ B/+B/l)
0 0 A, F 2i\al

for all A > 0. Since b7, =0 for 1<j,k<3 with (j,k) # (3,3), we have d}(a' +
a’,B'+ B") =d}(d/,B) for 1<j,k<3 with (j, k) # (3,3).
that

So we have to check only

di3(d', B') + NV 4 F 2iay = di3(d +a”, B’ + B)
for all A > 0. Theorem 3.1 implies this. The case b, # 0, b by, — (b],)> =0 can be
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proved similarly. Suppose that b’171 = 5,1/,1 = 0. Using again Theorem 3.1, we have

_ \2
[u”(wi)\)u] (x) = exp { +i\ay — ?bgﬁ}u(.ﬁ:),

~ i )\ /\2
|:M/<7Ti)\)u] (r) = exp { + %(\/X(Zag + ajab) + 2a41) — E(Bbgﬁ + 3aiby g + (a})?bh )

A3/ A,
_ T(2b’23 + dybly,)x — §b'2’2x }u(m +Vd)).

Theorem 3.1 implies that [f(74y)ul (z) = [(// * //’)A(ﬂi,\)u} (r) for all A >0, ue L*(R)
and z € R. Hence the assertion. O

Now we give necessary and sufficient conditions under which the convolution of two
Gaussian measures is a Gaussian measure.

Theorem 6.2 Let ' and p"” be Gaussian measures on H with parameters o =
(aihi<i<s, B = (Vph<iess and a” = (af)i<i<s, B" = (0]))1<jr<s, respectively. Then
the convolution p' x p” is a Gaussian measure on H if and only if one of the following
conditions holds:

(C1) by >0, ¢>0, b, >0, " >0, and there exists 0> 0 such that b}, = ob’, for
1<, k<3 with (j,k) # (3,3) and a = pa, for i=1,2,

(C2) bip>0, &'=0, b{; >0, ¢"=0, and there exists 0 >0 such that b}, = ob, for
1<7,k<2,

(C3) by >0, & >0, V) =0 for 1<j k<3 with (j,k)# (3,3) and a! =0 for
i=1,2,

(C4) b, >0, =0, V=0 for 1<j,k<3 with (j,k)# (3,3),

(C5) by, >0, 8" >0, Wy, =0 for 1<j,k<3 with (j,k) # (3,3) and a, =0 for
i=1,2,

(C6) by, >0, 8"=0, U, =0 for 1<j k<3 with (j,k)# (3,3),

(C7) by, =0 and b}, =0,

where ¢ = \/bll,lb,2,2 — (by)? and " = \/b’l’,lbg’2 — (b]5)%  In cases (C1), (C3), (C5)
the parameters of the convolution ' * p” are (a' +a",B"+ B"), but in the other cases it
does not necessarily hold (compare with Lemma 6.2).

Proof. First we show necessity, i.e., if p' % u” is a Gaussian measure then one of the
conditions (C1) — (C7) holds. Let us denote the parameters of the convolution g’ u” by
(a,B) and we write d;; := df,i‘(a, B), d, = djf,?(a’,B’) and d, = d;%,i‘(a”,B”) for

1<j,k<3 asin Theorem 6.1. If b, >0 and 0, >0, we can easily prove that

/ /! / //
bi2 b1,2 b1,2 b22 52,2 b2,2

VN N7 IV N7
bip Oy O, bip Oy 04
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and dy,+dj; € R asin Pap [10, Theorem 7.3]. This implies that there exists ¢ >0 such
that b7, = b}, for 1<j, k<2, ie, (C2) holds.

When b}, >0, ¢ >0 and bf, >0, §” >0, we show that (C1) holds. To derive
this it is sufficient to show that b}, = ob) 3, by3 = obh3, af = ea; and aj = gay. Using

Theorem 6.1 we obtain

(i) (dyy+di;)(Red; 3 — Red;3) = dj,(Red; ; + Red, ),
(

5(Re d’1’73 + Re d’273),

1

) ) )
) ) )
(iil) (dhy+df )(Imd) 3 —Imdiz) = dj,(Imd] 5+ Imdy ),
(iv) (dyy +di )(Imdyz —Imdys) = df 5(Imd] 5 + Imdy 5).

(A N / / / "o // /! Z ! . AN, /N, 1"
Let us deIlOte 51 — b1’1b2’3 - b172b173, 61 o b1,1b2,3 - b1’2b173, 6 — a1b1’2 - a2b1’17 52 —
alt], —ajby ;. Summing up (iii) and (iv) we have

(d,2,2 + d/1/,1)(|m d/1,3 + Im dg,g —Imdi3 —Imdy3) = (d,1,2 + d’1’72)(|m d/1/,3 + Im d,2,3)-

Using the definition of djx, d;,, dj, (1<j,k<3) we get

b/ 5/ b// 6//
h / h 11 713 2 13 2
(coth(Ad") + coth(Ad")) (b’m T L0 coth(A/2) B, | ABL,0" coth(A6/2)

- 205
)\51,15 COth(/\(S/Z)

1 1 vy o b, o
- + _13 + 2 — 13 + 2 .
sinh(Ad') ~ sinh(A6”) / \ b7, ~ AbY 0" coth(A0"/2) b}, =~ AV} 0’ coth(A6'/2)
An easy calculation shows that

b/ b//
(ﬁ _ ﬁ) Asinh(Ad'/2) sinh(A8"/2)

/ /!
51,1 b1,1

_ 1 b2 1/, ,b, : , "
- (m (alm - a2> - E(alm - a2>) sinh(\d’/2) cosh(Ad” /2)

1 b2 L, by .
+ (m@lm — ag) — y<a’1’m — a’2’> cosh(Ad'/2) sinh(\d" /2)
forall A > 0. We show that the functions Asinh(A¢’/2)sinh(A6”/2), sinh(Ad’/2) cosh(A\d”/2)
and cosh(Ad'/2)sinh(Ad”/2) (A > 0) are linearly independent. We have
Asinh(A0'/2) sinh(A3"/2) = A(eMOH0)/2 — AOT=00/2 _ ATON/2 o mAOHN/2) /g

Slnh()\él/Q) COSh()\éH/2) _ (6)\(5’+5”)/2 + e)\(5’76”)/2 . e)\((?”f(s’)/Z . 67)\(6/+6H)/2)/4

COSh()\(S//Q) Sll’lh(A(S”/Q) :(GA(5,+6”)/2 o 6)\(51_5//)/2 + 6)\(5/1_5/)/2 B e_)\(5/+6//)/2)/4‘

Y

29



The linear independence of these functions follows from the following fact: if ¢y,...,¢, are

pairwise different complex numbers and @1,...,Q, are complex polynomials such that
> i Qij(N)e“* =0 forall A >0 then Q;=---=@Q,=0. Hence we get
b/13 b/1/3 1 b12 1 / b/12 / b,1/2 "
—= 22— (), R = (g == — — . 6.11
b/Ll b/1/71 8+ o (al by ag) 5 (al bll,l a2) 5 ( ay b/ll,l a2) ( )

Subtracting the equation (i) from (ii) we get
Using again the definition of djx, dy, dj, (1<j,k<3) we obtain

! a’! 2a,

1 1
VAV, A N Vb

V3 V3
b’1 0" coth(N0//2) by 10" coth(Ad”/2)

B 1 B 1 al @ n VA, VA
~ \sinh(A”)  sinh(A') J \ VAW, VAV, ;10" coth(Ad'/2) — b],6” coth(A6”/2) )

(coth(Ad") + coth(Ad")) (

A simple calculation shows that

A(L+ tanh(Ad'/2) tanh (A" /2) (af; - 5y )
1,1 1,1

, " a; al 1 1 al al
= th( )\ th(\d 22— - — — —— — — — — ).
(coth(A) + coth( ”( by B, bafl) * (sinh(Aé’) sinh(Aé”)) (ba,l ba',l)

It can be easily checked that the functions A(1 + tanh(Ad’/2) tanh(A\”/2)), coth(Ad') +
coth(Ad”) and (sinh(\d"))~! — (sinh(A6”))™ (
have

A > 0) are linearly independent. Hence we

!/ " !/ " / "

il B B ot _ 1 1 _ — _
) R T

/ /! / /!
b1,1 b1,1 b1 b1,1 b1,1

(6.12)

Taking into account (6.11) and (6.12), we conclude that (C1) holds. Using Lemma 6.2 it
turns out that in this case a =a'+a” and B = B'+ B”.

If b5,>0, >0 and 0f; >0, ¢"=0 we show that p'*p” can not be a Gaussian
measure. Our proof goes along the lines of the proof Theorem 7.3 in Pap [10]. Since the
proof given in Pap [10] contains a mistake we write down the details. Suppose that, on the
contrary, u'* u” is a Gaussian measure on H with parameters (a,B). By Lemma 6.2,
we have by = by, +b7,, hence b;; > 0. By Theorem 3.1, we have (u'* 1) (mey) is an
integral operator. Using Theorem 6.1 we obtain

(d} )*

dig =dy, m’ (6.13)
d//

doy = dj (i) (6.14)

T TN
dy o+ di 4
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b/ bll
We show that d’272 + d’1’71 cR and X2 = 12

/ /! .
b1,1 by y

correct in the proof of Theorem 7.3 in Pap [10].) By Theorem 3.1, we have

(The derivations of these two facts are not

b/ b//
Im (dj, +diy) = F (ﬂ - ﬂ) — —Im (], +di,).

/ /!
61,1 b1,1

Using that Im (dy1 + ds2) =0, by (6.13) and (6.14) we get

0=+ <b1_2 _ 61_2> i ((di,2>2 + (d’{,ﬁ)

/ /! ! U
bl,l b1,1 d2,2 + d1,1

_ 4 <bll,2 b’{,g) (di)” + (d7y)° (bLz b’{,g)
= T .

Vo W) ldha T dinP \byy o by
Hence v,
(1o + 2 = o = ) (2 - 52 ) =0
bia  0i4
Then
& coth(\') F il , A~ b, | (5)?
d d" 12— (d N2 — (d")? = 1,2 120
| 2,2 + 1,1| ( 1,2) ( 1,2) b,Ll b/ll71 (b/171)2 Sinh2<)\5/)
_ 1
A2(bY )

(8% | 20 coth(A) (@ - @)Q -
(bra)? — AbLbY, '

/ /!
b1,1 b1,1

: Viog by
It yields that A

Particularly, dy, +df; € R. Rewrite (6.13) and (6.14) in the

form

(d/1,1 - dl,l)(d/m + d/1,,1) - (d/1,2)27

(dyy — dop)(dyy +di,) = (d,1/,2)2-
It follows that

(d/l,l - d,2/,2 - dl,l + d2,2)(d/2,2 + d,1/,1) - (d,1,2)2 - (dll/,2)2‘
Using that dy, +df; € R and Re(di; —ds») =0, taking real parts we get
(Re (d,1,1) —Re (dIQI,Q))(dIQ,Z + d/1/,1) = (d/1,2)2 - (d/1/,2)2-

Thus

<6’c0th(/\6’)_ 1 )(6’coth()\5’)+ 1 ): (b’1’1)2(5/)2 1

b, A b, A sinh?(A0')  A2(b7 ;)%

From this we conclude

QARSI (0 . ,
- - - —  cosh(A) =1,
(b/1,1)2 )\Z(b/{,l)Z (b/171)2 SinhZ()\(5/> )\2(b/1/71)2 COS ( )
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thus ¢’ = 0, which leads to a contradiction.

If vy, >0, ¢ >0, and bf, = 0 we show that (C3) holds. The symmetry and
positive semi-definiteness of the matrix B” imply 0], = bf3 = 0. Lemma 6.2 yields
that b, = by, + b7, > 0. Hence Theorem 3.1 implies that (u' * (") (m1y) is an integral
operator and Im(dy; + d22) = 0 holds. By Theorem 3.1 and Theorem 6.1 we obtain
Im (diy + do2) = Im(d); + dy, + Aby,) = Im(Aby,). Thus by, = 0, which implies that
bys; =0 and 0 =9 > 0. Using again Theorem 6.1 we get

iy = dy 5 — Valdy, (6.15)
dos = dyy — \/Xallld/m T ivAdj. (6.16)

Taking the real part of the difference of equations (6.15) and (6.16) we have
/ " 1 h )\5/
2(£ _ _) o (LH) (6.17)
bl,l bl,l bl,l SlIlh()\5 )

Since (6.17) is valid for all A > 0, we have af = 0. Taking the imaginary part of (6.16)
and using the fact that a] =0 we get

" 1 b1 3 bll 3
as|(1—+5 ; =TT
A’ coth(A\/2) bii by,

—0. (6.18)

Since (6.18) is valid for all A >0, we get a4 =0, so (C3) holds. If by, >0, & =0 and

11 =0 a similar argument shows that (C4) holds.

The aim of the following discussion is to show the converse. Suppose that ((N]l) holds.
We prove that the convolution p’ % y” is a Gaussian measure on H with parameters
(a’+a", B'+B"). By Theorem 6.1, the Fourier transform (p’ * u”)A(Xaﬂ) equals the Fourier
transform of a Gaussian measure with parameters (a’ + a”, B’ + B”) at the representation
Xa,s forall a,8 > 0. Since bj;+ 0], > 0, the Fourier transform (W % 1) (mey) s
an integral operator on L?*(R) with kernel function K., given in Theorem 6.1 for all
A > 0. All we have to show is that C' = Cy\(B'+ B") and V = Dy,(d'+a",B' + B") =
(d2(d/ +d",B' + B"))1<jk<s. We have

&' sinh (A(1 + 0)d")
by, sinh(Ad’) sinh(Agd”)’

dyy+di, =
hence using Theorem 6.1 we obtain

5/
— — B/ B// )
¢ \/ 27}, sinh(A(1 + 0)d") Can(B7+ BY)

Let (pt)i=0 be a Gaussian semigroup such that p; is a Gaussian measure with parameters

(a/,B"). By the help of the semigroup property we have gy * p, = p14,. Taking into
account that aj and by, appear only in dj3(a’,B’) (see Theorem 3.1) and the fact
that g, is a Gaussian measure with parameters (ta’,tB’) for all ¢t >0, Theorem 3.1 and
Theorem 6.1 give us

Vi = dji’,i‘(a’ +d",B"+ B").
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for 1<7,k<3 with (j,k) # (3,3). So we have to check only that vs3 = dié(a’—l—a”, B+
B"). By the help of Theorem 6.1 we get

V33 = d3 3+ d3 3 — (d35 + dg,l)Q' (6.19)

! U
dz,z + d1,1

Calculating the real and imaginary part of (6.19) one can easily check that vs3 = défg(a’ -+
a”,B'+ B") is valid.

Now suppose that (62) holds. Using the parameters of p/ and p”, define a vector a =
(a;)1<ics and a matrix B = (b;j)1<i <3, asin Lemma 6.2. We show that the convolution
po= ' x p” is a Gaussian measure on H with parameters (a,B). An easy calculation
shows that the Fourier transforms of p/xpu” and p at the one-dimensional representations
coincide. Concerning the Fourier transforms at the Schrodinger representations, as in case
of (C1), all we have to prove is that

2

2,2 1,1

and V = Dy,(d' +d",B"+ B"”). Using Theorem 3.1 we have

1 1 2 B 1 B 1
7 77 1 1 by blay o ’
V/2mAbY | /27D U + o + Z(ﬁ _ b'i?) \/27'[')\([),171 + b)) /2T Aby

since 0f,/bf, = b} ,/bi, = 0. Using similar arguments one can also easily check that
V = Dyy(d' 4+ d”, B"+ B") holds. We note that in this case the parameters of p’ % pu” is
not the sum of the parameters of p' and u”.

Suppose that (63) holds. Proposition 6.1 gives us that the convolution u’ * u” is a
Gaussian measure on H with parameters (a’ + a”, B’ + B”). In cases (C4), (C5), (C6),
(C7) we can argue as in cases (C2), (C3). Consequently, the proof is complete. O

For the proof of Theorem 1.1 we need the following lemma about the support of a
Gaussian measure on H.

Lemma 6.4 Let u be a Gaussian measure on H with parameters (a,B) such that
biaboo —biy = 0. Let Yy € H be defined as in Section 2. If rank(B) = 2 then
supp (p) = exp (%+R-U+R-X3), where

o— bia Xy +bo1 Xy if b1 >0,
' b272X2 Zf b171 =0 and b272 > 0.

If rank (B) =1 then supp(u) =exp (Yo+R-U+R-[Y,U]), where

b1 Xy + b2 1 Xy +b31 X3 if by >0,
U .= b272X2 + b372X3 Zf b171 =0 and b272 >0,
6373X3 ’éf 6171 = b272 =0 and b373 > 0.

If rank(B) =0 then supp (i) = exp(Yp).
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Proof. We apply (iii) — (v) of Lemma 4.2, respectively. If rank (B) = 2 then one can
check that L£(Y1,Ys2) = L(U, X3). If rank (B) =1 then L(Y1) = L(U). O

Proof of Theorem 1.1. First we prove that if one of the conditions (C1) and (C2)
holds then one of the conditions (C1) — (C7) in Theorem 6.2 is valid, which implies that
the convolution p’* p” is a Gaussian measure on H.

Suppose that (C1) holds. Lemma 4.2 implies §' = §” = 0.
If ¥, =0, =0 then (C7) holds.

If b, >0, 0 =0 and b}, =0, 0" =0 we show that (C4) holds. It is sufficient to show
that by, = 0. Suppose that, on the contrary, b5, # 0. When rank (B’) = rank (B") = 2,
by the help of Lemma 6.4, we get

supp (1) = exp (Yg +R-U' +R-X3),  supp(p”) =exp (Vg +R-U" +R- X;),

where U’ = by, X; + by, Xy and U” =05, X,. Since in this case supp (') and supp (¢”)
are contained in “Euclidean cosets” of the same 2-dimensional Abelian subgroup of H, we
obtain that L(U’, X3) = L(U", X3). From this we conclude b}, = 0, which leads to
a contradiction. When rank (B’) = 1, rank(B"”) = 2 and in other cases one can argue
similarly, so (C4) holds.

If by, =0, &'=0 and bj, >0, §" =0 the same argument shows that (C6) holds.

If vy, >0, =0 and bf;, >0, ¢ =0 we show that (C2) holds. When
rank (B’) = rank (B”) = 2, Lemma 6.4 implies that

supp (1) =exp (Yg +R-U'+ R - X3), supp (') = exp (Y + R-U" + R - X3),

where U’ = b}, X; + 05, Xy and U” = b7, X; + 05, Xy. Condition (C1) yields that
LU, X3) = L(U", X3), hence we have by,by; = by,by,. Since &' =" =0 we get
by by = byobY ;. Thus (C2) holds with ¢:= 0} /b;,. When rank(B') = rank (B") =1,
Lemma 6.4 implies that

supp (M/) = exp (}/0’ +R- U’ +R- [Y& U/])7 supp (M//) = exp (}/O// +R- U” +R- [Yg/, U”]),

where U’ =b) X7 + b5, Xo+ b5, X3 and U” =0], X, + b5, Xs + b5, X;5. Condition (C1)
vields L(U", [}, U")) = LU, YL, U")), hence L(by Xy + by, Xa) = L0, Xy + b, X)),
It can be casily checked that (C2) holds with o := i /by, When rank(B') = 1,
rank (B”) = 2 or rank (B') =2, rank(B”) =1 we also have (C2) holds.

Suppose that (C2) holds (i.e., p' = py, p’' = pprxv or p = ppy xv, P’ = pw
with appropriate nonnegative real numbers t', t” and a Gaussian measure v with support
contained in the center of H). Then we have

ILL, * ,LL” = My Xk Uygrr RV = gy XV or /,L/ * /,l,” = MUy *V * yrr = [y g ¥ V.
Remark 6.1 and Proposition 6.1 yield that u' % p” is a Gaussian measure on H.

Conversely, suppose that p' * p” is a Gaussian measure on H. Then by Theorem 6.2,
one of the conditions (C1) — (C7) holds. We show that then one of the conditions (C1)
and (C2) is valid.
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Suppose that (C1) holds. If bys—o0b553>0 thenlet (a);>0 be a Gaussian semigroup
such that o} = ¢/ and let v be a Gaussian measure on H with parameters (a,, B,) such
that

0 0 0 0
B,=10 0 0 , a, .= 0
0 0 bh5—obs az — oag

Remark 6.1 and Proposition 6.1 imply that u” = o/ *v, hence (C2) holds. If b5 3—ob 5 <0
then let (a);>o be a Gaussian semigroup such that o] = " and let v be a Gaussian
measure on H with parameters (a,,B,) such that

0 0 0 0
B,=10 0 0 , a, = 0
0 0 byg—o 'by, ay — o 'ah

Remark 6.1 and Proposition 6.1 imply that x' = af,, * v, hence (C2) holds.

Suppose that (62) holds. Lemma 6.4 implies that
supp (1) Cexp (Yg +R-U' +R- X3), supp (1) Cexp (Yy +R-U" + R - X3),

where U’ = b),X; + by, Xo and U” = b]; Xy + by Xy, Condition (C2) gives us that
L(U") = L(U"), hence (C1) holds.

Suppose that (C3) holds. Let (a});>o be a Gaussian semigroup such that o} = p//
and let v be a Gaussian measure with parameters (a,,B,) such that

00 0 0
B,=10 0 0], a,: = |0
00 bg’,g ay

Then we have p” =v =ap*v, so (C2) holds.
Suppose that (64) holds. By the help of Lemma 6.4, we have

supp (1) Cexp (Yg +R-U' + R - X3), supp (1) Cexp (Y +R-U"),

where U’ =), X; +by,Xo and U"” = b33X3. Hence the support of p' is contained in
exp (YO'+]R . U/—HR-X;),) and the support of p” is contained in exp (YO” +R- U’—I—R-Xg),
so (C1) holds. Similar arguments show that when (C5) holds then (C2) is valid, and
when (C6) holds then (C1) is valid.

Suppose that (67) holds. Using Lemma 6.4, we have
supp (1) Cexp (YJ+R-U' +R-X3),  supp(u’) Cexp (Y +R-U"+R-X3),
where U’ = by, X, and U” =05,X5, so (Cl) holds. O

Remark 6.2 In case of (C1) in Theorem 1.1, p’ and p” are Gaussian measures also in
the “Euclidean sense” (i.e., considering them as measures on R?), but the parameters of the
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convolution p’*p” are not necessarily the sum of the parameters of p/ and p”. In case of
(C2) in Theorem 1.1, p/ and p” are not necessarily Gaussian measures in the ”Euclidean
sense”, but the parameters of the convolution ' % u” is the sum of the parameters of 1’
and u”.

Remark 6.3 We formulate Theorem 1.1 in the important special case of centered Gaussian
measures for which the corresponding Gaussian semigroups are stable in the sense of Hazod.
First we recall that a probability measure g on H is called centered if

/H 21 p(dz) = /H 25 p(dz) = 0.

A convolution semigroup (u:)i>o on H is called centered if g, is centered for all ¢ > 0.
For each t >0 let d; denote the dilation

di(x) = (txy, toy, t?23), x € H, t>0.

By Hazod [6, page 229], a Gaussian semigroup (p);>0 is centered and stable in the sense
that g, = d 41, t 20 (Hazod stability) if and only if its infinitesimal generator has the
form

1 22

a5 Xs + 5 ; ; b X: X (6.20)
Wehn [17] proved the following central limit theorem. Let |.| be a fixed homogeneous norm
on H and let us consider a centered probability measure p on H. If [ |z|* u(dz) < 400,
then (dl / \/ﬁ(,u*”))n>1 converges towards v weakly, where v is a Gaussian measure on H
such that the corresponding Gaussian semigroup has infinitesimal generator (6.20).

For centered and stable Gaussian measures Theorem 1.1 has the following form.

Let p' and p” be Gaussian measures on H such that the corresponding Gaussian
semigroups have infinitesimal generators

2 2 2 2

1 1 .
as X5 + 3 Z Z b, ; XiX;  and  a3X3+ 5 Z Z by ; XiXj, respectively.
i=1 j=1 i=1 j=1
Then the convolution ' * p” is a Gaussian measure on H if and only if there exist
t',t" >0, a Gaussian semigroup (p);>0 Wwith infinitesimal generator (6.20) and an element
x € H which is contained in the center of H such that either p' = py, ' = g *x e, or
p = py * €y, W' = p holds. Moreover, in this case az = a3+ az and b;; = b ; +b]
1<i,j<2.

The proof of this statement can be carried out in a direct way applying Theorem 7.3 in
Pap [10], and Lemma 6.2 and Proposition 6.1 of the present paper.
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