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The thesis summarizes the results of Balázs and Krisztin [2, 1].
Article [2] is accepted for publication, an electronic version is available.
Article [1] is submitted. The author has another paper [3], joint with
van den Berg, Courtois, Dudás, Lessard, Vörös-Kiss, Williams and Yin,
that is not presented here.

In papers [2, 1] and in the thesis we study two different types of
differential equations with delay. As for the two equations different
technical tools are developed, we consider them in separated chapters
with slightly different notions.

The common in the two types of problems is that both are moti-
vated by applications, and both require new, non-classical theoretical
techniques. Another joint feature is that we solve open problems for
both types of problems. In addition, we believe that the developed
methods will turn out to be useful for a wide class of analogous mod-
els.

First we study a price model that was introduced by Erdélyi, Bru-
novský and Walther [5, 4, 19]. The model equation contains only one
parameter, a > 0. The main result is that in case 0 < a < 1 the zero
solution is globally asymptotically stable. This gives an affirmative an-
swer for a conjecture of Erdélyi, Brunovský and Walther. Earlier local
stability was known for all a ∈ (0, 1), see [5]. As linearization fails at
zero, a center manifold reduction was used. Global attractivity was
proven only for a ∈ (0, 0.61) by Garab, Kovács and Krisztin [8]. Our
proof is based on the key idea that it is possible to connect the prob-
lem with a different type of equations, namely with neutral functional
differential equations, and in addition, that Lyapunov functionals can
be constructed for the neutral type problems.

The second part of the thesis considers a system which is composed
of a delay differential equation and two auxiliary equations defining the
delay. The delay differential equation satisfies a negative feedback con-
dition studied earlier in several fundamental papers [12, 13], leading
to the development of topics of nonlinear functional analysis like fixed
point theory in infinite dimensions. The studied particular system was
introduced by Ranjan, La and Abed [17, 16] to model a rate control
mechanism for a simple computer network. Mathematically, the diffi-
culty arises from the particular form of the delay defined by the two
auxiliary equations. The classical results for constant delays [7, 9], the
recently developed methods for state-dependent delay [10, 18] do not
seem to be applicable here. The first difficulty is to find a suitable phase
space where the corresponding initial value problem has a unique max-
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imal solution, and the solutions define a continuous semiflow. In fact,
we develop two different frameworks to study the problem. These re-
quire different phase spaces and different definitions for solutions. It
depends on the question which approach is more suitable. The second
main result is that the rate control system of Ranjan et al. may lead to
a slowly oscillating periodic rate around the optimal rate, provided that
the stationary solution at the optimal rate is unstable. This answers
affirmatively a conjecture of Ranjan and his coauthors [15, 14].

1 Global stability for price models with
delay

Our primary aim is to prove the global stability conjecture for the price
model of Erdélyi, Brunovský and Walther [5, 4, 19]

ẋ(t) = a[x(t)− x(t− 1)]− β|x(t)|x(t), (1.1)

where a > 0, β > 0. For 0 < a < 1, the local asymptotic stability
of x = 0 was shown by Erdélyi, Brunovský and Walther, and they
conjectured global asymptotic stability. Recently, Garab, Kovács and
Krisztin [8] obtained global asymptotic stability of x = 0 for equation
(1.1) provided a ∈ (0, 0.61). As x = 0 is non-hyperbolic, local stability
is already nontrivial.

In the sequel, we always assume r > 0, a > 0, and

(Hg)

{
g : R→ R is C1-smooth, ug(u) > 0 for u 6= 0,∫ s
0
g(u) du→∞ as |s| → ∞.

By using Stieltjes integrals, equation (1.1) can be written as

ẋ(t) = a

∫ r

0

x(t− s)dη(s)− g(x(t)) (1.2)

with η satisfying

(Hη)

{
η : [0, r]→ [0,∞) is of bounded variation,

η(0) = η(r) = 0,
∫ r
0
η(s) ds = 1.

Following [5], x(t) in equation (1.2) can represent the price of an as-
set at time t. Indeed, if x : I → R is continuously differentiable on
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an interval containing [t − r, t], then integrating the Stieltjes integral∫ r
0
x(t− s) dη(s) by parts, and using η(0) = η(r) = 0, we find∫ r

0
x(t− s) dη(s) = [x(t− s)η(s)]

s=r
s=0 −

∫ r
0
η(s) dsx(t− s)

= −
∫ r
0
η(s) ddsx(t− s) ds

=
∫ r
0
ẋ(t− s) ds

(∫ s
0
η
)
.

(1.3)

As η is nonnegative, the function [0, r] 3 s 7→
∫ s
0
η ∈ R is monotone

nondecreasing. Then (1.3) shows that the term
∫ r
0
x(t−s) dη(s) is zero

if x is constant on [t − r, t], and it is positive (negative) if ẋ(s) > 0
(< 0) for all s ∈ [t− r, t].

Observe that if the function s 7→
∫ s
0
η(u)du in the integral term∫ r

0
ẋ(t − s) ds

(∫ s
0
η
)

in equality (1.3) is replaced by an arbitrary non-
decreasing function µ : [0, r] → R of bounded variation, then the ob-
tained integral term

∫ r
0
ẋ(t − s) dµ(s) can be still interpreted as the

tendency of the price. This motivates to study the neutral type differ-
ential equation

ẏ(t) = a

∫ r

0

ẏ(t− s)dµ(s)− g(y(t)), (1.4)

as well as a price model provided a > 0 and µ : [0, r]→ R is of bounded
variation and nondecreasing with an additional technical assumption.

There is another reason to study the neutral type equation (1.4).
It plays a crucial role in the proof of the stability results for equa-
tions (1.1), (1.2). However, equation (1.2) and equation (1.4) are not
equivalent. A solution of equation (1.2) satisfies equation (1.4) with
µ(s) =

∫ s
0
η only for t > r. The phase spaces and the stability defini-

tions are also different for equations (1.2) and (1.4).
Let (cn)∞n=0 be a sequence of nonnegative numbers with

∑∞
n=0 cn ≤

1, and let (rn)∞n=0 be a sequence in [0, r] such that r0 = 0, and rn > 0
for all n ∈ N. Let H : [0, r] → R be given by H(0) = 0, H(s) = 1 for
s ∈ (0, r]. Define σ : [0, r]→ R by

σ(s) = c0H(s) +
∑

n: rn≤s

cn, s ∈ [−r, 0],

and let a nondecreasing, absolutely continuous ν : [0, r] → R be given
with ν(r) − ν(s) ≤ 1. Our hypothesis on µ is that it is nondecreasing
without a singular part, that is,

(Hµ)

{
µ : [0, r]→ R, µ = ν + σ,∫ r
0
dµ = 1, i.e., ν(r)− ν(0) +

∑∞
n=0 cn = 1
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holds. For ϕ ∈ C([−r, 0],R) let ‖ϕ‖ = max−r≤s≤0 |ϕ(s)|. Define the
subset

Y =

{
ψ ∈ C1([−r, 0],R)

∣∣∣ ψ̇(0) = a

∫ r

0

ψ̇(−s) dµ(s)− g(ψ(0))

}
of C1([−r, 0],R) and let ‖ψ‖Y =

(
(ψ(0))2 +

∫ r

0

(ψ̇(−s))2 ds
)1/2

.

A solution of equation (1.4) with initial function ψ ∈ Y is a contin-
uously differentiable function y = yψ : [−r, tψ)→ R such that y0 = ψ,
and (1.4) holds for t ∈ (0, tψ).

From g(0) = 0, y = 0 is a solution of (1.4), and by (Hg) it is the only
equilibrium solution. The solution y = 0 is called stable if for any ε > 0
there exists δ(ε) > 0 such that, for each ψ ∈ Y with ‖ψ‖Y < δ(ε), the

solution yψ exists on [−r,∞) and ‖yψt ‖Y < ε for all t ≥ 0; and globally
asymptotically stable if it is stable and for each ψ ∈ Y the solution yψ

exists on [−r,∞) and ‖yψt ‖Y → 0 as t→∞.

Theorem 1.1. Assume Hypotheses (Hg), (Hµ) hold, and a ∈ (0, 1).
Then for each ψ ∈ Y the unique maximal solution yψ of equation
(1.4) is defined on [−r,∞), and the zero solution of (1.4) is globally
asymptotically stable.

The proof of Theorem 1.1 is based on a Lyapunov functional which
has been inspired by the book of Kolmanovskii and Myshkis [11, Chap-
ter 9, p. 374].

The natural phase space for equation (1.2) is C([−r, 0],R). A maxi-
mal solution of (1.2) with initial function ϕ ∈ C([−r, 0],R) is a contin-
uous function x = xϕ : [−r, tϕ)→ R with tϕ > 0 so that x|[−r,0] = ϕ, x
is differentiable on (0, tϕ), (1.2) holds on (0, tϕ), and any other solution
with the same initial function is a restriction of xϕ.

Theorem 1.2. Assume Hypotheses (Hg), (Hη) hold, and a ∈ (0, 1).
Then the zero solution of equation (1.2) is globally asymptotically sta-
ble.

Corollary 1.3. If a ∈ (0, 1) then the zero solution of equation (1.1)
is globally asymptotically stable.
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2 A differential equation with a
state-dependent queueing delay

The particular model, that motivated our study, was introduced by
Ranjan, La and Abed in [17, 16]. It is a fluid model of a network
containing a single user and a single server. The user sends data by
rate x(t) ∈ [a, b] to the server, 0 < a < b. The server processes the
incoming data by the capacity c ∈ (a, b). The data arriving at the
server may form a queue with length y(t) ∈ [0, q] before procession,
q > 0. Let r0 ≥ 0 be the transfer time from the user to the server,
z(t) be the waiting time in the queue, and r1 > 0 be the sum of the
procession time and the transmission time from the server to the user,
see the figure. This model can be described by the rate control system

ẋ(t) = κ
[
x(t)U ′(x(t))

− x(t− r0 − z(t)− r1)p(x(t− z(t)− r1))
]

(2.1)

ẏ(t) =


x(t− r0)− c if 0 < y(t) < q

[x(t− r0)− c]+ if y(t) = 0

−[x(t− r0)− c]− if y(t) = q

(2.2)

z(t) =
1

c
y(t− z(t)− r1) (2.3)

where κ > 0, U is the utility, p is the price per unit flow, (2.2) is required
to hold almost everywhere, u+ = max{u, 0}, u− = max{−u, 0}.

processionuser userqueue

server

timett-r1t-z(t)-r1t-r0-z(t)-r1

r0
z(t) r1

The primary aim is to find a suitable framework to study the above
types of rate control systems. Neither the classical results for equa-
tions with constant delay nor the recently developed results for state-
dependent delay do not work here.

The secondary aim is to apply the developed framework, and to
show that the rate control system (2.1), (2.2), (2.3) may lead to a
slowly oscillating periodic rate around the optimal rate x∗, provided
that the stationary solution x = x∗, y = 0, z = 0 is unstable and r0 = 0.
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This answers affirmatively a conjecture of Ranjan and his coauthors
[15, 14].

Set r = r0 + r1 + q/c > 0 as an upper bound for the delays. For a
Lipschitz continuous ϕ : I → R, let

lip(ϕ) = sup
s∈I, t∈I, s<t

∣∣∣∣ϕ(t)− ϕ(s)

t− s

∣∣∣∣ ∈ [0,∞) and

slope(ϕ) =

{
ϕ(t)− ϕ(s)

t− s
: s ∈ I, t ∈ I, s 6= t

}
⊆ R.

First we consider a slightly more general system of equation

ẋ(t) = F (xt, yt) (2.4)

together with (2.2). An upper bound K > 0 for the absolute value
of the right hand side of equation (2.4) comes from the nature of the
problem. Then the subsets

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [a, b], lip(ϕ) ≤ K
}

and

Y =
{
ψ ∈ C[−r,0]

∣∣ ψ([−r, 0]) ⊆ [0, q], slope(ψ) ⊆ [a− c, b− c]
}

of C[−r,0] will contain all possible segments xt and yt. On X ⊂ C[−r,0],
Y ⊂ C[−r,0], X × Y ⊂ C[−r,0] × C[−r,0] we use the induced subspace
topologies and the corresponding norms. By the Arzelà–Ascoli theo-
rem, X, Y and X × Y are compact subsets of C[−r,0] and C[−r,0] ×
C[−r,0], respectively. Assume that the map F : X × Y → R has the
following properties:

(H1) there exists L > 0 such that, for all ϕ1, ϕ2 ∈ X, ψ1, ψ2 ∈ Y ,∣∣F (ϕ1, ψ1)− F (ϕ2, ψ2)
∣∣ ≤ L∥∥(ϕ1, ψ1)− (ϕ2, ψ2)

∥∥ ;

(H2) max(ϕ,ψ)∈X×Y |F (ϕ,ψ)| ≤ K;

(H3) there exists r2 ∈ (0, r1] such that F (ϕ,ψ1) = F (ϕ,ψ2) provided
ϕ ∈ X, ψ1 ∈ Y , ψ2 ∈ Y , and ψ1|[−r,−r2] = ψ2|[−r,−r2];

(H4) F (ϕ,ψ) > 0 if ϕ ∈ X, ψ ∈ Y , ϕ(0) = a, and F (ϕ,ψ) < 0 if
ϕ ∈ X, ψ ∈ Y and ϕ(0) = b.

A solution of system (2.4), (2.2) in the phase space X × Y with initial
condition x0 = ϕ ∈ X, y0 = ψ ∈ Y is a pair x = xϕ,ψ : [−r, ω) → R
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and y = yϕ,ψ : [−r, ω) → R such that 0 < ω ≤ ∞, xt ∈ X for
all t ∈ [0, ω), x0 = ϕ; x is differentiable on (0, ω); yt ∈ Y for all
t ∈ [0, ω), y0 = ψ; equation (2.4) holds on (0, ω); and equation (2.2)
holds almost everywhere in (0, ω). The solution is called maximal if
any other solution (x̂, ŷ) with x̂0 = ϕ, ŷ0 = ψ is a restriction of (x, y).

Theorem 2.1. For each (ϕ,ψ) ∈ X×Y there exists a unique solution
xϕ,ψ : [−r,∞) → R, yϕ,ψ : [−r,∞) → R of system (2.4), (2.2) on
[−r,∞) satisfying the initial condition x0 = ϕ, y0 = ψ. The mapping

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y

defines a continuous semiflow on X × Y . In addition, the solution
operator Φ(t, ·, ·) is Lipschitz continuous for all t ≥ 0.

In order to sketch the main steps of the proof, let (ϕ,ψ) ∈ X × Y
be given. By (H3), a standard contraction argument yields T ∈ (0, r2]
and a unique x : [−r, T ]→ R so that equation (2.4) holds on (0, T ), for
arbitrary extension of ψ to [−r, T ]. Next we redefine y : [−r, T ] → R
on (0, T ] such that equation (2.2) holds almost everywhere on [0, T ].
We extend the right hand side of (2.2) to an upper semicontinuous
multivalued map, and apply a standard result from [6] for differen-
tial inclusions. By the method of steps the solution can be uniquely
extended to a maximal solution on [−r,∞).

Introduce Z = [0, q/c] ⊂ R as a state space for the variable z(t).
There is a unique Lipschitz continuous map σ : Y → Z satisfying

σ(ψ) =
1

c
ψ(−σ(ψ)− r1). (2.5)

Assume that a map G : X × Z → R is given such that, with the
particular choice F : X × Y 3 (ϕ,ψ) 7→ G(ϕ, σ(ψ)) ∈ R, Hypotheses
(H1)–(H4) hold. Consider the system composed of the equations

ẋ(t) = G(xt, z(t)), (2.6)

and (2.2)–(2.3). Then, in the phase space X×Y , for each (ϕ,ψ) ∈ X×
Y , system (2.6), (2.2), (2.3) has the unique solution xϕ,ψ[−r,∞)→ R,
yϕ,ψ : [−r,∞) → R, zϕ,ψ : [0,∞) → R where

(
xϕ,ψ, yϕ,ψ

)
is the

solution of system (2.4), (2.2) with the above choice of F , and zϕ,ψ(t) =

σ(yϕ,ψt ), t ≥ 0.
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There is a unique Lipschitz continuous map γ : X×Z → Y so that
ψ = γ(ϕ, ζ) is constant on [−r,−ζ − r1] and satisfies equation (2.2) on
[−ζ − r1, 0].

The meaning of the existence of γ is that from the past of the rate
and from the present waiting time it is possible to recover the past of
the length of the queue. This allows to use X × Z a suitable phase
space as well, although it requires a different definition of solutions.

Theorem 2.2. For each (ϕ, ζ) ∈ X × Z there exists a unique pair of
functions xϕ,ζ : [−r,∞) → R, zϕ,ζ : [0,∞) → R such that (x, z) is a
solution of system (2.6), (2.2), (2.3) in the phase space X×Z satisfying
the initial condition x0 = ϕ, z(0) = ζ. The mapping

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

defines a continuous semiflow on X ×Z. In addition, the solution op-
erator Ψ(t, ·, ·) is Lipschitz continuous for all t ≥ 0.

Suppose that there exists x∗ ∈ (a, c) serving as a stationary solution
of the rate control equation. Defining v(t) = x(t)−x∗ and d = c−x∗ >
0, we obtain the system

v̇(t) = −f(v(t))− g(v(t− z(t)− 1)) (2.7)

ẏ(t) =


v(t)− d if 0 < y(t) < q

[v(t)− d]+ if y(t) = 0

−[v(t)− d]− if y(t) = q

(2.8)

z(t) =
1

c
y(t− z(t)− 1) (2.9)

A solution (v, z) is called slowly oscillatory if for any two zeros t1 < t2
of v the inequality z(t2) + 1 < t2 − t1 holds.

Set A = a− x∗, B = b− x∗, and assume the following conditions:

(S1) f, g ∈ C1([A,B],R);

(S2) f(ξ)ξ ≥ 0 and g(ξ)ξ > 0 for all ξ ∈ [A,B] \ {0}, g′(0) > 0;

(S3) g([A,B]) ∈ (−f(B),−f(A));

(S4) the map C 3 λ 7→ λ + f ′(0) + g′(0)e−λ ∈ C has a zero with
positive real part.
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Define the continuous functions f̃ , g̃ : [A,B]→ R as follows:

f̃(ξ) =

{
f(ξ)
ξ if ξ 6= 0,

f ′(0) if ξ = 0,
g̃(ξ) =

{
g(ξ)
ξ if ξ 6= 0,

g′(0) if ξ = 0.

There are constants f1 ≥ 0, g1 > g0 > 0 such that f̃([A,B]) ⊆ [0, f1],
and g̃([A,B]) ⊆ [g0, g1]. Let K0 = (f1 + g1) max{−A,B}, r = 1 + q/c,
K1 = rK0 and

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [A,B], lip(ϕ) ≤ K1

}
.

The solutions of system (2.7), (2.8), (2.9) define a continuous semiflow
by

(vϕ,ζt , zϕ,ζ(t)) = Ψ(t, ϕ+ x∗, ζ)− (x∗, 0)

on X ×Z, and the same Lipschitz continuity holds for the semiflow as
for Ψ in Theorem 2.2.

By using (S4) it is easy to see that (0, 0) ∈ X × Z is an unstable
stationary solution.

Define the sets

W =
{

(ϕ, ζ) ∈ X × Z
∣∣∣ ϕ∣∣

[−r,−ζ−1] ≡ 0,

s 7→ ϕ(s)ef1s is nondecreasing, ϕ(0) > 0
}
, and

W0 = W ∪ {(0, 0)}.

For (ϕ, ζ) ∈W , v = vϕ,ζ , z = zϕ,ζ , the negative feedback condition
on g in (S2) gives the existence of

t1 = min{t > 0 | v(t) = 0}, t2 = min{t > t1 | v(t) = 0}

and t∗2, such that t∗2− z(t∗2)− 1 = t2, depending continuously on (ϕ, ζ).
In addition, there is a uniform upper bound on t∗2 by (S4). This allows
us to define a return map P : W0 → X × Z by

P (ϕ, ζ) =

{
(0, 0) if (ϕ, ζ) = (0, 0)(
v̂t∗2 , z(t

∗
2)
)

otherwise

where v̂t∗2 ∈ X is determined by v̂t∗2 (s) = v(t∗2 + s) for s ∈ [t2 − t∗2, 0],
and v̂t∗2 (s) = 0 for s ∈ [−r, t2 − t∗2].

P is continuous, and P (W0) ⊆ W0, P (W ) ⊆ W . It is a crucial
result that P (ϕ, ζ) cannot decay too fast: there are constants θ > 0,
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v

t2t1
t1

0t0=-1-δ-r * t2
*

tt2-r
*

φ

ρ > 0 with vϕ,ζ(t∗2) ≥ θ (ϕ(0))
ρ

for all (ϕ, ζ) ∈ W . This fact allows
to construct a C2-function α on [0, q/c] such that α(0) = 0, α′ > 0,
α′′ > 0 on (0, q/c], α(q/c) is small enough, and the delayed inequality
α(ξ − d/c) ≥ θ (α(ξ))

ρ
holds for ξ ∈ [d/c, q/c]. Defining the compact

subsets

Wα,K1 =
{

(ϕ, ζ) ∈W0

∣∣ϕ(0) ≥ α(ζ)
}
,

Wα,K0 =
{

(ϕ, ζ) ∈Wα,K1

∣∣ lip(ϕ ≤ K0)
}

of X × Z, the inclusion P (Wα,K1
) ⊆Wα,K0

can be shown. This is the
hardest part of the proof toward to the existence of periodic solutions.
However, Wα,K1 and Wα,K0 are not convex. The subset

Vα,K1
=
{

(ψ, ζ) ∈ C[−1,0] × Z
∣∣∣ψ([−1, 0]) ⊆ [0, B], lip(ψ) ≤ K1,

[−1, 0] 3 s 7→ ψ(s)ef1rs ∈ R is nondecreasing,

ψ(−1) = 0, ψ(0) ≥ α(ζ)
}

of C[−1,0] × R is compact and convex. Set Vα,K1
can be mapped into

Wα,K1 by the streching map Q given by Q(ψ, ζ) = (ϕ, ζ) with ϕ(s) =
ψ(s/(ζ + 1)), s ∈ [−ζ − 1, 0], and ϕ|[−r,−ζ−1] ≡ 0. The squeezing map
R, defined by R(ϕ, ζ) = (ψ, ζ) with ψ(s) = ϕ((ζ + 1)s), s ∈ [−1, 0],
maps Wα,K0

into Vα,K1
. Browder’s theorem can be applied to find a

non-ejective fixed point of the map

Π : Vα,K1
∈ (ψ, ζ) 7→ R ◦ P ◦Q(ψ, ζ) ∈ Vα,K1

This yields a non-ejective fixed point of P in Wα,K1
that is nontrivial

provided (0, 0) ∈Wα,K1
is ejective. Ejectivity of (0, 0) ∈Wα,K1

follows
in a standard way from that of the zero solution of the constant delay
equation v̇(t) = −f(v(t))− g(v(t− 1)).

Theorem 2.3. Assume that Conditions (S1)–(S4) hold. Then system
(2.7), (2.8), (2.9) has a slowly oscillatory periodic solution.
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