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Abstract

We prove that all Hopf bifurcations in the Nicholson’s blowfly equation are su-
percritical as we increase the delay. Earlier results treated only the first bifurcation
point, and to determine the criticality of the bifurcation, one needed to substitute
the parameters into a lengthy formula of the first Lyapunov coefficient. With our
result, there is no need for such calculations at any bifurcation point.
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1 Introduction

Nicholson’s blowfly equation

N ′(t) = −γN(t) + pN(t− τ)e−aN(t−τ) (1)

is one of the most studied nonlinear delay differential equations, yet its dynamics is not
fully understood. The equation can be interpreted as a population dynamical model with
maturation delay and intraspecific competition, with N(t) denoting the population size,
and all parameters being positive. There exists a positive equilibrium N∗ = (1/a) ln(p/γ)
of (1) if and only if a > 0 and p > γ. These relations are assumed throughout this paper,
since we are interested in the bifurcations of periodic orbits from the positive equilibrium.

We can easily see that Nicholson’s equation has Hopf bifurcations at critical delays
τk with critical eigenvalues ωk, k ∈ Z. There is a well known method for determining
the direction of Hopf bifurcations for this type of equations [3], however, the calculations
are rather tedious and rarely followed through completely. In [4], the next theorem was
proven.
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where ∆ = (1 + τ0γ)2 + ω2
0τ

2
0 . Then,

(a) the Hopf bifurcation occurs as τ crosses τ0 to the right if ReC1(0) < 0, and to the left
if ReC1(0) > 0; and

(b) the bifurcating periodic solution is stable if ReC1(0) < 0 and unstable if ReC1(0) > 0.

In Section 2, we prove that this long formula for ReC1(0) is always negative, and this
holds not only for the first bifurcation point τ0, but for all critical parameter values τk,
k ∈ N0. Here we use the method of [2] (see also [1]) to obtain our main result, which is
stated in the following theorem.

Theorem 2. If p > e2γ, equation (1) undergoes a supercritical Hopf bifurcation at N∗

when τ = τk, for all k ∈ N0.

2 Proof of the main result

2.1 Preliminary calculations

Let N(t) be an arbitrary solution of equation (1). Setting N(t) = N∗ + (1/a)x(t), x(t)
satisfies

x′(t) = −γx(t)− aγN∗
[
1− e−x(t−τ)

]
+ γx(t− τ)e−x(t−τ). (2)

For normalizing the delay, we use the transformation y(s) = x(τs), and obtain

y′(s) = −τγ
(
y(s) + aN∗

[
1− e−y(s−1)

]
− y(s− 1)e−y(s−1)

)
. (3)

Using the Taylor expansion of the exponential function, the linearization of (3) is

z′(s) = −τγ
(
z(s) + aN∗z(s− 1)− z(s− 1)

)
.

By introducing the new parameter b = aN∗ − 1, it can be written as

z′(s) = −τγ
(
z(s) + bz(s− 1)

)
. (4)

Substituting the exponential Ansatz, we find the characteristic equation

λ = −τγ
(
1 + be−λ

)
. (5)
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For ω > 0, ±iω is a pair of complex conjugate roots of (5) if and only if

iω = −τγ
(
1 + b(cosω − i sinω)

)
.

Separating the real and imaginary parts, we obtain

τγb cosω = −τγ, (6)

τγb sinω = ω. (7)

Equation (6) can be simplified to

cosω = −1

b
.

As ω > 0, (7) implies sinω > 0. Then we have the critical imaginary parts
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(
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b

)
+ 2kπ, k ∈ N0.
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b
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π

2
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b

)
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From sinωk > 0, we get
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b
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)
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b
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Thus, the critical parameter values are
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For checking the transversality condition, we differentiate the characteristic equation (5)
with respect to the parameter τ :

λ′ = −γ
(
1 + be−λ

)
+ τγbe−λλ′,

and express the derivative

λ′ = −
γ
(
1 + be−λ

)
1− τγbe−λ

.

Substituting −τγbe−λ = λ+ τγ and −γ(1 + be−λ) = λ/τ from (5), we can see that

λ′ =
λ

τ(1 + λ+ τγ)
.

Considering λ in the form µ+ iω, where µ, ω ∈ R, and taking the real part, we get

µ′ = Re
iω

τ(1 + µ+ iω + τγ)
= Re

iω(1 + µ+ τγ − iω)

τ ((1 + µ+ τγ)2 + ω2)
=

ω2

τ ((1 + µ+ τγ)2 + ω2)
> 0.

As the real parts of the eigenvalues are strictly increasing in the parameter τ , the transver-
sality condition holds, and we have Hopf bifurcations at critical values τk, k ∈ Z, if b > 1.
The calculation in this section is equivalent with Section 2 of [4], however, our notations
will be more convenient for us in the sequel.
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2.2 Directions of the Hopf bifurcations

We follow the argument of [2], and apply it to equation (3). We denote the difference
between the parameter and the critical value by α = τ − τk, and use the notation ys(u) =
y(s + u), −1 ≤ u ≤ 0 for solutions segments, as usual. Let L and F be defined by the
relation

L(α)ys + F (ys, α) = (τk + α)
(
−γy(s)− aγN∗

[
1− e−y(s−1)

]
+ γy(s− 1)e−y(s−1)

)
,

where L(α) is a linear operator, F (0, 0) = 0 and D1F (0, 0) = 0. Then we have

L(α)ϕ = −(τk + α)γ
(
ϕ(0) + bϕ(−1)

)
and

F (ϕ, α) = −(τk + α)γ
(
(b+ 1)

(
1− e−ϕ(−1)

)
− ϕ(−1)e−ϕ(−1) − bϕ(−1)

)
. (9)

For L0 = L(0) we get
L0(ϕ) = −τkγ(ϕ(0) + bϕ(−1)).

By substitution,

L0(1) = −τkγ(1 + b), L0

(
θeiωkθ

)
= τkγbe

−iωk , L0

(
e2iωkθ

)
= −τkγ

(
1 + be−2iωk

)
follows. Expanding (9) into a Taylor series with respect to the first variable and substi-
tuting α = 0, we have
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2
ϕ2(−1)− τkγ

b− 2

6
ϕ3(−1) + h.o.t.

The coefficients of the right-hand side of
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2
1y2 + . . .
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are
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2
e−2iωk , B1,1,0,0 = τkγ(b− 1), B1,0,1,0 = τkγ(b− 1)e−iωk ,

B0,1,0,1 = τkγ(b− 1)e−iωk , B2,1,0,0 = −τkγ
b− 2

2
e−iωk .

The direction of the bifurcation is determined by the sign of

K = Re

[
1

1− L0(θeiωkθ)

(
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We use the notation a ∼ b for real numbers a and b having the same sign. Substituting
all terms into K, we have

K ∼
(
2b5 − 12b4 + 23b3 − 23b2 + 4b+ 4

)√
b2 − 1

+ b2
(
−6b4 + 19b3 − 27b2 + 10b+ 2

)(
arccos

(
−1

b

)
+ 2kπ

)
=: K∗

(12)

The polynomial p1(b) := −6b4 + 19b3− 27b2 + 10b+ 2 is the solution of the 4th order IVP
(initial value problem)

p1(1) = −2,
dp1
db

(1) = −11,
d2p1
db2

(1) = −12,
d3p1
db3

(1) = −30,
d4p1
db4

(b) = −144,
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so p1(b) is negative for all b > 1. In (12), the coefficient of 2kπ is also negative for all
b > 1. From (8), for k ∈ N0, we conclude

K∗ <
(
2b5 − 12b4 + 23b3 − 23b2 + 4b+ 4

)√
b2 − 1 + b2p1(b)

π

2
.

This expression is negative for all b > 1 if(
2b5 − 12b4 + 23b3 − 23b2 + 4b+ 4

)√
b2 − 1 < −b2p1(b)

π

2
.

As the terms
√
b2 − 1 and −b2p1(b) are positive, the last inequality holds if

p2(b) :=
(
2b5 − 12b4 + 23b3 − 23b2 + 4b+ 4

)2 (
b2 − 1

)
− b4p1(b)2

π2

4
< 0.

The polynomial p2(b) is the unique solution of the 12th order IVP

p2(1) = −π2 < 0,
d7p2
db7

(1), = 534240− 3064320π2 < 0,

dp2
db

(1), = 8− 15π2 < 0,
d8p2
db8

(1), = −120960− 18103680π2 < 0,

d2p2
db2

(1), = 184− 345π2

2
< 0,

d9p2
db9

(1), = −13063680− 98340480π2 < 0,

d3p2
db3

(1), = 2004− 1518π2 < 0,
d10p2
db10

(1), = −116121600− 501681600π2 < 0,

d4p2
db4

(1), = 10776− 10968π2 < 0,
d11p2
db11

(1), = −2035756800π2 < 0,

d5p2
db5

(1), = 55200− 72240π2 < 0,
d12p2
db12

(b), = 1916006400− 4311014400π2 < 0,

d6p2
db6

(1), = 249120− 474840π2 < 0,

so p2(b) is negative for all b > 1. Hence, we conclude that K < 0 for all b > 1 and k ∈ N0,
by [2], the theorem holds.

We have proven that all Hopf bifurcations for the Nicholson’s blowfly equation are su-
percritical, hence there is no need to calculate the complicated first Lyapunov coefficients
in the future. Our theorem significantly improves Theorem 2 of [4], where only the first
bifurcation point was studied, and even for that a lengthy formula needed to be checked
for any particular parameter combination to ensure supercriticality.
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