ON PRIME JB*-TRIPLES

By L. J. BUNCE, C.-H. CHU, L. L. STACHÓ and B. ZALAR

[Received 2 May 1997]

1. Introduction

ONE of the many interesting results in a recent study of ultra-prime Jordan-Banach algebras [4] was that there exists a universal constant K > 0 such that for any prime JB*-algebra A and any $a, b \in A$, we have $\|Q_{a,b}\| \ge K \|a\| \cdot \|b\|$. For prime JB*-algebras representable on a complex Hilbert space, known as JC*-algebras, an admissible value of $K = \frac{1}{20412}$ was given for the universal constant. The demonstration of an admissible value for the prime exceptional JB*-algebra was left open.

The purpose of this paper is both to sharpen and to extend this result by showing that, for any prime JB^* -triple A, we have

$$||Q_{a,b}|| \geqslant \frac{1}{6}||a|| \cdot ||b||$$

for all $b \in A$. Hence for any JB*-triple A, the follow three conditions are equivalent:

- (i) A is prime.
- (ii) The constant $K_A = \inf\{\|Q_{a,b}\| : \|a\| = \|b\| = 1\}$ is greater than zero.
- (iii) $K_A \geqslant \frac{1}{6}$.

Our methods, which are different from [4], involve application of representation theory to results on Cartan factors.

Historically JB*-triples arose in the study of complex holomorphy: a bounded symmetric domain is biholomorphic to the open unit ball of a JB*-triple is a complex Banach space A together with a continuous triple product $(a, b, c) \in A^3 \mapsto \{abc\} \in A$ such that

- (i) $\{abc\}$ is symmetric and bilinear in a, c and conjugate linear in b;
- (ii) $\{xy\{abc\}\}=\{\{xya\}bc\}+\{ab\{xyc\}\}-\{a\{yxb\}c\};$
- (iii) the operator $x \mapsto \{aax\}$ is hermitian with positive spectrum;
- (iv) $\|\{aaa\}\| = \|a\|^3$.

The identity (ii) is referred to as the *main identity*. The maps $D_{a,b}$ and $Q_{a,b}$ are given by $D_{a,b}(x) = \{abx\}$ and $Q_{a,b}(x) = \{axb\}$. We write $Q_a = Q$. Crucially, surjective linear isometries between JB*-triples are the triple isomorphisms [9, 13]. We refer to [16] for a recent survey of JB*-triples.

Every C^* -algebra is a JB*-triple via $\{abc\} = \frac{1}{2}(ab^*c + cb^*a)$. More generally, every JB*-algebra (alias Jordan C^* -algebra [17]), with Jordan product $(a, b) \mapsto a \circ b$, is a JB*-triple with respect to $\{abc\} = (a \circ b^*) \circ c + (b^* \circ c) \circ a - (a \circ c) \circ b^*$. A JB*-triple isometric to a subtriple of a C^* -algebra is called a JC*-triple (also known as J*-algebra [9]).

The second dual A^{**} of a JB*-triple A is a JB*-triple containing A as a weak*-dense JB*-subtriple [6]. A JB*-triple with predual is known as a JBW*-triple: the predual is unique and the triple product is separately weak*-continuous in each variable [2, 10]. Important examples of JB*-triples are the Cartan factors. Let H, K be complex Hilbert spaces and, with respect to a conjugation $h \mapsto \bar{h}$ on H, define $a^T(h) = \overline{a^*(\bar{h})}$ for each $a \in B(H)$, the space of bounded linear operators on H. Let \mathcal{O} denote the complex octonions. The six types of Cartan factors are as follows:

- (1) Rectangular, B(H, K), the bounded linear operators from H to K;
- (2) Symplectic, $\{x \in B(H) : x^T = -x\}$;
- (3) Hermitian, $\{x \in B(H) : x^T = x\}$;
- (4) Span, H with product $\{xyz\} = \frac{1}{2}(\langle x, y\rangle z + \langle z, y\rangle x \langle x, \overline{z}\rangle \overline{y})$ and norm $2\|x\|^2 = \langle x, x\rangle + (\langle x, x\rangle^2 |\langle x, \overline{x}\rangle|^2)^{\frac{1}{2}}$ and dim $H \geqslant 3$;
- (5) $B_{1,2} = the \ 1 \times 2 \ matrices \ over \ \mathcal{O};$
- (6) $M_3^8 =$ the hermitian 3×3 matrices over \mathcal{O} .

The Cartan factors (1)–(4) are JC*-triples while (5) and (6) are the *exceptional* Cartan factors.

An element u in a JB*-triple A is a tripotent if $u = \{uuu\}$, associated with which are the Peirce Projections

$$P_2(u) = Q_u^2$$
, $P_1(u) = 2(D_{u,u} - Q_u^2)$, $P_0(u) = I - 2D_{u,u} + Q_u^3$

which are contractive and mutually orthogonal with sum I and have ranges

$$A_j(u) = P_j(A) = \{x : \{uux\} = \frac{j}{2}x\}$$

so that $A = A_2(u) \oplus A_1(u) \oplus A_0(u)$. By the *Peirce rules*, we have $\{A_i(u)A_j(u)A_k(u)\} \subset A_{i-j+k}(u)$ when $i-j+k \in \{0,1,2\}$, and $\{0\}$ otherwise, and $\{A_2(u)A_0(u)A\} = \{A_0(u)A_2(u)A\} = \{0\}$. A nonzero tripotent u is *minimal* if $\{uAu\} = \mathbb{C}u$.

2. Primeness in JB*-triples

In this section, we shall briefly run through some relevant equivalent formulation of primeness.

Let J be a linear subspace of a JB*-triple A. We call J an *ideal* of A if $\{AAJ\}+\{AJA\} \subset J$. If J is a norm closed and $\{AJJ\} \subset J$, then J is an ideal of A [3].

For any ideal J of A, the annihilator $J^{\perp} = \{a \in A : \{aJA\} = \{0\}\}$ is a norm closed ideal of A as follows from the main identity.

Given norm closed ideals J and K with $x \in J \cap K$, we have $x = \{yyy\}$ for some $y \in J \cap K$ by triple functional calculus (cf. [12, 3]). It follows that

$$J \cap K = \{JKA\} = \{JAK\}.$$

The following result might have independent interest.

PROPOSITION 2.1. Let X and Y be subsets of a JB*-triple A with $\{XAY\} = \{0\}$. Then there exist norm closed ideals J and K in A with $X \subset J$, $Y \subset K$ and $\{JAK\} = \{0\}$.

Proof. Put $J = \{a \in A : \{aAY\} = \{0\}\}$ and $K = \{a \in A : \{JAa\} = \{0\}\}$. Then $X \subset J$, $Y \subset K$ and $\{JAK\} = \{0\}$. We shall show that J and K are ideals of A. By the main identity, we have

$$\{0\} = \{JA\{JAY\}\} = \{\{JAJAY\} + \{JA\{JAY\}\} - \{J\{AJA\}Y\} = \{\{JAJ\}AY\}.$$

therefore J contains $\{JAJ\}$ and so is, in particular, a JB*-subtriple of A. similarly K is a JB*-subtriple of A. Let \bar{J} , \bar{K} denote the weak*-closure of J, K in $A^{**}=M$, and let $u\in \bar{J}$, $v\in \bar{K}$ be tripotents. Then $\{uuv\}=0$ and so $\{uvM\}=\{0\}$ by [14, 3.9]. But \bar{J} , \bar{K} are JBW*-triples and so, as Banach spaces, are generated by their tripotents. So $(\bar{J}\bar{K}M)=\{0\}$. It follows that $\{JKA\}=\{KJA\}=\{0\}$ and the main identity gives

$$\{0\} = \{AJ\{JAY\}\} = \{\{AJJ\}AY\} + \{JA\{AJY\}\} - \{J\{JAA\}Y\} = \{\{AJJ\}AY\}.$$

Hence $\{AJJ\} \subset J$ and J is an ideal by [3]. Similarly K is an ideal.

A JB*-triple A is defined to be a *prime* JB*-triple if whenever J, K are norm closed ideals of A with $J \cap K = \{0\}$, then $J = \{0\}$ or $K = \{0\}$. (As is clear from the above, "norm closed ideals" in the definition may be replaced with "ideals")

PROPOSITION 2.2. Let A be a JB*-triple. The following conditions are equivalent:

- (i) A is prime.
- (ii) $J^{\perp} = \{0\}$ for every nonzero ideal J of A.
- (iii) If $x, y \in A$ with $Q_{x,y} = 0$, then x = 0 or y = 0.

Proof. (i) \Rightarrow (ii) and (iii) \Rightarrow (i) are immediate from the definition.

(ii) \Rightarrow (iii); Assume (ii) and let $x, y \in A$ with $Q_{x,y} = 0$. Suppose that $x \neq 0$. By Proposition 2.1, there exist ideals J, K of A with $x \in J$ and $y \in K \subset J^{\perp} = \{0\}$.

Let M be a JBW*-triple and let J be a weak*-closed ideal of M. Then $M = J + J^{\perp}$ [10]. Recall that M is called a *factor* if it has no proper weak*-closed ideals. By Proposition 2.2, we have

COROLLARY 2.3. A JBW*-triple is prime if and only if it is a factor.

3. Cartan factors

In this section, we investigate the constant K_A for a Cartan factor A. We always have $K_A \leqslant \frac{1}{2}$ if dim A > 1. Given a finite dimensional Cartan factor A with unit sphere $S = \{a \in A : \|a\| = 1\}$, the product $S \times S$ is compact and we have a continuous function $g: S \times S \to (0, \infty)$ given by $g(a, b) = \|Q_{a,b}\|$. Hence $K_A \geqslant \inf g(S \times S) > 0$. To estimate K_A , more elaborate methods are required.

LEMMA 3.1. Let A be a finite dimensional Cartan factor, let u be a nonzero tripotent in A and let $b_0 \in A_0(u)$. Then there exists $x \in A_1(u)$ with ||x|| = 1 such that $||\{uxb_0\}|| \ge \frac{1}{2}||b_0||$.

Proof. The conclusion being trivial if $b_0 = 0$, we may suppose that $||b_0|| = 1$. By the spectral decomposition of b_0 in $A_0(u)$ we have $b_0 = v + c$ where v is a nonzero tripotent in $A_0(u)$ and c is orthogonal to v. For any $x \in A$ and $z \in A_0(u)$ we have $\{xv\{uuz\}\}=0$, so that by the main identity

$$\{uu\{xvz\}\} = \{u\{vxu\}z\}.$$

Put $D = \{uAv\}$. We note from Proposition 2.1 that $D \neq \{0\}$ as A is a factor. Consider the map $T: D \to A$ given by $T(d) = \{udb_0\}$. For $x \in A$, the above equation gives

$$T(\{vxu\}) = \{u\{vxu\}b_0\} = \{uu\{xvb_0\}\} = \{uu\{xvv\}\} = \{u\{vxu\}v\}.$$

This shows that $T(D) \subset D$ and, as $D \subset A_1(u) \cap A_1(v)$ by the Peirce rules, it shows that

$$T^2(d) = \{uu\{dvv\}\} = \frac{1}{4}d$$

for all $d \in D$. So T attains its norm on the unit sphere of D and $||T|| \ge \frac{1}{2}$.

PROPOSITION 3.2. Let A be a finite dimensional Cartan factor. Then $\|Q_{a,b}\| \ge \frac{1}{6} \|a\| \cdot \|b\|$ for all $a, b \in A$.

Proof. Let $a, b \in A$ with ||a|| = ||b|| = 1. By spectral decomposition, $a = u + a_0$ where u is a minimal tripotent of A and $a_0 \in A_0(u)$. By Pierce decomposition with respect to u, we have $b = \lambda u + b_1 + b_0$ where $\lambda \in \mathbb{C}$, $b_1 \in A_1(u)$ and $b_0 \in A_0(u)$. We have

$$\|Q_{a,b}\| \ge \|\{aub\}\| = \|\{uub\}\| = \|\lambda u + \frac{1}{2}b_1\| \ge \max(|\lambda|, \frac{1}{2}\|b_1\|)$$

where the last inequality follows from the contractiveness of $P_i(u)$, j = 0, 1.

The required conclusion follows if $|\lambda| \geqslant \frac{1}{6}$ or $||b_1|| \geqslant \frac{1}{3}$. Otherwise we have $|\lambda| < \frac{1}{6}$ and $||b_1|| < \frac{1}{3}$. In which case, by orthogonality of u and b_0 [7, 1.3(a)]

$$\max(|\lambda|, \|b_0\|) = \|\lambda u + b_0\| \geqslant 1 - \|b_1\| > \frac{2}{3}.$$

By Lemma 3.1, choose $x \in A_1(u)$ with ||x|| = 1 and $||\{uxb_0\}|| > \frac{1}{3}$. By Peirce arithmetic, we have $\{axb\} = x_2 + x_1 + x_0$ with $x_i \in A_i(u)$, i = 0, 1, 2 and

$$x_2 = \{uxb_1\}, \ x_1 = \{uxb_0\} + \lambda\{a_0xu\}, \ x_0 = \{a_0xb_1\}.$$

Hence, as $P_1(u)$ is contractive, we obtain

$$\|Q_{a,b}\| \ge \|x_1\| \ge \|\{uxb_0\}\| - |\lambda| \|\{a_0xu\}\| > \frac{1}{3} - |\lambda| > \frac{1}{6}.$$

We note that Proposition 3.2 also solves the problem posed in [4] of exhibiting a positive lower bound of K_A for $A = M_3^8$.

We shall proceed to a close examination of special Cartan factors and we shall make use of the following.

REMARK 3.3. For a (complex) Hilbert space H with conjugation $h \mapsto \bar{h}$ and $a \in B(H)$, the operator $a^T \in B(H)$ is defined as before. The rank one operator $v \mapsto \langle v, k \rangle h$ is denoted by $h \otimes k$. In particular, for $h, k, h', k' \in H$, we have

$$\langle (h \otimes k + h' \otimes k')(k), h \rangle = ||h||^2 ||k||^2 + \langle k, k' \rangle \langle h', h \rangle,$$

Hence, for ||h|| = ||k|| = 1, we have

- (i) $||h \otimes \underline{k} + h' \otimes \underline{k}'|| \ge |1 + \langle k, k' \rangle \langle h', h \rangle|;$
- (ii) $||h \otimes \overline{k} + k \otimes \overline{h}|| \geqslant 1 + |\langle h, k \rangle|^2 \geqslant 1$;
- (iii) $||h \otimes \bar{k} k \otimes \bar{h}|| = 1$ if h and k are orthogonal;
- (iv) if $a^T = a$, then $a^T(\bar{h}) = \overline{a(h)}$;
- (v) if $a^T = -a$, then $\langle ah, \bar{k} \rangle = -\langle ak, \bar{h} \rangle$ and so $\langle ah, \bar{h} \rangle = 0$;
- (vi) if ||ah|| = 1, then $a^*ah = h$ since $||a^*ah h||^2 = ||a^*ah||^2 1 \le 0$.

Recall that a Hilbert space H is a JB*-triple via $\{abc\} = \frac{1}{2}(\langle a,b\rangle c + \langle c,b\rangle a)$ and is isometric to $B(H,\mathbb{C})$. In the following, for $n < \infty$, $M_{n,n}(\mathbb{C})$ denotes the full algebra of $n \times n$ matrices; for $n \ge 4$, $A_n(\mathbb{C}) = \{x \in M_{n,n}(\mathbb{C}) : x^T = -x\}$; for $n \ge 2$, $S_n(\mathbb{C}) = \{x \in M_{n,n}(\mathbb{C}) : x^T = x\}$. The JB*-triples $S_2(\mathbb{C})$, $M_{2,2}(\mathbb{C})$ and $A_4(\mathbb{C})$ are spin factors.

LEMMA 3.4. Let H be a Hilbert space and let $a, b \in H$. Then

$$||Q_{a,b}|| \ge \frac{1}{2} (||a||^2 + ||b||^2 + 3|\langle a, b \rangle|^2)^{\frac{1}{2}} \ge \frac{1}{2} ||a|| \cdot ||b||.$$

Moreover the constant $\frac{1}{2}$ is best possible for dim H > 1.

Proof. Let ||a|| = ||b|| = 1. Then

$$4\|Q_{a,b}\|^2 \ge 4\|\{aab\}\|^2 \ge \|b + \langle b, a \rangle a\|^2 = 1 + 3|\langle a, b \rangle|^2 \ge 1$$

and the inequality follows.

If $\langle a, b \rangle = 0$, then $||Q_{a,b}(x)|| = \frac{1}{2}(|\langle a, x \rangle|^2 + |\langle b, x \rangle|^2)^{\frac{1}{2}} \le \frac{1}{2}||x||$ for all $x \in H$, so that $||Q_{a,b}|| = \frac{1}{2}$.

LEMMA 3.5. Let $A = M_{n,n}(\mathbb{C})$ and let $a, b \in A$. Then

$$||Q_{a,b}|| \ge (\sqrt{2} - 1)||a|| \cdot ||b||.$$

Proof. Put $K_1 = \sup\{|\langle ah, bh \rangle| : ||h|| = 1\}$ and $K_2 = \sup\{|\langle a^*h, b^*h \rangle| : ||h|| = 1\}$. Let ||a|| = ||b|| = 1 and choose $h, k \in \mathbb{C}^n$ with $||ah|| = ||b^*k|| = ||h|| = 1$. Then

$$2\|Q_{a,b}\| \geqslant \|a(h \otimes k)b + b(h \otimes k)a\|$$

$$= \|ah \otimes b^*k + bh \otimes a^*k\|$$

$$\geqslant |1 + \langle b^*k, a^*k \rangle \langle bh, ah \rangle \| \text{ by Remark 3.3(i)}$$

$$\geqslant 1 - |\langle ah, bh \rangle| \cdot |\langle a^*k, b^*k \rangle|$$

$$\geqslant 1 - K_1 K_2.$$

Now let $\eta \in \mathbb{C}^n$ with $\|\eta\| = 1$ and consider the minimal projection $p = \eta \otimes \eta$. Then P(x) = px defines a continuous projection $P: A \to A$ with P(A) isometric to the Hilbert space \mathbb{C}^n . Further $PQ_{a,b}P = Q_{P(a),P(b)}P$ and $P(a)\eta = a^*\eta$. Hence, by the middle estimate in Lemma 3.4,

$$2\|Q_{a,b}\| \geqslant 2\|Q_{P(a),P(b)}P\|$$

$$\geqslant (\|a^*\eta\|^2\|b^*\eta\|^2 + 3|\langle a^*\eta, b^*\eta\rangle|^2)^{\frac{1}{2}}$$

$$\geqslant 2|\langle a^*\eta, b^*\eta\rangle|.$$

Hence $||Q_{a,b}|| \ge K_2$. In turn $||Q_b|| = ||Q_{a^*,b^*}|| \ge K_1$. So, if K_1 or $K_2 \ge \sqrt{2} - 1$, the result follows. Otherwise $K_1, K_2 < \sqrt{2} - 1$ so that

$$\|Q_{a,b}\| \geqslant \frac{1}{2}(1 - K_1K_2) > \frac{1}{2}(1 - (\sqrt{2} - 1)^2) = \sqrt{2} - 1.$$

LEMMA 3.6. Let $a, b \in S_n(\mathbb{C})$ where $n < \infty$. Then $||Q_{a,b}|| \ge \frac{1}{4} ||a|| \cdot ||b||$.

Proof. Let ||a|| = ||b|| = 1 and let $h \in \mathbb{C}^n$ with ||h|| = 1. As $\bar{h} \otimes h$ has norm 1 and is in $S_n(\mathbb{C})$ we have, using Remark 3.3 (ii),

$$2\|Q_{a,b}\| \ge \|a(h \otimes \bar{h})b + b(h \otimes \bar{h})a\| = \|ah \otimes \overline{bh} + bh \otimes \overline{ah}\| \ge \|ah\|.\|bh\|.$$

Suppose now that ||ah|| = 1 and choose $k \in \mathbb{C}^n$ with ||bk|| = ||k|| = 1. Multiplying k by a suitable constant of modulus 1, we may suppose that $Re\langle h, k \rangle = 0$. In which case, by Remark 3.3 (vi),

$$Re\langle ah, ak \rangle = Re\langle a^*ah, k \rangle = Re\langle h, k \rangle = 0.$$

similarly $Re\langle bh, bk \rangle = 0$. Hence, by the above inequality,

$$4\|Q_{a,b}\| = 2\|Q_{a,b}\| \cdot \|h + k\|^{2}$$

$$\geq \|a(h+k)\| \cdot \|b(h+k)\|$$

$$\geq (1 + \|ak\|^{2})^{\frac{1}{2}} (1 + \|bh\|^{2})^{\frac{1}{2}} \geq 1.$$

LEMMA 3.7. Let $a, b \in A_n(\mathbb{C})$ where $4 \le n < \infty$. Then $||Q_{a,b}|| \ge \frac{1}{4}||a|| \cdot ||b||$.

Proof. Let ||a|| = ||b|| = 1 and let $h \in \mathbb{C}^n$ with ||h|| = 1. Choose $k \in \mathbb{C}^n$ with ||k|| = 1 and $\langle h, k \rangle = 0$. Then $x = \bar{k} \otimes h - \bar{h} \otimes k \in A_n(\mathbb{C}), ||x|| = 1$ and

$$y = ax^*b + bx^*a$$

$$= ah \otimes b^*\bar{k} + bh \otimes a^*k - ak \otimes b^*\bar{h} - bk \otimes a^*\bar{h}$$

$$= -(ah \otimes b\bar{k} + bh \otimes a\bar{k}) + (ak \otimes b\bar{h} + bk \otimes a\bar{h})$$

So, using Remark 3.3 (v), we have

$$2\|Q_{a,b}\| \geqslant |\langle yh, \bar{k}\rangle|$$

$$= |\langle h, \overline{bk}\rangle\langle ah, \bar{k}\rangle + \langle h, \overline{ak}\rangle\langle bh, \bar{k}\rangle|$$

$$= 2|\langle ah, \bar{k}\rangle\langle bh, \bar{k}\rangle|.$$

We claim that $2\|Q_{a,b}\| \ge \|ah\|.\|bh\|$. To see this, we suppose that ah and bh are nonzero and put $h' = \frac{\overline{ah}}{\|ah\|}$, $k' = \frac{\overline{bh}}{\|bh\|}$. Then $\langle h', h \rangle = \langle k', h \rangle = 0$ by Remark 3.3 (v). Further, as $\|Q_{a,b}\|$ is unaffected, multiplying a by a suitable constant of modulus 1, we may suppose that $\langle h', k' \rangle \ge 0$. The above inequality implies

$$\begin{split} 2(1+\langle h',k'\rangle) \|Q_{a,b}\| &= \|h'+k'\|^2 \|Q_{a,b}\| \\ &\geqslant |\langle ah,\overline{h'+k'}\rangle\langle bh,\overline{h'+k'}\rangle| \\ &= \|ah\|(1+\langle h',k'\rangle) \|bh\|(1+\langle h',k'\rangle) \\ &\geqslant \|ah\| \cdot \|bh\|. \end{split}$$

Finally, pick $\alpha, \beta \in \mathbb{C}^n$ such that $||a\alpha|| = ||b\beta|| = ||\alpha|| = ||\beta|| = 1$. Multiplying α by a suitable constant of modulus 1, we may suppose that $\langle \alpha, \beta \rangle \geqslant 0$. Then, with $\eta = (\alpha + \beta)/||\alpha + \beta||$, we have

$$\|\alpha\eta\|^{2} = \frac{\|ah + ak\|^{2}}{\|h + k\|^{2}}$$

$$= \frac{1 + \|ak\|^{2} + 2Re\langle ah, ak\rangle}{\|h + k\|^{2}}$$

$$= \frac{1 + \|ak\|^{2} + 2\langle h, k\rangle}{2 + 2\langle h, k\rangle}$$

$$\geqslant \frac{1}{2}.$$

Similarly $||b\eta||^2 \geqslant \frac{1}{2}$. Hence, by the above, we get

$$||Q_{a,b}|| \ge \frac{1}{2}||a\eta|| \cdot ||b\eta|| \ge \frac{1}{4}.$$

We are now in a position to establish positive lower bounds of K_A for all Cartan factors.

THEOREM 3.8. Let A be a Cartan factor. Then we have

- (i) $K_A \ge \sqrt{2} 1$ if A is a spin factor with dim $A \ge 4$ or A is rectangular;
- (ii) $K_A \geqslant \frac{1}{4}$ if A is hermitian or symplectic;
- (iii) $K_A \geqslant \frac{1}{6}$ if $A = B_{1,2}$ or M_3^8 .

Proof. (i) Let A be a spin factor of dimension at least 4. We refer to Section 1 for the definition of a spin factor and the following notation. Let $a, b \in A$ with ||a|| = ||b|| = 1. The linear subspace generated by a, \bar{a}, b, \bar{b} is conjugate invariant of dimension at most 4. If necessary, by adding to this list of generators sufficient conjugate invariant elements, we obtain a conjugate invariant subspace V of dimension 4 containing a and b. As $V = \bar{V}$, V is a JB*-subtriple of A as follows from the spin factor triple product rule

$$\{xyz\} = \frac{1}{2}(\langle x, y\rangle z + \langle z, y\rangle x - \langle x, \bar{z}\rangle \bar{y}).$$

Hence V is a 4-dimensional spin factor which must be isometric to $M_{2,2}(\mathbb{C})$. So $\|Q_{a,b}\| \ge \|Q_{a,b}\|v\| \ge \sqrt{2} - 1$ by Lemma 3.5.

Let A = B(H, K) be rectangular and let $a, b \in A$ with ||a|| = ||b|| = 1. Let $0 < \varepsilon < 1$ and choose $\alpha, \beta \in H$ with $||\alpha|| = ||\beta|| = 1$ and $||\alpha_1|| > 1 - \varepsilon$, $||\beta_1|| > 1 - \varepsilon$ where $\alpha_1 = a\alpha$, $\beta_1 = b\beta$. By Lemma 3.4, we may suppose that both H and K have dimension at least 2. Now let U, V be respectively, a 2-dimensional subspace of H, K with $\alpha, \beta \in U$ and $\alpha_1, \beta_1 \in V$, and let p, q be the corresponding orthogonal projections from H, K onto U, V. Define $P: A \to A$ by P(x) = qxp. Then P(A) = qAp is isometric to $M_{2,2}(\mathbb{C}), P$ is a contractive projection with P(A) = Q(A) = Q(A) and $||P(A)|| \ge ||Q(A)|| = ||\alpha_1|| > 1 - \varepsilon$. Similarly $||P(b)|| > 1 - \varepsilon$. Now, using Lemma 3.5, we have

$$||Q_{a,b}|| \ge ||Q_{P(a),P(b)}P||$$

$$\ge (\sqrt{2} - 1)||P(a)||.||P(b)||$$

$$> (\sqrt{2} - 1)(1 - \varepsilon)^2.$$

Hence $||Q_{a,b}|| \ge \sqrt{2} - 1$.

(ii) By Lemma 3.6 and Lemma 3.7, we may suppose that $A = \{x \in B(H) : x^T = x\}$ or $A = \{x \in B(H) : x^T = -x\}$, where H is an infinite dimensional complex Hilbert space with conjugation $h \mapsto \bar{h}$.

In either case, let $a, b \in A$ with ||a|| = ||b|| = 1 and let $0 < \varepsilon < 1$. Choose $\alpha, \beta \in H$ with $||\alpha|| = ||\beta|| = 1$ and $||\alpha_1|| > 1 - \varepsilon$, $||\beta_1|| > 1 - \varepsilon$, where

 $\alpha_1 = a\alpha$, $\beta_1 = b\beta$. Now choose an 8-dimensional subspace V of H containing α , β , α_1 , β_1 , and satisfying $\bar{V} = V$. Let p be the orthogonal projection of H onto V. Then $p^T = p$. Consequently P(x) = pxp defines a contractive projection $P: A \to A$ in both cases. The induced conjugation on pH, $ph \mapsto p\bar{h}$ for $h \in H$, is precisely the conjugation on V and we see that, via the isometry $pxp \mapsto x|_V$, where $x \in B(H)$, P(A) = pAp is isometric to $S_8(\mathbb{C})$ in the first case, and isometric to $A_8(\mathbb{C})$ in the latter case. Finally, just as in (i), $PQ_{a,b}P = Q_{P(a),P(b)}P$ and $\|P(a)\| > 1 - \varepsilon$, $\|P(b)\| > 1 - \varepsilon$. Therefore, by the same calculation, this time using Lemma 3.6 and Lemma 3.7, we have $\|Q_{a,b}\| \geqslant \frac{1}{4}$.

(iii) This follows from Lemma 3.2.

4. The main theorem

We prove our main result in this section, showing the existence of a universal constant K > 0 such that for any prime JB*-triple A,

$$||Q_{a,b}|| \geqslant K||a|| \cdot ||b||$$

for all $a, b \in A$. In fact, more sharply, we shall show that $K \ge \frac{1}{6}$. We shall use structure space techniques and representation theory of JB*-triples given below.

Let A be a JB*-triple and let $\partial_e(A_1^*)$ be the set of extreme points of the dual ball A_1^* . For each $\rho \in \partial_e(A_1^*)$, there is a unique minimal tripotent u in A^{**} for which $\rho(u)=1$, called the *support* u_ρ of ρ . The map $\rho\mapsto u_\rho$ is a bijection from $\partial_e(A_1^*)$ onto the set of all minimal tripotents of A^{**} . For $\rho\in\partial_e(A_1^*)$, let A_ρ^{**} denote the weak *-closed ideal of A generated by u_ρ . Then A_ρ^{**} is a Cartan factor [5,11] and is an M-summand of A^{**} [10]. The natural weak* continuous contractive projection $P_\rho:A^{**}\to A_\rho^{**}$ restricts to a triple homomorphism $\pi_\rho:A\to A_\rho^{**}$ with weak* dense range. We call π_ρ the Cartan factor *representation* of A associated with ρ . By [2, Proposition 3.6] and its proof, we obtain

- (i) $||a|| = \sup\{||\pi_{\rho}(a)|| : \rho \in \partial_{e}(A_{1}^{*})\}\$ for $a \in A$;
- (ii) ker π_{ρ} is the largest *M*-ideal in ker ρ for $\rho \in \partial_{e}(A_{1}^{*})$.

In particular, {ker $\pi_{\rho}: \rho \in \partial_{e}(A_{1}^{*})$ }, denoted by Prim A, is the set of all *primitive* M-ideals of A (cf. [1]) which we shall assume to be equipped with the usual hull-kernel topology. Also, there is a bijection

$$J\mapsto h(J)=\{P\in PrimA: J\subset P\}$$

from the norm-closed ideals onto the closed subsets of Prim A.

Given an M-ideal M in A, by [1, p.116], the polar M^0 in the dual A^* is a so-called L-ideal, that is, it is the range of an L-projection $E: A^* \to A^*$. The L-projections on A^* generate the Cunnigham algebra of A^* which is a commutative unital Banach algebra isomorphic to $C(\Omega)$ where the spectrum Ω of the algebra is hyperstonean. The L-projections form a complete lattice in $C(\Omega)$ [1, p.130].

LEMMA 4.1. Let $\{M_{\alpha}\}$ be a family of M-ideals of a JB*-triple A. Then

$$(\cap_{\alpha} M_{\alpha})^{0} \cap A_{1}^{*} = \overline{co} \cup_{\alpha} (M_{\alpha}^{0} \cap A_{1}^{*}).$$

where co denotes the weak* closed convex hull.

Proof. By taking finite intersections, we may assume that the family $\{M_{\alpha}\}$ is a decreasing net. Let $M_{\alpha}^{0} = E_{\alpha}A_{1}^{*}$ for some L-projection E_{α} on A_{1}^{*} . Then $\{E_{\alpha}\}$ is an increasing net of L-projections and has a least upper bound E (cf. [1, p.135]). By [1, Lemma 1.9], E_{α} converges strongly to E, that is, $E_{\alpha}f$ is norm-convergent to Ef for each $f \in A^{*}$. It follows that $EA^{*} = \overline{\sum M_{\alpha}^{0}}$ where on the right we consider sums of finitely many elements and "=" denotes the norm-closure. We also have

$$\overline{\sum M_{\alpha}^{0}} \cap A_{1}^{*} = \overline{\overline{co}} \cup_{\alpha} (M_{\alpha}^{0} \cap A_{1}^{*})$$

by strong convergence of E_{α} to E.

For a set $S \subset A^*$, we denote by S_0 the polar of S in A. Let $J = \bigcap_{\alpha} M_{\alpha}$. Then $J^0 = \overline{\Sigma M_{\alpha}^0}$ where "——" denotes the weak*-closure. We have

$$(J^{0} \cap A_{1}^{*})_{0} = \left(\overline{\sum M_{\alpha}^{0}} \cap A_{1}^{*}\right)_{0}$$

$$= \left(\left(\left(\overline{\sum M_{\alpha}^{0}}\right)_{0} \cup (A_{1}^{*})_{0}\right)^{0}\right)_{0}$$

$$= \left(\left(\overline{\left(\overline{\sum M_{\alpha}^{0}}\right)_{0}} \cup (A_{1}^{*})_{0}\right)^{0}\right)_{0}$$

$$= \left(\overline{\overline{\sum M_{\alpha}^{0}}} \cap A_{1}^{*}\right)_{0}$$

$$= (\overline{co} \cup_{\alpha} (M_{\alpha}^{0} \cap A_{1}^{*}))_{0}$$

$$= (\overline{co} \cup_{\alpha} (M_{\alpha}^{0} \cap A_{1}^{*}))_{0}.$$

Hence we have

$$J^0 \cap A_1^* = \overline{co} \cup_{\alpha} (M_{\alpha}^0 \cap A_1^*).$$

Since $(A/\ker \pi_\rho)^*$ is isometrically linearly isomorphic to $(\ker \pi_\rho)^0$, we have, for each $a \in A$,

$$\|\pi_{\rho}(a)\| = \|a + \ker \pi_{\rho}\| = \sup\{|\psi(a)| : \psi \in (\ker \pi_{\rho})^{0}, \|\psi\| \leqslant 1\}.$$

LEMMA 4.2. Let A be a JB*-triple and let $a \in A$. Then the map $Prim A \rightarrow [0, \infty)$ given by $P \mapsto ||a + P||$ is lower semicontinuous.

Proof. Let $r \in \mathbb{R}$. We show that the set $S = \{P \in Prim \ A : \|a + P\| \le r\}$ is closed. Let hk(S) be the hull-kernel of S and let $Q \in hk(S)$. Then $Q \ supset \ k(S) = \cap \{P : P \in S\}$. So, by the above lemma, we have

$$Q^0 \cap A_1^* \subset \overline{co} \cup \{P^0 \cap A_1^* : P \in \mathcal{S}\}.$$

It follows that $|\psi(a)| \le r$ for every $\psi \in Q^0$ with $||\psi|| \le 1$. Hence $||a + Q|| \le r$ and $Q \in \mathcal{S}$. This shows that $\mathcal{S} = hk(\mathcal{S})$ is closed.

THEOREM 4.3. Let A be a prime JB^* -triple and let $a, b \in A$. Then

$$||Q_{a,b}|| \geqslant \frac{1}{6}||a|| \cdot ||b||.$$

Further, if A is

- (i) $a \ JC^*$ -triple, then $\|Q_{a,b}\| \geqslant \frac{1}{4} \|a\| \cdot \|b\|$;
- (ii) $a C^*$ -algebra, then $||Q_{a,b}|| \ge (\sqrt{2} 1)||a|| \cdot ||b||$.

Proof. Let $\rho \in \partial_e(A_1^*)$ and let P_ρ , π_ρ and A_ρ be as above. Then there exists K > 0 such that

$$||Q_{x,y}|| \geqslant K||x|| \cdot ||y||$$

for all $x, y \in A_{\rho}^{**}$ and all $\rho \in \partial_e(A_1^*)$. Let $a, b \in A$ with ||a|| = ||b|| = 1. By separate weak* continuity of the triple product, $Q_{a,b}^{**}: A^{**} \to A^{**}$ is given by $Q_{a,b}^{**}(x) = \{axb\}$ for all $x \in A^{**}$. We have, for $\rho \in \partial_e(A_1^*)$,

$$\begin{aligned} \|Q_{a,b}\| &= \|Q_{a,b}^{**}\| \geqslant \|P_{\rho}Q_{a,b}^{**}\| \\ &= \sup\{ \|\{\pi_{\rho}(a)P_{\rho}(x)\pi_{\rho}(b)\}\| : x \in A^{**}, \|x\| \leqslant 1 \} \\ &= \sup\{ \|\{\pi_{\rho}(a)x\pi_{\rho}(b)\}\| : x \in A_{\rho}^{**}, \|x\| \leqslant 1 \} \\ &\geqslant K \|\pi_{\rho}(a)\| \cdot \|\pi_{\rho}(b)\| \text{ by assumption.} \end{aligned}$$

Let $0 < \varepsilon < 1$. By Lemma 4.1, the sets $U = \{\ker \pi_{\rho} \in Prim\ A : \|\pi_{\rho}(a)\| > 1 - \varepsilon\}$ and $V = \{\ker \pi_{\rho} \in Prim\ A : \|\pi_{\rho}(b)\| > 1 - \varepsilon\}$ are nonempty and open subsets of $Prim\ A$. As A is prime, $U \cap V$ must be nonempty too. Hence there exists $\tau \in \partial_{e}(A_{1}^{*})$ such that $\|\pi_{\tau}(a)\| > 1 - \varepsilon$ and $\|\pi_{\tau}(b)\| > 1 - \varepsilon$. So $\|Q_{a,b}\| \geqslant K(1 - \varepsilon)^{2}$ by the above inequality. Therefore $\|Q_{a,b}\| \geqslant K$. All parts of the statement are now consequences of Theorem 3.8.

REMARK 4.4. It has been shown in [15] that for a prime C^* -algebra A, $\|Q_{a,b}\| \ge \frac{1}{3} \|a\| \cdot \|b\|$ for every $a, b \in A$. The above result gives a negative answer to the question of sharpness of the constant $\frac{1}{3}$ raised in [15].

Acknowledgement

This research was supported by the British Council, Hungarian Science Foundation and Slovene Ministry of Science, and completed during the authors' mutual visits to London, Reading, Szeged and Maribor.

REFERENCES

- E. M. Alfsen and E. G. Effros, 'Structure in real Banach spaces', Ann. of Math. 96 (1972), 98-173.
- T. J. Barton and R. M. Timoney, 'Weak* continuity of Jordan triple product and applications', Math. Scand. 59 (1986), 177–191.
- 3. L. J. Bunce and C.-H. Chu, 'Compact operations, multipliers and the Radon-Kikodym property in JB*-triples', *Pacific J. Math.* 53 (1992), 249–265.
- 4. M. Cabrera and A. Rodriguez, 'Nondegenerately ultraprime Jordan Banach algebras: a Zelmanovian treatment', *Proc. London Math. Soc.* 69 (1994), 576–604.
- 5. T. Dang and Y. Friedman, 'Classification of JBW*-factors and applications', *Math. Scand.* 61 (1987), 292–330.
- **6.** S. Dineen, *The second dual of a JB*-triple system*, Complex analysis, functional analysis and approximation theory, North-Holland Math. Studies 125 (1986), 67–69.
- 7. Y. Friedman and B. Russo, 'Structure of a predual of a JBW*-triple', J. Reine Angew. 356 (1985), 67-84.
- 8. Y. Friedman and B. Russo, 'Solution of the contractive projection problem', *J. Funct. Analysis* 60 (1985), 56–79.
- L. A. Harris, 'A generalisation of C*-algebras', Proc. London Math. Soc. 42 (1981), 331–361.
- G. Horn, 'Characterisation of the predual and ideal structure of a JBW*-triple', Math. Scand. 61 (1987), 117–133.
- 11. G. Horn, 'Classification of JBW*-triples of type I', Math. Z. 196 (1987), 271-291.
- W. Kaup, 'Algebraic characterization of symmetric complex Banach manifolds', Math. Ann. 228 (1977), 39-64.
- 13. W. Kaup, 'A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces', *Math. Z.* 138 (1983), 503–509.
- 14. O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes, Irvine, 1977.
- M. Mathieu, 'More properties of the product of two derivations of a C*-algebra', Bull. Australia Math. Soc. 42 (1990), 115-120.
- **16.** B. Russo, *Structure of JB*-triples*, in Jordan Algebras (ed. W. Kaup, K. McCrimmon, H.P. Peterson), de Gruyter, Berlin, 1994.
- 17. J. D. M. Wright, 'Jordan C*-algebras', Michigan Math. J. 24 (1977), 291-302.

L. J. Bunce
Department of Mathematics,
University of Reading,
Reading,
RG6 2AX,
England

L. L. Stachó Bolyai Intézet, Aradi Vértanuk Tere 1, 6270 Szeged, Hungary C.-H. Chu
Goldsmiths College,
University of London,
London,
SE14 6NW,
England

B. Zalar Department of Basic Sciences, University of Maribor, 62000 Maribor, Slovenija