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1. Introduction

ONE of the many interesting results in a recent study of ultra-prime Jordan-
Banach algebras [4] was that there exists a universal constant K > 0 such that
for any prime JB*-algebra A and any a, b € A, we have [[Q, |l = K|all - [ib]l.
For prime JB*-algebras representable on a complex Hilbert space, known as JC*-
algebras, an admissible value of K = m was given for the universal constant.
The demonstration of an admissible value for the prime exceptional JB*-algebra
was left open.

The purpose of this paper is both to sharpen and to extend this result by showing

that, for any prime JB*-triple A, we have

1
1Qasll = 2lall - 5]

for all b € A. Hence for any JB*-triple A, the follow three conditions are equiva-
lent:

(i) Aisprime.
(it) The constant K, = inf{{| G, 5| : lall = |bll = 1} is greater than zero.
(iii) K4 > é.

Our methods, which are different from [4], involve application of representa-
tion theory to results on Cartan factors.

Historically JB*-triples arose in the study of complex holomorphy: a bounded
symmetric domain is biholomorphic to the open unit ball of a JB*-triple is a com-
plex Banach space A together with a continuous triple product (a, b, ¢) € A®
fabc} € A such that

(i) {abc} is symmetric and bilinear in a, ¢ and conjugate linear in b;
(i) {xylabc}} = {{xyalbc} + {ab{xyc}} — {a{yxb}c);
(iif) the operator x +— {aax} is hermitian with positive spectrum;
(iv) [{aaa}|l = lal?.

The identity (ii) is referred to as the main identity. The maps D, j, and Q,, ;, are
given by D, p(x) = {abx} and Q, »(x) = {axb}. We write @, = @ . . Crucially,
surjective linear isometries between JB*-triples are the triple isomorphisms [9,
13]. We refer to [16] for a recent survey of JB*-triples.
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Every C*-algebra is a JB*-triple via {abc} = %(ab*c + cb*a). More generally,
every JB*-algebra (alias Jordan C*-algebra [17]), with Jordan product (a, b) >
aob,is a JB*-triple with respect to {abc} = (aob*)oc+ (b*oc)oa—(aoc) o b*.
A JB*-triple isometric to a subtriple of a C*-algebra is called a JC*-triple (also
known as J*-algebra [9]). :

The second dual A** of a JB*-triple A is a JB*-triple containing A as a weak*-
dense JB*-subtriple [6]. A JB*-triple with predual is known as a IBW*-triple: the
predual is unique and the triple product is separately weak*-continuous in each
variable [2, 10]. Important examples of JB*-triples are the Cartan factors. Let H,
K be complex Hilbert spaces and, with respect to a conjugation & > hon H,
define a” (h) = a*(h) for eacha € B(H), the space of bounded linear operators
on H. Let O denote the complex octonions. The six types of Cartan factors are as
follows:

(1) Rectangular, B(H, K), the bounded linear operators from H to K,

2) Symplectic, {x € B(H) : xT = —x};

(3) Hermitian, {x € B(H) : xT = x};

(4) Span, H with product {xyz} = %((x, ¥}z + {z,y)x — {x,z)y) and norm
21x % = (x, x) + ({x, x)*> — |{x, %)|*)? and dim H > 3;

(5) By, =thel X 2 matrices over O,

6) M38 = the hermitian 3 x 3 matrices over O.

The Cartan factors (1)—~4) are JC*-triples while (5) and (6) are the exceptional
Cartan factors.

An element # in a JB*-triple A is a tripotent if u = {uuu}, associated with
which are the Peirce Projections

Py(w) = Q%, Pi(u) =2(Dyy — Q2), Pow)=1-2D,,+ Q0>

which are contractive and mutually orthogonal with sum I and have ranges
Aj(u) = P;(A) = {x : {uux} = %x}

so that A = Ax(u) & A1(u) ® A¢(u). By the Peirce rules, we have
{Ai(@)Aj(u)Ar(w)} C Ai_j(u) when i — j +k € {0, 1, 2}, and {0} otherwise,
and {A;(u)Ag(u)A} = {Ao(u)Az(u)A} = {0}. A nonzero tripotent u is minimal
if {uAu} = Cu.

2, Primeness in JB*-triples

In this section, we shall briefly run through some relevant equivalent formula-
tion of primeness.

Let J be alinear subspace of a JB*-triple A. We call J an ideal of A if {AAJ}+
{AJA} c J.If J is a norm closed and {AJJ} C J, then J is an ideal of A [3].
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For any ideal J of A, the annihilator J* = {a € A : {aJ A} = {0}} is a norm
closed ideal of A as follows from the main identity.

Given norm closed ideals J and K with x € J N K, we have x = {yyy} for
some y € J N K by triple functional calculus (cf. [12, 3]). It follows that

JNK ={JKA}={JAK}.
The followmg result might have independent interest.

PROPOSITION 2.1. Let X and Y be subsets of a JB*- -triple A with {XAY} =
{O}. Then there exist norm closed ideals J and K in Awith X C J, Y C K and
{JAK} = {0}.

Proof. PutJ ={a e A: {aAY} ={0}}and K ={a € A : {JAa} = {0}}.
Then X C J,Y C K and {JAK} = {0}. We shall show that J and K are ideals
of A. By the main identity, we have

{0} = {JA{JAY}} = ({JAJAY} + {(JA{JAY)) — (J{AJA}Y} = {{/AJ}AY}.

therefore J contains {J/ AJ} and so is, in particular, a JB*-subtriple of A. similarly
K is aJB*-subtriple of A. Let J, K denote the weak*-closure.of J,KinA®™ =M,
andletu € J,v € K be tripotents. Then {#uv} = 0 and so {uvM} = {0} by [14,
3.9]. But J, K are JBWx- -triples and so, as Banach spaces, are generated by their
tripotents. So (JKM) = {0}. It follows that {JK A} = {KJA} = {0} and the
main identity gives

{0} ={AJ{JAY}} = {AJJIAY}+H{TA{ATY Y} —{J{JAA}Y} = {{AJ J}AY ).
Hence {AJJ} C J and J is an ideal by [3]. Similarly K is an ideal.

A JB*-triple A is defined to be a prime JB*-triple if whenever J, K are norm
closed ideals of A with J N K = {0}, then J = {0} or K = {0}. (As is clear from
the above, “norm closed ideals” in the definition may be replaced with “ideals™)

PROPOSITION 2.2. Let A be a JB*-triple. The following conditions are equiv-
alent:

(1) A is prime.
(ii) J* = {0} for every nonzero ideal J of A.
(i) Ifx,y € A with Qry=0thenx =00ry=0.

Proof. (i) = (ii) and (iii) = (i) are immediate from the definition.

(ii) = (iii); Assume (ii) and let x, y € A with Qy.y = 0. Suppose that x # 0.
By Proposition 2.1, there exist ideals J, K of A with x € J and yeKcJt=
{0}.

Let M be a JBW*-triple and let J be a weak*-closed ideal of M. Then M =
J + J* [10]. Recall that M is called a Jactor if it has no proper weak*-closed
ideals. By Proposition 2.2, we have
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COROLLARY 2.3. A JBW*-triple is prime if and only if it is a factor.

3. Cartan factors

In this sectlon we investigate the constant K 4 for a Cartan factor A. We always
have K4 < 3 L if dim A > 1. Given a finite dimensional Cartan factor A with unit
sphere S = {a € A : |a|| = 1}, the product S x S is compact and we have a
continuous function g : § x § — (0, 00) given by g(a, b) = || Qupll- Hence
K4 = infg(S x 8) > 0. To estimate X 4, more elaborate methods are required.

LEMMA 3.1. Let A be a finite dimensional Cartan factor, let u be a nonzero
tripotent in A ana’ let by € Ag(u). Then there exists x € A(u) with ||x|| = 1 such
that |{uxbo} || > ;llbol.

Proof. The conclusion being trivial if by = 0, we may suppose that [|bo]] = 1.
By the spectral decomposition of by in Ag(#) we have by = v + ¢ where v is a
nonzero tripotent in Ag(«) and c is orthogonal to v. For any x € A and z € Ag(u)
we have {xv{uuz}} = 0, so that by the main identity

{uu{xvz}} = {u{vxulz}.

Put D = {#Av}. We note from Proposition 2.1 that D s {0} as A is a factor.
Consider the map T : D — A given by T(d) = {udby}. For x € A, the above
equation gives

T({vxu}) = {u{vxulbo} = {uu{xvbo}} = {uu{xvv}} = {u{vxu}v}.

This shows that T(D) C D and, as D C A;(u) N A;(v) by the Peirce rules, it
shows that

1
T%(d) = {uu{dvv}} = Zd
foralld € D. So T attains its norm on the unit sphere of D and ||T|| > %

PROPOSITION 3.2. Let A be a finite dimensional Cartan factor. Then
1Qasll = Llall - 16l for alla, b € A.

Proof. Leta,b € A with ||a|| = ||b]| = 1. By spectral decomposition, a = u+
ao where u is a minimal tripotent of A and ay € Ag(u). By Pierce decomposition
with respect to u, we have b = Au + by + by where A € C, b; € A(u) and
by € Ao(u). We have

1Qasll = IHaub}ll = {uub}ll = |Au + b1 Il = max(|A], Ilbn!l)

where the last inequality follows from the contractiveness of Pi(u), j=0,1.
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The required conclusion follows if Al > % or byl = % Otherwise we have
Al < é and ||b|| < % In which case, by orthogonality of u and by [7, 1.3(a)]

2
max(|Al, llboll) = llAu +boll > 1~ ||by)| > 3

By Lemma 3.1, choose x € A;(x) with lxll = 1 and [[{uxbo}|] > % By Peirce
arithmetic, we have {axb} = x, + x; +xo withx; € A;(u), j =0, 1,2 and

x2 = {uxby}, xy = {uxhy} + Maoxu}, xo = {apxb;}.

Hence, as Py (u) is contractive, we obtain

1 1
1Qasll = xill > uxbo} ||l — [Alll{aoxu}| > 3 T IA> 5

We note that Proposition 3.2 also solves the problem posed in [4] of exhibiting
a positive lower bound of K4 for A = M38.

We shall proceed to a close examination of special Cartan factors and we shall
make use of the following.

REMARK 3.3. For a (complex) Hilbert space H with conjugation & +> % and
a € B(H), the operator a’ € B(H) is defined as before. The rank one operator
vi> (v, k)his denoted by h @ k. In particular, for i, k, h', k¥’ € H, we have

(R @k + 1 @K)K), h) = APk + (k, k') (W, ).

Hence, for [|h]| = ||k|| = 1, we have

O h@k+h K| =114k K)H,h);
(i) [h@k+k@h| > 14| k)P > 1;
(i) |h®k —k®h| = 1if h and k are orthogonal;
(iv) if aT = a, then a” (k) = a(h);
(v) ifa” = —a, then (ah, k) = —(ak, k) and so
{ah, h) = 0,
(vi) if llah|l = 1, then a*ah = h since ||la*ah — h|? = la*ah)* - 1 < 0.

Recall that a Hilbert space H is a IB*-triple via {abc} = %((a, byc + {c, b)a)
and is isometric to B(H, C). In the following, for n < oo, M, ,(C) denotes the
full algebra of n x n matrices; for n > 4, An(C) ={x € M, ,(C) : xT = —-x};
forn > 2,5,(C) = {x ¢ M, .(C) : xT = x}. The JB*-triples S,(C), M, ,(C)
and A4(C) are spin factors.

LEMMA 3.4. Let H be a Hilbert space and leta, b € H. Then
: 1 1
1Qasll = E(Ilall2 + 1161 + 3a, b)[H)? > Ellall - bl

Moreover the constant % is best possible for dim H > 1.
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Proof. Let |la|l = ||b} = 1. Then
41Qasl® > 4l{aab}|” > b + (b, a)al® = 1 +3({a, B> > 1,

and the inequality follows.
If (a, b) = 0, then || Qu p ()| = 3(I{a, X)[*+](b, x)[*)7 < Llix|| forall x € H,
s0 that [| Q)| = 1.

LEMMA 3.5. Let A =M, ,(C) andleta,b € A. Then

1Qasll > (V2= Dllal - ]

Proof. Put Ky = sup{|{ah, bh)| : |k} = 1} and K, = sup{|{a*h, b*h)| :
fl£ll = 1}. Let [la|| = ||b]| = 1 and choose k, k € C" with lahll = ||b*k]| =
[|All = 1. Then \

2| Qapll = lla(h ® k)b + b(h ® k)al|
= llah ® b*k + bh ® a*k||
2 |1+ (b*k, a*k)(bh, ah)|| by Remark 3.3(i)
21— [ah, bh)| - [(a*k, b*k)|
21— K K>.
Now let n € C" with ||| = 1 and consider the minimal projection p = n ® 1.
Then P(x) = px defines a continuous projection P : A — A with P(A) isomet-
ric to the Hilbert space C". Further PQ, ,P = Q pPw,pp P and P(@)n = a*n.
Hence, by the middle estimate in Lemma 3.4,
2[1Qasll 2200 p @), Py Pl
> (la*nl*1b*n )% + 3({a*n, b*n) %)
22|{a*n, b*n)|.

Hence [|Q, 5l > Ka. Inturn [|Qpll = [|Qar o | > K. So,if Ky or Ky > /2 — 1,
the result follows. Otherwise K, K3 < /2 — 1 so that

1 1
1Qasll > 51— KiK2) > 7= V2-1D)H) =2 1.

LEMMA 3.6. Leta,b € S,(C) where n < occ. Then || Qanll > %llall - 1&]l.

Proof. Let |la]l = ||b|| = 1 and let h € C" with ||A]| = 1. As & ® & has norm 1
and is in S, (C) we have, using Remark 3.3 (ii),

21Qapll = lla(h ® kb +b(h ® Wyall = ||lah ® bk + bh @ ak|| > |ak|.|bh]).

Suppose now that {jak]| = 1 and choose k € C* with lbk|l = likfl = 1. Multiply-
ing k by a suitable constant of modulus 1, we may suppose that Re{(h, k) = 0. In
which case, by Remark 3.3 (vi),

Re(ah, ak) = Re{a*ah, k) = Re(h, k) = 0.
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similarly Re(bh, bk) = 0. Hence, by the above inequality,

A Qapl =201Qusll - 1 + k|
> lath + k)|l - bk + k)|
> (1+ lakl® (1 + [bR[H)T > 1.

LEMMA 3.7. Leta, b € A,(C) where4 < n < 0o. Then |Q, 4| > Llal-[b].

Proof. Let |la|l = ||b] =1 and let & € C" with ||k]| = 1. Choose k € C” with
lkll =1and (b, k) =0.Thenx =k @ h —h ® k € A,(C), flx)l =1 and
y=ax*b + bx*a
=ah ® b*k + bh ® a*k — ak ® b*h — bk ® a*h
= —(ah ® bk + bh ® ak) + (ak ® bh + bk ® ah).

So, using Remark 3.3 (v), we have

2(1Qapll = i(yh, k)]
=|(h, bk)(ah, k) + (h, ak)(bh, k)|
=2|(ah, k){(bh, k)|.

We claim that 2} Q, » (| 2 |lah [[.llbl_zﬂ. To see this, we suppose that a/ and bh
are nonzero and put A’ = "ZZ", kK = Tzzﬁ' Then (h', h) = (K, ) = 0 by Remark
3.3 (v). Further, as [|Q, [ is unaffected, multiplying a by a suitable constant of

modulus 1, we may suppose that (h’, k') > 0. The above inequality implies
21+ B DN Qapll =10 + K 121 Qap
z ah, B + k') (bh, b + k']
=llah | (1 + (B, ')A + (', K'))
2 llah|l - bk|.

Finally, pick &, B8 € C" such that |jax| = 6Bl = flalf = 1181l = 1. Multiplying
« by a suitable constant of modulus 1, we may suppose that (&, 8) > 0. Then,
with 7 = (o + B)/ |l + B, we have

= llah + ak|?
A+ k|2
_ 1+ |lak|? + 2Re(ah, ak)
B I+ ki2
_ 1+ |lakl? + 2(h, k)
24 2(h,k)

lloen

2

B =
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Similarly ||bn||> > . Hence, by the above, we get

1 1
1Qasll > 5llanll - bn] > h

We are now in a position to establish positive lower bounds of K 4 for all Cartan
factors.

THEOREM 3.8. Let A be a Cartan factor. Then we have

(i) Ka=>~2—1ifAisa spin factor with dim A > 4 or A is rectangular;
(i) K4 > % if A is hermitian or symplectic;
(i) K4 > ¢ if A= By or M§.

Proof. (i) Let A be a spin factor of dimension at least 4. We refer to Section
1 for the definition of a spin factor and the following notation. Let a,b € A
with [la|| = ||b|| = 1. The linear subspace generated by a, @, b, b is conjugate
invariant of dimension at most 4. If necessary, by adding to this list of generators
sufficient conjugate invariant elements, we obtain a conjugate invariant subspace
V of dimension 4 containing ¢ and b. As V = V,Visa IB*-subtriple of A as
follows from the spin factor triple product rule

1
{xyz} = 5((x, iz +(z, y)x — ({x,2)¥).

Hence V is a 4-dimensional spin factor which must be isometric to M, >(C). So
1Qasll > | Qaslvll = +/2 = 1 by Lemma 3.5.

Let A = B(H, K) be rectangular and let a, b € A with |la|| = ||b|| = 1. Let
0 < & < 1and choose ,8 € H with |laj = ||Bll = 1 and jar]| > 1 — &,
I8l > 1 — & where oy = aw, i = bB. By Lemma 3.4, we may suppose
that both H and K have dimension at least 2. Now let U, V be respectively, a 2-
dimensional subspace of H, K with«, 8 € U and oy, 81 € V, and let p, g be the
corresponding orthogonal projections from H, K onto U, V. Define P : A — A
by P(x) = gxp. Then P(A) = gAp is isometric to M5 ,(C), P is a contractive
projection with PQ,sP = Qpw),pmyP and |P(@)| > llgaP(@)| = lleull >
1 — &. Similarly [|P(b)}]} > | — ¢. Now, using Lemma 3.5, we have

1Qupll Z1QP@).rmy Pl
> W2 - DIP@ILIP®B)
> (2 =11 - &)

Hence || Qa 5l > V2 — 1.
(ii) By Lemma 3.6 and Lemma 3.7, we may suppose that A = {x € B(H) :

xT =x}or A ={x € B(H) : xT = —x}, where H is an infinite dimensional
complex Hilbert space with conjugation & — h.
In either case, let a, b € A with |la]] = ||p|| = 1 andlet 0 < ¢ < 1. Choose

o, p € Hwith [loff = |Ifl = 1and Jeull > 1 —&, [|Bi]l > 1 — e, where
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oy = aa, B = bf. Now choose an 8-dimensional subspace V of H containing
o, B, ar, /31, and satisfying V = V. Let p be the orthogonal projection of H onto
V. Then pT = p. Consequently P(x) = pxp defines a contractive projection
P : A — Ainboth cases. The induced conjugation on pH, ph — phforh € H,
is precisely the conjugation on V and we see that, via the isometry pxp — x|y,
where x € B(H), P(A) = pAp is isometric to Sg(C) in the first case, and
isometric to Ag(C) in the latter case. Finally, just as in (i), P QupP = Op@y.ry P
and [[P(a)|l > 1 — ¢, [P(b)]| > 1 — &. Therefore, by the same calculation, this
time using Lemma 3.6 and Lemma 3.7, we have || Q]| > 1 i
(iii) This follows from Lemma 3.2.

4. The main theorem

We prove our main result in this section, showing the existence of a universal
constant K > 0 such that for any prime JB*-triple A,

1Qasll = Kllall - lib]]

for all a, b € A. In fact, more sharply, we shall show that K > é. We shall use
structure space techniques and representation theory of JB*-triples given below.

Let A be a JB*-triple and let 3.(A}) be the set of extreme points of the dual ball
A7. For each p € 9,(A}), there is a unique minimal tripotent u in A** for which
p(u) = 1, called the support u, of p. The map p + u, is a bijection from (A7)
onto the set of all minimal tripotents of A**. For p € 8, (A7), let A7* denote the
weak *-closed ideal of A generated by u,. Then A7 is aCartan factor [5,11] and is
an M-summand of A** [10]. The natural weak* contmuous contractive projection
P, : A™ — A7* restricts to a triple homomorphism 7, : A — AT with weak*
dense range. We call 7, the Cartan factor representation of A associated with p.
By [2, Proposition 3.6] and its proof, we obtain

@ llall = sup{lim, (@) : p € 3.(A})} fora € A;
(ii) ker 7, is the largest M-ideal in ker p for p 9. (AD).

In particular, {ker 7, : p € 8.(A})}, denoted by Prim A, is the set of all primitive
M-ideals of A (cf. [1]) which we shall assume to be equipped with the usual
hull-kernel topology. Also, there is a bijection

Ji>h(J)={P € PrimA : J C P}

from the norm-closed ideals onto the closed subsets of Prim A.

Given an M-ideal M in A, by [1, p.116], the polar M© in the dual A* is a
so-called L-ideal, that is, it is the range of an L-projection E : A* — A*. The L-
projections on A* generate the Cunnigham algebra of A* which is a commutative
unital Banach algebra isomorphic to C(2) where the spectrum 2 of the algebra
is hyperstonean. The L-projections form a complete lattice in C(2) [1, p.130].
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LEMMA 4.1. Let {M,} be a family of M-ideals of a JB*-triple A. Then
(NaMo)° N A} =To U, (MO N AY).
where €0 denotes the weak* closed convex hull.

Proof. By taking finite intersections, we may assume that the family {M,}isa
decreasing net. Let Mg = E, A7 for some L-projection E, on Al.Then {E,}is an
increasing net of L-projections and has a least upper bound E (cf. [1, p.135]). By
(1, Lemma 1.9], E, converges strongly to E, that is, E, f is norm-convergent to

Ef foreach f € A*. It follows that EA* = ¥ M2 where on the right we consider
sums of finitely many elements and “=" denotes the norm-closure. We also have

> MINA;=T5U, (MONAY)

by strong convergence of E, to E.
For a set § C A*, we denote by Sy the polar of Sin A. Let J = Ny M,. Then
JO = Y MY where “— denotes the weak*-closure. We have

W napo= (Yo men A7),
- (), vy,

(),

= (Z Mon A}‘)

0
= (20 Us (MJ N Ao
=(Co Uy (M2 N AD))o.

Hence we have
TON AT =56 U, (MO AY).

Since (A/kerm,)* is isometrically linearly isomorphic to (ker np)o, we have,
foreacha € A,

Iz @l = lla + kerm, || = sup{iy@)| : ¢ € (kerm,)°, [l¥] < 1).

LEMMA 4.2. Let A be a JB*-triple and let a € A. Then the map Prim A —
[0, c0) given by P +> |la + P)| is lower semicontinuous.

Proof. Letr € R. We show that the set S = {P € Prim A : fla+ Pl < r}
is closed. Let hk(S) be the hull-kernel of S and let Q € hk(S). Then
Q supset k(S) = N{P : P € S}. So, by the above lemma, we have

Q°NA; CTOU(PPNAT: Pes).
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It follows that [y (a)| < r for every ¥ € Q° with ¥l < 1.Hence lla+ Qfl < r
and @ € S. This shows that S = hk(S) is closed.

THEOREM 4.3. Let A be a prime JB*-triple and let a, b € A. Then

1

1Qasll = Zllall - 15]).

=29

Further, if A is

(i) a JC*-triple, then || Q 5l > llal - [1b];
(ii) a C*-algebra, then || Qupll > (V2 — Dllall - 1]

Proof. Let p € 3,(A}) and let P,, , and A, be as above. Then there exists
K > 0 such that

1Qxyll 2 Klxll - Iyl

forall x,y € A7 and all p € 3,(A}). Leta, b € A with fla| = bl = 1. By
separate weak™ continuity of the triple product, oy« A™ — A* is given by
Q% (x) = {axb} for all x € A**. We have, for p € d.(AD),

1Qasll =1Q75N = 1P, Q5% i
= sup{|{m, (@) P, (x)m, (D)}l : x € A™, |Ix|| < 1}
=sup{|l{m,(@xm,B)}| : x € A3, |lx|| < 1}
Z K|mp(@)ll - lm,(b)|| by assumption.

Let0 < ¢ < 1. By Lemma 4.1, the sets U/ = {kerm, € Prim A : |7, (a)| >
l —¢etand V = {kerm, € PrimA : hz, D) > 1 — &} are nonempty and
open subsets of Prim A. As A is prime, U N V must be nonempty too. Hence
there exists € 9,(A}) such that ||, (a)|| > 1 — & and ffr: (DY} > 1 —¢€. So
1Qasll = K(1 — £)? by the above inequality. Therefore [|Q, 5[ > K. All parts
of the statement are now consequences of Theorem 3.8.

REMARK 4.4. It has been shown in [15] that for a prime C*-algebra A,
HQanll = %IIa[I - [ib|} for every a,b € A. The above result gives a negative
answer to the question of sharpness of the constant % raised in [15).
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