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A simple proof for von Neumann’s minimax theorem

1. JOO
To the memory of F. Riesz {1880—1956)

1. The usual proofs of the von Neumann minimax theorem and its generaliza-
tions are based on deep results of Sperner or Brouwer (cf. [2], [4], [5]). Our proof
is based on the simple lemma due to F. Riesz (cf. [3], p. 41) that if a system of com-
pact subsets of a topological space has the finite intersection propetty (i.e. every
finite set has non-empty intersection) then the whole system has non-empty inter-
section. This proof is a development of the ideas of the paper [1].

2. Theorem. Let E and F be topological vector spaces, and let K,C E, K,C F
be convex compact sets. Let f(x, y) be a real-valued continuous function on KX K,,
which is concave in x for any fixed y<K,, and convex iny for any fixed x€K,. Then

min max f(x, y) = max min f(x, y).
yeszEK‘f( ) xEKlyEKzf( ) ¥)

Proof. Let ¢ be a (fixed) real number such that
HO =H,={x:f(x,y) =c} =0 for every y€K,,
where @ denotes the empty set. The sets f, are convex and compact. We assert that

) N H, =90

According to the lemma of Riesz it is enough to prove that for any finite set
{r1, ., }CK, we have

We prove this by induction on 7.
Consider the case n=2. Suppose there exist y,, y,€K, for which

(2) I{.Vln H}'z =0

Received January 15, 1979.

All rights reserved @ Bolyai Institute, University of Szeged



92 I Job

and set H(A)=H, ,q_s,, for A€[0,1]; H(A)=p by the convexity of f(x,y) in y.
Next we show that
3) HQ) c o,,U o,

For every x€K, and x¢ H, UH, we have

F( A1+ =2) y2) = f(x, y) +A=Df (x, yo) < ¢
since f is convex in y. Thus x¢ H(A). Therefore, (3) follows because of the defini-
tions of H, , H,,.
Using (2) and (3) we show that for arbitrary A€[0, 1]

) either H(A) C H,, or H(A) c H,,.
Suppose the contrary:

H(ANH, #9 and HANH, 0
for some A*€[0, 1]. Let yic HAY)NH,, and y;€ HA)NH, be arbitrarily chosen.
Consider the closed interval

D, 5l = {Ayi+(1—Dy5: 0=1=1}.
By the convexity of the sets H, we have

1, yil € H@AY).

From (2) and the compactness of H, and H, we see that there exists y*€[yj, y;1
such that
y* ¢y, 21N Hy)Uyi, y510 H,,),

and hence yp*¢H,UH,. On the other hand, y*€¢H(4*) which contradicts (3).
So (4) is proved.

To complete the proof of (3), we need the following statement: If H(4,)N
NH, #p for 4,€[0,1], then there exists & =&;(y1, s, 4)>0 such that

©) HO)NHy, %9 for |A—iy| <e,.

[Similarly: if HA)NH, #0 for A,€[0,1], then there exists &=g(}1, V2, 42 >0
such that

6) H@)NH,, =0 for |A—1,| <e,.]
We prove (5). f H(A)NH, #0 then according to (4), H(A)NH, =0, that is
) S, Ay +(1—2A) ys) < ¢ for every x€H,,.

Since f(x, Ayi+(1—2)y;) is a continuous function in (x, 4), it follows from (7)
that for every x€ H, there exists a neighborhood U, of x and &(x)>0 such that

F A+ (1= yg) <e for (x, U, X (4 —&(x), 4 +&(x)).
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Therefore,
H

y2

c U U,

x€Hy,

Since H, is compact we can choose a finite system {U, }i_; such that

"

H, c iL—Jl Uy,

Then for e =min {e(x,): i=1,...,n} we have (5). The proof of (6) is similar.
From (4), (5), (6) it follows that the set {A€[0, 1]: H(A)c H, } is open in [0, 1].
Similarly, the set {A€[0, 1]: H()cH, } is also open in [0, 1]. Taking (4) into
consideration, we arrive at a decomposition of the interval [0, 1] into two disjoint
non-empty relatively open sets, which is impossible. Thus we proved that

H, N H, # 0.

Suppose we know that for any subset {yi, ...,y } of K,(cF) having at
most # elements we have

k
N H,#0
i=1

and then we prove the same for, n4+1 elements.
Suppose there exist yi, ..., ¥,+1 such that

nt1

® 0 H, =9

Then we have
n+41

(H,NH)NV(H,NE) =0 for Hy= ) H,.

Now using the induction assumption and (8) we can apply the idea of the proof of
n=2, for the sets

H} =H,NH; (i=1,2).
Thus we obtain

4+l
ﬂ Hyi # 0’
i=1

and so, according to the lemma of Riesz, (1) is proved.

Denote by % the set of real numbers ¢ for which H®=H,=# whenever y€K,.
If ¢,€%, then c€¥ for every c=cy. Since the function fis continuous, the set ¥
is bounded from above. Denote by c* its smallest upper bound. From the lemma of
Riesz we deduce that c¢*¢%. We prove that

min max f(x, y) = c*,
© yEszeKlf( , )
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Suppose
min max f(x, y) = c*
yeKMKlf( »y) =c’,

then there exists &=c* for which

mmmax =
min max fx,p=é=c.

Therefore max f(x, y)=¢ for every y€K,, hence {x: f(x,y)=¢&}=0 for every

Y€EK,, but thlS contradicts the choice of ¢*
On the other hand, because of (1), we have

A () HE 29,

Y€K,

Let x*€A. From the definition of H, we obtain f(x*,y)=c* for every y€K,;
thus
(10) min f(x*, y)=c¢* and maxmin f(x, y) = c*.

YEK2

X€Ky yEK2

From (9) and (10) we deduce

5’2‘1? max fG, )= max min f (€2

Since

=
5’2‘1}‘ glggif(x, y) = max mlnf(x, )

is obvious, the theorem is proved.
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