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Abstract Vaccination has proven to be the most effective public health measure in 
the fight against various infectious diseases. For emerging or re-emerging diseases, 
a highly efficacious vaccine may not be available at the start of an outbreak. 
Timelines for availability of a safe and effective vaccine may significantly affect 
disease dynamics, its burden, and the healthcare resource utilization. Mitigating 
this impact may then rely on low-efficacy vaccines that may be rapidly produced 
and distributed to at-risk populations at the early stages of an outbreak. With 
the expectation for arrival of a more effective vaccine at a later stage of the 
outbreak, the optimal vaccination coverage with the existing, low-efficacy vaccines 
is elusive. While flattening the outbreak if a significant proportion of the susceptible 
population is vaccinated with a low-efficacy vaccine, the overall infections may 
not be minimized if a small proportion of the population left unvaccinated when 
a highly efficacious vaccine becomes available. The optimal coverage for early 
vaccination could thus depend on several parameters including the efficacy of the 
currently available vaccines, arrival timing of a more effective vaccine and its 
efficacy, and the transmissibility of the disease. Here, we develop a deterministic 
system of differential equations to investigate the optimal vaccination coverage 
with a low-efficacy vaccine within the aforementioned parameter space. Despite 
simplifying assumptions, we illustrate that minimizing the overall infections does 
not necessarily correspond to the highest coverage of early vaccination. However, a 
high vaccination coverage, even with a low-efficacy vaccine, may still contribute to 
alleviating severe disease outcomes and reducing healthcare resource utilization. 
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1 Introduction 

Emerging infectious diseases continue to pose significant threats to the health and 
socioeconomic well-being of human populations [1, 2]. At the time of emergence, 
strategies to quell the spread of the invading pathogen often rely on traditional and 
non-pharmaceutical measures, such as those implemented during the early stages of 
the COVID-19 pandemic [3–8]. These interventions, if not effective to contain the 
disease at the source, may delay widespread infections until more effective and/or 
preventive measures such as therapeutics and vaccines become available [6, 9, 10]. 

Vaccines are an important pharmaceutical measure [11] that may become 
available after the characteristics of the emerging pathogen are identified. However, 
the effectiveness of vaccines may depend on various factors including the biology 
and epidemiology of the disease, attributes of the target population for vaccination, 
as well as technologies for vaccine development [12–14]. As experienced during 
the COVID-19 pandemic, it is possible to have several vaccines developed using 
different technologies [15–18], rendering different effectiveness against infection 
and disease outcomes [19–23]. Importantly, the timelines for availability of these 
vaccines could vary during an outbreak, depending on the vaccine technology used 
and manufacturing capacity. 

Although target product profiles [24] often indicate the range and lowest point 
estimates for the efficacy of a vaccine to be recommended for mass immunization, 
even low-efficacy vaccines with adequate safety profiles can still contribute to 
reducing the disease burden [25]. The possibility that a vaccine with low efficacy 
becomes available at the early stages of an emerging disease raises a number of 
questions for vaccination policies. For example, it is unclear what proportion of 
the population should be vaccinated to minimize infections if a more effective 
vaccine is expected to arrive at a later date. On one hand, increasing the vaccination 
coverage with the current vaccine reduces the risk of disease transmission in the 
population and decelerates the spread of disease until a more effective vaccine 
becomes available. On the other hand, it reduces the proportion of the population 
unvaccinated and eligible to receive the second, more effective vaccine. The optimal 
coverage for early vaccination could thus depend on several parameters including 
the efficacy of the currently available vaccines, transmissibility of the disease, and 
the arrival timing of a more effective vaccine and its efficacy. When timelines for 
availability of the second vaccine is unknown, the efficacy of the current vaccine 
may play a significant role in determining the optimal proportion of the population 
that should be vaccinated to minimize the overall infections. Our study here aims to 
investigate this optimal scenario using a simple deterministic transmission dynamic 
model with simplifying assumptions.
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2 Methods 

We consider a deterministic system of differential equations, where a population of 
size N is divided into the four compartments of susceptible, vaccinated, infected 
(and infectious), and recovered individuals. We assume that a proportion p of 
the population is vaccinated at the onset of the outbreak, with a vaccine (. V1) 
that provides an efficacy of .ϵ1 < 1 against infection. We also assume that a 
second vaccine (. V2) becomes available at some time .T > 0 during the outbreak. 
For simplicity, we assume that . V2 is a perfect vaccine preventing infection in all 
vaccinated individuals. At time T , we consider susceptible individuals who have not 
received . V1 to be vaccinated with . V2, thereby preventing any new infections among 
these individuals. However, those who have been vaccinated with . V1 may still 
become infected at .t > T due to imperfect efficacy of . V1. With these assumptions, 
the dynamics of disease spread on the time interval .[0, T ] can be expressed by 

.

dS

dt
= −βSI,

dV1

dt
= −β(1 − ϵ1)V1I,

dI

dt
= βSI + β(1 − ϵ1)V1I − γ I,

dR

dt
= γ I,

(1) 

where . β is the rate of disease transmission per contact per time and . γ is the recovery 
rate of infected individuals. For .t > T , the model reduces to the following system: 

.

dV1

dt
= −β(1 − ϵ1)V1I,

dI

dt
= β(1 − ϵ1)V1I − γ I,

dR

dt
= γ I.

(2) 

In models (1)–(2), both recovered individuals and those vaccinated with . V2 have 
a long-lasting immunity. At the onset of the outbreak, .V1(0) = pN and . S(0) =
(1−p)N . Assuming an infected individual triggers the outbreak, simple calculation 
provides the expression for the reproduction number, given by: 

.Rc = β[(1 − p) + (1 − ϵ1)p]N
γ

= β(1 − ϵ1p)N

γ
. (3)
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Table 1 Parameters and values applied in the model simulations 

Parameter Interpretation Values 

.β Transmission rate . 2.4 × 10−6 

. 4 × 10−6 

. 6 × 10−6 

. 8 × 10−6 

.γ Recovery rate (day. −1) . 0.2 

.ϵ1 Efficacy of the first vaccine . [0, 1] 

p Proportion of the population vaccinated with the first vaccine . [0, 1] 

T Time at which the perfect vaccine becomes available (days) 0–300 

N Total population . 105 

The values .2.4× 10−6, 4× 10−6, 6× 10−6, and .8× 10−6 of the transmission rate correspond to 
basic reproduction numbers .1.2, 2, 3, and 4, respectively 

In the absence of any intervention, system (1) reduces to the classical SIR model 
with the reproduction number: 

.R0 = βN/γ. (4) 

Thus, the control reproduction number with vaccination is .Rc = (1−ϵ1p)R0. Based 
on the theory of mathematical epidemiology, if .R0 < 1, the outbreak is expected 
not to take off, even without any interventions. Similarly, vaccination that achieves 
.Rc < 1 prevents the outbreak. Our aim here is to determine the optimal p at which 
the total number of infections throughout the outbreak is minimized when . R0 >

1 for given . ϵ1 and T . There are two extreme cases for which the optimal p can 
be easily determined. The first case corresponds to the situation where .T = 0. 
In this case, given that . V2 is a perfect vaccine, all susceptible individuals should 
be vaccinated with . V2, rendering .p = 0 as optimal proportion of the population 
that is vaccinated with . V1. The second case relates to the scenario in which T is 
large compared to the timelines of the outbreak, essentially making . V2 unavailable 
during the outbreak. In this case, the minimum number of infections occurs when all 
susceptibles are vaccinated with . V1, i.e. .p = 1 is optimal. However, if T is a time 
during the outbreak, the optimal p is unknown and would depend on both T and 
. ϵ1. Here, we first explore this optimal p for some special cases through analytical 
approaches. Then, we determine the optimal p for the general cases through means 
of simulations. The model parameters and their values used in later simulations are 
described in Table 1. 

3 Results for Some Special Cases 

In this section we provide some analytic results for special cases of the parameters, 
determining the optimal coverage p. By optimal, we mean the value of . p ∈ [0, 1]
such that the total number of infected individuals throughout the course of the
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epidemic is minimized. It would be useful to find invariant quantities (i.e. first 
integrals) of systems (1) and (2). 

Proposition 1 If .p ∈ (0, 1), then .S(t) > 0 for .t ∈ (0, T ) and .V1(t) > 0 for all 
.t > 0. Moreover, .V1(∞) := limt→∞ V1(t) > 0 and . limt→∞ I (t) = 0.

Proof Integrating the first and second equations of (1), we obtain 

. S(t) = S(0)e−β
∫ t
0 I (u)du

and 

. V1(t) = V1(0)e
−β(1−ϵ1)

∫ t
0 I (u)du,

showing that they remain positive if their initial values are positive. Similarly, 

. I (t) = I (0)eβ
∫ t
0 S(u)du+β(1−ϵ1)

∫ t
0 V1(u)du−γ t

remains positive, and therefore, .S(t) and .V1(t) are monotone decreasing. Since 
.V1(t) is non-negative, its limit exists. Since individuals can be infected only once in 
our model, it also holds that .

∫ ∞
0 I (u)du ≤ N/γ ; thus 

. V1(t) ≥ V1(0)e
−β(1−ϵ1)N/γ

and .V1(∞) > 0. Note also that for .t > T , 

. 
d

dt
(V1(t) + I (t)) = −γ I (t).

Since solutions are bounded between 0 and N , their derivatives are also bounded. If 
.lim supt→∞ I (t) > 0, then the integral of .I (t) is unbounded (since its derivative is 
bounded), and then .V1(t) + I (t) would become negative at some finite time which 
is not possible. Hence, . limt→∞ I (t) = 0. ⨅⨆
Proposition 2 For .S, V1 > 0, the following relations hold: 

(i) 

. N − γ

β
ln((1 − p)N) = S(T ) + V1(T ) + I (T ) − γ

β
ln(S(T )) .

(ii) 

. N − γ

β(1 − ϵ1)
ln(pN) = S(T ) + V1(T ) + I (T ) − γ

β(1 − ϵ1)
ln(V1(T )) .

(iii)
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. V1(T ) + I (T ) − γ

β(1 − ϵ1)
ln(V1(T )) = V1(∞) − γ

β(1 − ϵ1)
ln(V1(∞)).

Proof Define 

. U1(t) := S(t) + V1(t) + I (t) − γ

β
ln(S(t)).

It is straightforward to check that . dU1
dt

= 0, and thus .U1(t) is indeed invariant. 
Hence, .U1(0) = U1(T ), which proves (i). Similarly, let 

. U2(t) := S(t) + V1(t) + I (t) − γ

β(1 − ϵ1)
ln(V1(t)),

which is invariant, since .
dU2
dt

= 0. Hence, .U2(0) = U2(T ), that is, (ii). 
At .t = T , all susceptibles are vaccinated by the perfect vaccine; hence, . S(T +) =

0, and for .t > T the dynamics follow (2). For  (2), one can check that 

. U3(t) := V1(t) + I (t) − γ

β(1 − ϵ1)
ln(V1(t))

is also invariant. Consequently, (iii) holds. ⨅⨆
Remark 1 Rigorously speaking, the initial value .I (0) > 0; thus, either . S(0) <

(1 − p)N or .V1(0) < pN . However, for many of our calculations . I (0) = 0+
is negligible compared to N , so to simplify the presentation, .I (0) is omitted from 
some calculations. 

The total number of infected individuals resulting from infection in the suscepti-
ble class is .S(0) − S(T ) = (1− p)N − S(T ), while the total number of individuals 
being infected from the . V1 compartment is .V1(0) − V1(∞) = pN − V1(∞). 
Therefore, the overall number of infected individuals that we aim to minimize is: 

.Θ(p) := N − S(T ) − V1(∞). (5) 

In this formula, both .S(T ) and .V1(∞) depend on p. The quantity .Θ(p)/N , 
corresponding to the proportion of the population that will be infected throughout 
the epidemic, is also referred to as attack rate. 

3.1 First Vaccine with High Efficacy 

Proposition 3 If ϵ1 = 1 then p = 1 is optimal. 

Proof With ϵ1 = 1, V '
1(t) = 0, and (1) simplifies to



Waiting for the Perfect Vaccine 223

.

dS

dt
= −βSI,

dI

dt
= βSI − γ I,

dR

dt
= γ I,

(6) 

with S(0) = (1 − p)N , and V1(t) = pN for all t . In the case of p = 1, S(0) = 0 
and S(t) = 0 for all t , in particular S(T ) = 0. Since ϵ1 = 1, we always have 
V1(∞) = V1(0) = pN = N . Thus, Θ(1) = 0. On the other hand, if p <  1, then S 
is strictly decreasing and S(T ) < S(0) = (1 − p)N ; hence, Θ(p) > 0. ⨅⨆
The epidemiological interpretation of this result is that if the available vaccine at 
the onset of the outbreak is already perfect, then we would vaccinate everyone to 
prevent any infection. Any smaller coverage than 100% leaves some portion of the 
population susceptible to infection. 

3.2 First Vaccine with Low Efficacy 

Proposition 4 If ϵ1 = 0 then p = 0 is optimal. 

Proof With ϵ1 = 0, system (1) becomes 

.

dS

dt
= −βSI,

dV1

dt
= −βV1I,

dI

dt
= βSI + βV1I − γ I,

dR

dt
= γ I.

(7) 

Now, we note that S(t) + V1(t) and I (t)  are independent of p. In particular, 
S(T ) + V1(T ) and I (T  )  have the same value for all p. Moreover, for p = 0 we  
have V1(T ) = 0, and for p >  0 we have  V (T  )  >  0. The latter can be seen from 
U2(t) (see Proposition 2 (ii)), which gives 

. N − γ

β
ln(pN) = S(T ) + V1(T ) + I (T ) − γ

β
ln(V1(T )).

Rearranging yields
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. 
γ

β
ln(V1(T )) = γ

β
ln(pN) − c1

where c1 is a constant independent of p. This can be written as 

. V1(T ) = c2pN.

Thus, V1(T ) − V1(∞) >  0, and 

. Θ(p) = N − S(T ) − V1(T ) + (V1(T ) − V1(∞)) > N − S(T ) − V1(T )

for p >  0, while for p = 0, we have V (t)  = 0 for all t . Thus, Θ(0) = N − S(T ) − 
V1(T ), and we find p = 0 to be optimal.  ⨅⨆

The epidemiological interpretation of this result is that if the available vaccine 
offers very little protection, then we should not use it. 

3.3 Short Waiting Time for the Perfect Vaccine 

Proposition 5 If T = 0 then p = 0 is optimal. 

Proof In this case, all susceptibles are vaccinated immediately with the perfect 
vaccine, and system (1) reduces to (2) with V1(0) = pN and S(0) = 0. If 
p >  0, then V1(∞) >  0 too, while for p = 0 we have  V (t)  = 0 for all t . Since
Θ(p) = N − S(T ) − V1(∞) = N − V1(∞), we find that p = 0 is optimal. ⨅⨆

The epidemiological interpretation of this result is that if the perfect vaccine 
becomes available very early, we should not use the weaker vaccine at all. 

3.4 Large Waiting Time for the Perfect Vaccine 

Proposition 6 If T = ∞  then p = 1 is optimal. 

Proof If T = ∞, then we have system (1) for all t , which is the same system 
considered in [26]. In the supplementary material of [26], the authors showed that 
the total number of infected individuals is a monotone decreasing function of p; 
hence, p = 1 is optimal. ⨅⨆
The epidemiological interpretation of this result is that if the perfect vaccine 
becomes available very late, we should vaccinate the whole population with the 
available weaker vaccine.
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4 Results for the General Case 

Determining the optimal p in the general case can only be investigated by means of 
simulations. To do so, we chose a specific set of parameters by setting . β = 4×10−6

and .γ = 0.2, corresponding to a 5-day infectious period. For a population of . N =
100,000 individuals, and in the absence of vaccination, .R0 = 2. We also varied the 
transmission rate to explore the variation in the optimal p when the disease exhibits 
lower (.R0 = 1.2) or higher (.R0 = 3, 4) transmissibility. 

We simulated the model to determine the optimal p at which the attack rate (i.e. 
the proportion of the population infected throughout the outbreak) is minimized. As 
illustrated in Fig. 1, the optimal p varies as a function of . ϵ1 and T . For sufficiently 
small T , the optimal p is a monotonic function and increases as . ϵ1 increases. 
However, with longer delay in the availability of . V2, the optimal p remains high for 
relatively low or relatively high . ϵ1, but reduces for some intermediate levels of . ϵ1. 
For example, at .T = 100, the optimal p is 0.96 for both .ϵ1 = 0.19 and .ϵ1 = 0.48. 
This optimal p reduces to 0.84 when .ϵ = 0.37. If  T is sufficiently large, .p = 1 is 
optimal, corresponding to vaccinating the entire susceptible population with . V1. 

We also simulated the model to evaluate the effect of the reproduction number 
on optimal p. For a low reproduction number (.R0 = 1.2), the optimal p presents a 
monotonic behaviour with respect to both . ϵ1 and T (Fig. 2a). For any given T , the  
optimal p increases as . ϵ1 increases. However, for a more contagious disease with 
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Fig. 1 Optimal p for minimizing the total number of infections as a function of . ϵ1 and T . The  
reproduction number is .R0 = 2
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Fig. 2 Optimal p for minimizing the total number of infections as a function of . ϵ1 and T with (a) 
.R0 = 1.2 and (b) .R0 = 4 (b), corresponding to (a) .β = 2.4 × 10−6 and (b) . β = 8 × 10−6

Fig. 3 (a) Incidence of new infections at the optimal .p = 0.556 (black curve), and suboptimal 
.p = 0.5 (red curve) and .p = 0.6 (orange curve). (b) Overall attack rate at the optimal . p = 0.556
(black curve), and suboptimal .p = 0.5 (red curve) and .p = 0.6 (orange curve). The efficacy of . V1
in preventing infection was assumed to be .ϵ1 = 0.25 and time for availability of . V2 is .T = 50 days 
after the start of the outbreak 

reproduction number .R0 = 4 (Fig. 2b), we observed non-monotonic behaviour for 
optimal p similar to the case of .R0 = 2 presented in Fig. 1. 

To illustrate the importance of optimal p, we simulated the incidence of infection 
when the efficacy of . V1 in preventing infection was set to 0.25 (Fig. 3a). In this 
case, the optimal p for reducing the overall attack rate is 0.556, assuming that . V2
becomes available at .T = 50 days after the onset of the outbreak. At this optimal 
p, the reproduction number derived from Eq. (3) is .Rc = 1.722 at the onset of 
outbreak and the overall attack rate is 7.4% (Fig. 3b). We simulated the incidence



Waiting for the Perfect Vaccine 227

with suboptimal p values of 0.5 and 0.6, which resulted in higher attack rates of 
7.6% and 7.8%, respectively (Fig. 3b). 

Clearly, as p increases, the spread of disease is decelerated, which reduces the 
attack rate for .t < T . However, given that individuals vaccinated with . V1 are 
not eligible to receive . V2, the proportion of susceptible individuals who are not 
infected before T and would be eligible for . V2 vaccination will also be reduced. 
This effectively translates to a higher attack rate for .t > T due to a low efficacy of 
. V1 (Fig. 4). This non-linearity in optimal p illustrates the complexity of disease 
dynamics when multiple vaccines with different characteristics are expected to 
arrive during an outbreak. 

Remark 2 From the expression for .Rc = 1, it can be seen that at the threshold for 
disease control, the following relationship holds: 

.ϵ1p = 1 − 1

R0
. (8) 

In the epidemiological theory for disease control, expression (8) is referred to 
as herd immunity, which is defined as the proportion of the population needed to 
be immune against infection to prevent widespread infection. For example, when 
.R0 = 2, if 50% of the susceptible population is protected, then a large outbreak is 
prevented. We compared the level of immunity at the onset of the outbreak derived 
from the optimal p (Fig. 1) to this herd immunity threshold. Figure 5 shows that if 
the efficacy of . V1 exceeds some threshold, the optimal p would raise the population-
level protection above herd immunity level of 50% (corresponding to contour line 
of 0.5 in Fig. 5), thus preventing a large outbreak. 

We expanded our model to evaluate scenarios in which two additional vaccines 
become available during the outbreak at different times with different efficacy. 
Similar to the previous scenario, we assume that . V1 is currently available with an 
efficacy of .ϵ1 < 0.75. We consider the second vaccine (. V2) to become available 
within the first 60 days of the outbreak, i.e. .0 < T ≤ 60, with a fixed efficacy of 
.ϵ2 = 0.75 in preventing infection. We then assumed that the third vaccine (. V3), with 
the simplifying assumption of being perfect in preventing infection, to be available 
on day 100 after the start of the outbreak. For this extension of the model, one may 
consider different proportions of the susceptible population being vaccinated with 
. V1 and . V2 to minimize the total number of infections. However, for the purpose of 
illustration, we simplify the parameterization and assume that the same proportion 
p of eligible individuals become vaccinated with . V1 and . V2 (when . V2 becomes 
available). Unvaccinated individuals who are still susceptible on day 100 will then 
be vaccinated when . V3 arrives. 

Figure 6 shows that the optimal p depends not only on . ϵ1 and T but also on the 
reproduction number of the disease. When . R0 is small (e.g. .R0 = 1.2), the optimal 
p exhibits a monotonic behaviour and increases as . ϵ1 or T increases. However, this 
pattern becomes irregular as . R0 increases, rendering distinct regions of (. ϵ1,T )-plane 
in which the same p is optimal with variation in other regions (Fig. 6).
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(A) Attack rate at optimal p 
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(B) Attack rate at optimal p 
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Fig. 4 Attack rates as a function of . ϵ1 and T before and after the availability of . V2 at time T with 
the optimal p determined in Fig. 1 for minimizing the total number of infections 

5 Discussion 

In this study, we investigated optimal vaccination when multiple vaccines with 
different efficacies become available during an outbreak. Our results indicate that 
maximizing the coverage of vaccination at the onset of an outbreak does not 
necessarily lead to the lowest number of infections throughout the outbreak if more
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Fig. 5 Population level of immunity at the onset of the outbreak with the optimal p determined as 
a function of . ϵ1 and T with . R0 = 2

effective vaccines are expected to arrive at a later date. The optimality of early 
vaccination coverage could depend, as shown by our simulations, on the efficacy 
of vaccines, timelines for their availability, and the reproduction number of disease, 
indicating how fast the infection spreads through the population. 

From a practical standpoint, our study may be more applicable to scenarios 
with the aim of minimizing the overall infections. However, the goals of public 
health extend beyond just minimizing the number of infections and often include 
the reduction of severe disease outcomes (e.g. disease-related hospitalization and 
death) [25, 27–29]. In this context, early vaccination may be preferable to delayed 
vaccination using a product with higher efficacy [30]. More importantly, when 
healthcare resources are limited, the utilization of available capacity to reduce 
outcomes may be of critical importance to public health. Decelerating the spread 
of disease using available measures (such as vaccines) could alleviate the strain on 
the healthcare system, allowing for the available resources to be used for infected 
individuals at risk of severe outcomes. Flattening the outbreak with a maximum 
possible vaccination coverage early on in an outbreak, even if it leads to a higher 
attack rate over time, could still help mitigate healthcare burden and reduce potential 
deaths. 

Our model uses various simplifying assumptions to reduce the complexity of 
disease dynamics. We assumed that a vaccine is available prior to the onset of an 
outbreak and a proportion of individuals can be vaccinated. This situation may not 
present itself in the case of an emerging disease. We also assumed that susceptible



230 G. Röst et al.

Fig. 6 Optimal p for minimizing the total number of infections as a function of . ϵ1 and T . The  
efficacy of second vaccine is fixed at 75% in preventing infection. The third vaccine with efficacy 
of 100% against infection is assumed to be available on day 100. Panels correspond to . R0 = 1.2
(a), .R0 = 2 (b), .R0 = 3 (c), and .R0 = 4 (d) 

individuals can be vaccinated immediately when a vaccine becomes available. In 
practice, vaccination is a time-dependent process and relies on the amount of 
vaccine supply and healthcare capacity to administer vaccines. We also did not 
consider the timelines needed for vaccination to induce immunity. Furthermore, we 
considered the availability of a vaccine with perfect efficacy during the outbreak. 
Although recent technologies (e.g. mRNA vaccines) provide promising platforms 
for highly efficacious vaccines to be developed in a relatively short period of time, 
no vaccine provides complete protection. The vaccine-induced immune protection 
is often affected by the individual attributes (e.g. health status and age), in addition 
to the characteristics of the pathogen. 

Despite these limitations, our study provides an illustration of conundrum in 
complex vaccination dynamics. Future work is warranted to extend the model 
and investigate the optimality of vaccination coverage by relaxing the simplifying 
assumptions used in our model.
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