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Abstract. Varicella is one of the most common infectious diseases of children, which
can be prevented by vaccine. Varicella causes not only the chickenpox of children, but
also the herpes zoster at an older age. In Hungary, the vaccine is available for many
years, and immunization is planned to make it obligatory. In our paper, we consider
simple models of varicella infections including vaccination strategies taking into account
the Hungarian specialties. We study the available demographic and epidemiological
data, perform parameter estimations and present Wolfram Mathematica experiments for
the possible consequences of the vaccination strategies.
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1 Introduction

Varicella (chickenpox) is an acute, highly infectious disease caused by the varicella zoster (VZ)
virus. The infection is most common in children, in whom it usually causes mild disease. The
varicella-zoster virus is a highly contagious disease that affects almost the whole population.
Most people contract the disease in their childhood, when the symptoms are generally mild.
However, complication may occur, and the risk of it is significantly higher at an older age.

After a person recovers from chickenpox, the virus stays dormant (inactive) in the body. The
epidemilogy of the varicella-zoster virus (VZV) is quite complicated. VZV causes varicella
also known as chickenpox of children. Upon recovery from the varicella infection, VZV can
remains in the body in latent form. In general, the individual has lifelong immunity to VZV,
but immunity can be waning, and the virus may reactivate causing herpes-zoster (shingles).
Shingles cannot be passed from one person to another. However, VZV can spread from a
person with active shingles to cause chickenpox in someone who had never had chickenpox or
received chickenpox vaccine. Hence the modeling must take into account both the short period
of infections (weeks) and long-time consequences (years), as well as the age-structure of the
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Fig. 1. The basic scheme of the model.

population. The incidence of varicella is seasonal and classically reaches a peak from March
to May. Seasonality due to the school year is also a significant factor of the spreading of VZV.
In addition, based on a widely accepted hypothesis of exogenous boosting, contacting with an
infected person will boost the waning immunity. Now, vaccination against VZV reduces the
varicella infections and hence this boosting effect, and then infection of herpes- zoster will
increase in 20-30 years due to the lack of immunity boosting.

In many developed countries, varicella vaccination programs are already implemented. Origi-
nally one-dose programs were introduced, which have been replaced by two-dose vaccinations
(see [1] and references therein) in some countries by now.

In Hungary, the vaccine is available for many years and varicella vaccination is planned to make
it obligatory.

There are many country-specific studies regarding the effects and cost-effectiveness of the in-
troduction of varicella vaccination, e.g. [1, 9, 3]. However, there are hardly any studies about
Hungary [8], where the introduction of varicella vaccination into the routine childhood vacci-
nation program is being considered.

Since the actuality and importance of this issue, in this paper we summarize the main points
of such a modeling work, we consider experimentally simple compartmental models of vari-
cella infections including vaccination strategies taking into account the Hungarian specialties.
We study the available demographic and epidemiological data, perform parameter estimations
and present Wolfram Mathematica experiments for the possible consequences of the different
vaccination strategies.

2 On the modeling process

The compartmental models we consider here do not include the age-structure of the population.
Although such a model cannot give precise forecast for the epidemiology of the varicella at
particular ages, it can show the main issues and points out the critical strategic issues. Based
on the models considered in the literature (see for example [1, 9]), we use the scheme on Fig. 1
with compartments representing the varicella disease states: Susceptible, Exposed, Infectious,
Recovered, Susceptible to Zoster, Zoster, Zoster Immune. In developing the model and deter-
mining the model parameters, we made the following assumptions.

618



Birth and death rates. Based on the demographic data in Hungary (since 2010) the birth rate
is about 0.009 and the death rate is 0.013. The total population is decreasing, but to simplify
our work, according to the literature, we assume a stable population and that the birth and death
rates are equal. In our paper, we assume d = 0.01.

Infections, latency, and reactivation. Maternal immunity is not taken into account in our model.
Newborns directly become susceptible, then, one can become infected by being in contact with
a varicella or zoster infectious person. Having been infected, individuals go through a non-
infectious latent period, and then they will be infectious. Following the recovery, individuals
acquire immunity to VZV, but the virus remains in the body in inactive form. Immunity may
wane, and then the virus may reactivate causing shingles. Zoster infected people are also infec-
tious (see details in the Inroduction), possibly at a lower rate than varicella infected people.

Newborns directly become susceptible, then, one can become infected by being in contact with
a varicella or zoster infectious person. Having been infected, individuals go through a non-
infectious latent period, and then they will be infectious. Following the recovery, individuals
acquire immunity to VZV, but the virus remains in the body in inactive form. Immunity may
wane, and then the virus may reactivate causing shingles zoster. Zoster infected people are also
infectious, possibly at a lower rate than varicella infected people. Persons recovered from zoster
are assumed to have lifelong immunity to VZV.

Exogenous boosting. As it was mentioned above, the waning immunity against VZV can be
boosted if the individual has a contact with a VZV infected person. Although there is no clear
picture concerning the boosting effect, the existence of the exogenous boosting seems to be
valid. [6]. Assuming exogenous boosting, it is reasonable that after introducing vaccination, the
number of varicella cases decreases and consequently the herpes zoster incidence temporarily
increases [1, 9]. Our experiments below will confirm this hypothesis.

Seasonality. Available data also shows a strong seasonality in varicella incidence. Since most
infections appear among children, the academic year and summer break play an important role
in the spread of VZV. To describe this phenomenon, time-dependent contact rates are needed in
the model.

Based on the above statements the model is as follows:

S/:d—)\s—ds, S/Z == _U)\Sz+cr_nsz_dsza
e = \s —ce — de, i, =ns, — Ki, — di, 1)
i =ce — i — di, r = ki, —dr,,

r'=~i+ods, — (r —dr,

where the force of infection is A\ = (i + vi,) and (.)’ represents time derivative. The total
population is constant and a proportional model can be used where 1 = s+e+i+r+s,+i,+7,.
One can either be boosted through exposure to VZV and regain immunity with efficiency o or
become zoster infectious through reactivation of VZV with the rate 7. The average length
of the exposed, infectious, temporary immunity, and zoster states are e *, v~ !, (*! and x~!,
respectively.

Taking into account the seasonality, the model remains of the same form, the only change is that
the constant [ is replaced by a periodic function 5(t) = (1 + bcos(2nt — ¢)) with b = 0.25
and ¢ = 0.5. The constants b, c were given by fitting to the seasonal data (see below).
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2.1 Data analysis and parameter identification

Annual varicella incidence data for 20 years and monthly data since 2010 in Hungary are avail-
able to us, as monthly reporting of varicella cases to the public health authorities is mandatory.
On the other hand, herpes zoster is not reportable disease in Hungary. Therefore, there is no
available data related to shingles. Hence, we need to make assumptions, based on studies from
other countries.

Another problem is the underreporting. Unfortunately, the varicella incidence appears can be
much higher than reported, since the annual mean birth number is about 2.5-times higher than
the reported varicella cases; and according to most studies, these two values should be nearly
equal [9]. There can be several reasons of underreporting: not every child is taken to the
pediatrician, symptoms are individually different, in some cases clinical diagnosis is not clear
and no laboratory tests are performed as there is no effective medical treatment.

Many parameters in system (1) were fixed knowing the epidemiology of VZV. As we mentioned
above, d = 0.01. The length of e, 7, 2 states are 14, 7, 9 days, hence € = 26, v = 52, k = 40,
respectively. Immunity wanes in 20 years on average, i.e., ¢ = 0.05.

To find the other parameters and validate our models, we used heuristic experiments and fitting
methods using Wolfram Mathematica. As zoster incidence is not available, the related parame-
ters were mainly taken from the literature or experimentally fixed. The relative boosting force
o = 0.7 is taken; the infectiousness of 7, individuals is ¥ = 0.07 times less than that of i.
Finally, s, may become i, at rate n = 0.003.

Values of compartments (s, e, i,7,s,,2,r,) at any time are not known, hence initial values of
the solutions of system (1) were taken close to the endemic equilibrium according to the values
of the parameters. Note, that solutions were started at year 2000 with these initial values.

Only the parameter 3 has to be specified by fitting. Finally, based on our former arguments, the
underreporting ratio ¢ is also included into the fitting process.

The fitting model is simple: the cumulative growth of i(t) is measured by 7(t) with 7' () = ee(t),
and hence the monthly and annual incidences are modeled by MM (t) = q(i(t + 1/12) — i(t))
and AM (t) = q(i(t + 1) — i(t)), respectively. Fitting was performed by the NonlinearModelfit
command in Wolfram Mathematica, which can be applied to implicitly defined models such as
numerical solutions of differential equations.

Fitting the autonomous system to neither annual nor monthly data gave proper result, due to the
strong seasonality. Hence, the seasonal version of system (1) with parameters [ (transmission
rate) and ¢ (underreporting ratio) was fitted to the monthly data in the period 2011- 2017.

In order to validate the model, we have done the fitting to data on shorter intervals, i.e., 2010—
2016 and 2010-2015. The final result can be seen in Tab. 1. The fitted values are practically
the same. It gives a simple validation of the fitting on the interval 2010-2017. Obviously, the
standard errors and confidence intervals (given at 95% level) are slightly higher at shorter time
intervals. Consequently, for the sake of simplicity, we accepted the fitted values rounded § =
770 and ¢ = 0.4. Note that this value of underreporting ratio fits the preliminary conjectures.

The result can be seen on Fig. 2. The monthly incidence data and fitted model M M (t) can be
found on the left side, while the right one contains the annual data and the fitted model AM (t) as
well as the corresponding autonomous model with the same parameters. Finally, we emphasize
that although the seasonality is very strong; both the monthly and annual incidence models
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Estimate Standard Error Confidence Interval (95%)
Years: 2010 - 2017
p | 0.398 0.012 [0.374,0.422]
£ | 768.94 54.27 [660.88, 877]
Years: 2010 - 2016
p | 0.399 0.0134 [0.373, 0.426]
B | 768.9 57.68 [653.71, 884.08]
Years: 2010 - 2015
p | 0.391 0.0149 [0.361,0.421]
B | 771.23 67.03 [636.79, 905.68]
Tab. 1. The results of fitting with the seasonal model
Monthly incidence Annual incidence
0.20 12f
015} 7 AN
0.8f g
X 0.10+ > 06l Data
0.05 04¢ Seasonal
0.2f
————— Nonseasonal
0.00 L . ‘ : 0.0 : :
2010 2015 2020 2025 2010 2015 2020 2025
year year

Fig. 2. Varicella incidences: data (red) and fitted model (blue).

show the same kind of oscillation. The incidence is waving and has maxima approximately at
every four years. This cyclicality phenomenon is well known for infectious diseases, and the
value agrees the practice. The same value can be obtained using the autonomous, nonseasonal
model. It is obvious, since the non-seasonal model can be considered as an annual average of
the seasonal one. Hence the period of this "waving" can be given from the largest imaginary part
of the eigenvalues of the corresponding linearized system at the endemic equilibrium. Currently
this value is T = 4.0438. Later on, we will use this method in case of vaccinations. Similar
estimates could be found by Fourier transformation.

3 Vacciation models

Based on the original system (1) we can build a general model including vaccination. With-
out age structure, basically the newborn (or infant, just entered into the system; younger than
2 years in the real life) and susceptible population are considered to be vaccinated. But the
vaccine-induced immunity may wane, and hence at an older age, populations should be re-
vaccinated. Later on, we will present examples for different cases, and confirm the necessity of
adult vaccination. See Fig. 5.

Concerning this problem, note that in case of MMRV vaccine, 65% of vaccinated population
acquires full protection after one dose and 95% after the second dose. The vaccine-induced
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protection wanes in 15-20 years after one dose; while the two-dose vaccination provides lifelong
immunity [9]. Hence our model is as follows:

s'=(1—py)d—pss—ds— s, Sy = —PusSy — dSy — Ay + W0,
¢ =Xs—e(d+e), el = As, — (d+ €2) ey,
i' =ee —i(y+d), iy = €26y — iy (Y2 +d),
' = —r(d+C) + vi + Aos., 1y = A02S.0 — (d+ () 'y + Ao30 + Y2l
s, =—(d+mn)s, — Aos, + (r, 8, == (d+n2) 5.0 — A28 + oo, @
i, =ns, —iy(d+ k), 20 =MaS,p — (d+ K2) 2y,
r. =Kz —dr,, T, = KaZy — dray
/

v = pbd + PsS + Puv,sSv — )‘U3U - wv,

where v is the vaccinated (immune by vaccination) compartment, and the others are the vacci-
nated correspondents of the originals: s, €y, %y, Ty, 2.4, 2, T2,». Here the force of infection A
takes the form \ = 3 (i + 114, + vz, + vi,), where § = 770 obtained by fitting above.

The indexed parameters mean the same as nonindexed in (1) concerning the vaccinated com-
partments. Since there were some uncertainties regarding to their values, we fixed them based
on the literature [1, 9] and consultations with epidemiological experts. In the experiments below
we use the following parameter values: d = 0.01, 8 =770, € = €3 = 26, 7 = 7, =52, v =
vy =0.5, (= =0.05, n=mn=0.003, 0 =0.7, 09 =03 = 0.5, Kk = Ky = 40.

In our experiments below, the dependence on the newborn vaccination ratio py, vaccination rate
Ds in s, re-vaccination rate p, ¢ in s, as well as the immunity waning parameter (w, reciprocal
of the average length of immunity) will be investigated.

In mathematical epidemiology, the key to study the level of virulence of a disease is the basic
reproduction number Rzy. If %y < 1 then the disease-free equilibrium is asymptotically stable,
but if Ry > 1 the disease will persist. Based on the method in [10], R, for system (1) was given
in [2].
Ry — Be L ev¢n
(v+d)e+d)  (r+d) (E+d(y+d(C+d)(n+d)

With the fitted parameters, we obtain Ry = 15.0581. It is one of the highest among the infec-
tious diseases. Note that in [2], the authors investigated the relation between the underreporting
and estimated value of Rj.

In cases of vaccinations, the goal is to find the most effective and economically reasonable
strategies, i.¢e., to find the optimal values of the vaccination parameters pj, ps, Py s, such that the
disease will eliminated. Theoretical study of 17, in vaccination models will be subject to another
paper. Here, we present examples representing different cases, specific to the epidemiology of
varicella. In all cases, we assume that vaccination will start in 2020.

Recall that vaccine-induced immunity may wane. After one dose, the efficacy is only about
65%, but after the second dose it is almost 100%. In the figures 3 - 8, we present either the
monthly or annual incidences depending which one expresses the nature of that vaccination
strategy better. If it is reasonable, we will present the corresponding vaccinated population, as
well.
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Fig. 3. Low level vaccination: p, = 0.5, p, =0, p,s =0, w=10.
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Fig. 4. Complete newborn vaccination with no immunity waning:
po =1, ps =0, pv,szoa w=0.

First, assume life-long immunity. In this case re-vaccination is unnecessary, thus p, ; = 0 can
be taken. Countries have different policies, hence the parameters py, p, are country-specific [4].
Now consider only the newborn vaccination. In this case, its critical value is p, ~ 0.95 at the
nonseasonal model [9].

Consider a case with very low value of p, = 0.5, i.e., 50% of newborns are vaccinated. Fig. 3
shows the result. Annually, 0.5% of the total population is vaccinated. The varicella incidence
decreases by cca. 50%, but the incidence of zoster significantly increases and stays at this high
level due to the reduced exogenous boosting.

Now, study the case of ideal vaccination p, = 1, and Fig. 4 shows the results. The varicella
incidence is practically zero, but that of zoster significantly increases due to the same reason as
above. Figure does not show, but it reaches the maximum in about 30 years and goes back to
the value before the vaccination in 90 years. The annually vaccinated population is 1%.

Next, assume that the vaccination does not guarantee life-long immunity. Let the average wain-
ing time be 20 years, i.e., w = 0.05. Even the vaccination is ideal p, = 1, the incidence of
varicella slowly increases, and the seasonal oscillation is quite high (Fig. 5). On the other hand,
zoster incidence first increases, but starts to decrease sooner as before (in 15 years) due to the
higher level of exogenous boosting, but it stays at a higher level. This examples agrees the case
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Fig. 5. Complete newborn vaccination with immunity waning in 20 years:
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Fig. 6. Complete newborn, partial old-age vaccination with waning
immunity: p, = 1, ps =0, p,s = 0.2, w = 0.05.

in USA, there the incidence of zoster is permanently high (see [1] and references therein).

The above example explains the necessity of vaccination of older populations. Such a case
is shown in Fig. 6, where w = 0.05 (average waning time is 20 years), p, = 1 and the
re-vaccination rate in compartment s, is p, s = 0.2. The size of compartment s, cannot be
measured in this model, but individuals will get into s, approximately 20 years after receiving
the vaccine at their newborn age. One can see that this strategy significantly decreases the
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Fig. 8. Temporary vaccination for 8 years:
pb:L ps:()a pv,s:07 w = 0.

incidence but the zoster incidence is still high. A possible reason is that after introducing the
vaccination, not only the newborns but susceptibles should be vaccinated, since they may be
in this state and exposed to varicella for a long time. Such a case is shown in Fig. 7 with
parameters w = 0.05, p, =1, p, = 0.2, p, s = 0.2.

Finally, let us consider a case, when the vaccination is temporary. It can happen if there is no
financial support, or medical staff any more. Assume that the length of vaccination period is
eight years, Fig. 8. One can see the negative consequences. Having canceled the vaccination,
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incidence highly oscillates and the magnitudes are much higher than they used to be. It takes
about 10-15 years to be back at the original level of incidence. The increased number of infec-
tions means a significant overload of the medical staff, and its cost may be higher than the cost
of vaccination was.

4 Conclusion

We gave an overview of some of the main questions in the modeling of the varicella epidemiol-
ogy in Hungary. We fitted a very simple model to the available data of varicella infections. We
developed simple models for vaccination, and experimentally forecast its impact in Hungary.
Based on our simple models the global effects and strategic goals can be already visible. The
next step of our research will be to apply realistic age-structured models in order to evaluate the
impact of real-life vaccination policies.
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