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1 Introduction

The classical Susceptible-Infected-Recovered (SIR) model of disease transmission
[10] provides a basic framework formost compartmental epidemicmodels. The degree
of complexity in such models is largely determined by the immunological and epi-
demiological characteristics of the disease. One example that immediately comes to
mind is influenza, which is a respiratory infection mainly caused through human-
to-human transmission of small particle aerosols. The dynamics of influenza spread,
and many other infectious diseases with similar characteristics, in a population can
be described by a model that comprises the classes of susceptible, exposed (infected
but not infectious), asymptomatic (infectious without developing clinical symptoms),
pre-symptomatic (infectious before the symptoms appear), and symptomatic (infec-
tious with clinical symptoms) individuals. However, this structure may even become
more complex when applying the model to evaluate the effectiveness of intervention
strategies, such as treatment of symptomatic infection. It has been shown that an effec-
tive course of influenza therapy requires the prompt onset of treatment within 48 h of
the onset of clinical symptoms [16]. In practice, however, diagnosis of most infected
cases and therefore start of treatment is associated with a delay after the symptoms
appear. In a previous study [1], we have shown that such delay can be incorporated into
the model as an independent structure variable, by monitoring the density of infected
individuals in terms of the time elapsed since the onset of clinical disease. The model,
formulated as a system of delay differential equations, enabled us to determine the
conditions for disease eradication in terms of the population-level of treatment and
delay in start of treatment.

While treatment remains a key component of infection management strategies for
several diseases, the timing for initiation of treatment can have a significant impact
on the short- and long-term disease epidemiology in the population [2,9,15]. This is
particularly relevant to the development and spread of drug-resistance, which remain
an important global public health concern. For example, recent studies show that,
depending on the probability of resistance development at the host level and the rel-
ative transmission fitness of the resistant-type at the population level, the minimum
infection state of the system at equilibrium for competing pathogen subtypes may
occur with considerable delay in start of the treatment during the infectious period [9].
Although such delay in start of treatment could play a critical role in disease dynam-
ics, current treatment practices largely pivot towards management of infection and
severe outcomes in patients, leaving out the possible evolution and epidemiological
consequences of resistance spread under the selection pressure of drugs. The impact of
delay as a control parameter has also been recognized in vaccine-preventable diseases
for scheduling booster doses in order to determine the optimal timing of vaccination
for generating a longer term herd protection and reducing the impact of disease on the
population [18]. Collectively, these studies suggest that the ‘delay’ term in epidemic
models could reveal important factors that influence disease dynamics, and pertinent
strategies for control and prevention.

In this paper, we revisit the work of Alexander et al. [1] and extend the model to
include demographic turnover and study the conditions for disease propagation in the
population in the context of age-of-infection dependent treatment rates and delay in
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start of treatment. We identify the effective reproduction number and show that when
it is less than unity [1], the disease will be eradicated from the population. On the
other hand, when the reproduction number of disease transmission exceeds the unity,
by constructing a Lyapunov function we prove the global stability of a unique endemic
equilibrium. Therefore, the effectiveness of the treatment strategy for disease control
is fully characterized by the reproduction number as a threshold parameter. In what
follows, we provide the structure of the model and its analysis, which relies on the
general framework developed in our previous work [1].

2 The model

Our starting point is the model of Alexander et al. [1], and we extend that to include a
constant recruitment rate (Λ) into the susceptible population, and a natural death rate
(γ ). The population is divided into the compartments of susceptible, exposed (infected
but not infectious), asymptomatic and symptomatic infected individuals. Denoting
susceptible and exposed classes by S and E , assuming mass action incidence we have

S′(t) = Λ − βS(t)Q(t) − γ S(t) (1)

and
E ′(t) = βS(t)Q(t) − μE E(t) − γ E(t), (2)

where β is the baseline transmission rate, 1/μE represents the length of incubation
period, and Q(t) is the force of infection, to be formulated below. Let p ∈ [0, 1]
be the probability for an exposed individual to develop symptoms. Asymptomatic
individuals (A) may possibly shed pathogen during their infectious period (1/μA ),
and this compartment follows

A′(t) = (1 − p)μE E(t) − μA A(t) − γ A(t). (3)

Only symptomatic infected individuals may receive treatment within a window of
opportunity for efficient treatment, and to accurately track the treated and untreated
symptomatic infection, we structure this class with respect to the time elapsed since
the start of infection, denoting the density of untreated and treated infected individuals
with respect to age-since-infection a at time t by iU (t, a) and iT (t, a), respectively.We
divide the infectious period of the symptomatic infection into two stages. The primary
stage represents the window of opportunity for initiating therapy, and it terminates at
time since infection a = n. We assume that individuals do not recover during this
primary stage, neither die due to the disease. Individuals who have initiated treatment
during this window will progress to the secondary stage and receive no treatment for
the entire course of symptomatic infection.

Now we consider the equations governing the disease dynamics within the primary
stage. Assuming that the treatment rate at time a after the onset of symptoms is r(a),
we have for a ∈ [0, n] that

(
∂

∂t
+ ∂

∂t

)
iU (t, a) = −r(a)iU (t, a) − γ iU (t, a), (4)
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Fig. 1 Model diagram
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)
iT (t, a) = r(a)iU (t, a) − γ iT (t, a), (5)

subject to the boundary conditions

iU (t, 0) = pμE E(t), iT (t, 0) = 0, t ≥ 0, (6)

and initial conditions

iU (0, a) = i0
U
(a), iT (0, a) = i0

T
(a), 0 ≤ a ≤ n.

Let IU (t) and IT (t) denote, respectively, the total number of untreated and treated
infected individuals in the secondary stage, when a ≥ n. Their dynamics is governed
by

I ′
U
(t) = iU (t, n) − (μU + dU )IU (t), I ′

T
(t) = iT (t, n) − (μT + dT )IT (t), (7)

where 1/μU and 1/μT are themean secondary infectious periods, and dU and dU repre-
sent disease induced mortality rates of untreated and treated individuals, respectively.
See Fig. 1 for the flowchart of the dynamics.

Next we formulate the last remaining component of themodel, the force of infection
Q(t). To this end, we introduce the parameters δA , δU , representing transmissibility
during asymptomatic and secondary stage infection, relative to the primary stage
symptomatic infection; and δT denotes the reduction of transmission due to therapy.
This way, using mass action, we obtain

Q(t) = δA A(t) + δU IU (t) + δT δU IT (t) +
∫ n

0
iU (t, a)da + δT

∫ n

0
iT (t, a)da.

Solving (4) and (5) along characteristics subject to (6), for t ≥ n we obtain

iU (t, a) = iU (t − a, 0)e− ∫ a
0 r(s)dse−aγ = e− ∫ a

0 r(s)dse−aγ pμE E(t − a) (8)
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and
iT (t, a) = (1 − e− ∫ a

0 r(s)ds)e−aγ pμE E(t − a). (9)

Introduce the function q(a) = e− ∫ a
0 r(s)ds representing the probability that an individ-

ual is not treated at age a in the primary stage, and let

g̃(a) := e−γ a[q(a) + δT (1 − q(a))
]

for a ∈ [0, n], g(a) := pμE g̃(a).

Noting that, with the simplifying notation q = q(n), we have

iU (t, n) = qe−nγ pμE E(t − n), iT (t, n) = (1 − q)e−nγ pμE E(t − n). (10)

Then the model equations (1), (2), (3) and (7) take the form

S′(t) = Λ − βS(t)Q(t) − γ S(t), (11)

E ′(t) = βS(t)Q(t) − (μE + γ )E(t), (12)

A′(t) = (1 − p)μE E(t) − (μA + γ )A(t), (13)

I ′
U
(t) = pμE e

−γ n E(t − n)q − (μU + dU + γ )IU (t), (14)

I ′
T
(t) = pμE e

−γ n E(t − n)(1 − q) − (μT + dT + γ )IT (t), (15)

with

Q(t) = δA A(t) + δU IU (t) + δT δU IT (t) +
∫ n

0
E(t − a)g(a)da, (16)

which is now a closed system of delay differential equations with fixed and distributed
delays. One can specify the equation

R′(t) = μA A(t) + μU IU (t) + μT IT (t) − γ R(t)

for the class of recovered individuals, however, since R(t) decouples from the other
equations, we omit it from the further analysis. In the following sections, we perform
a global stability analysis of system (11)–(15). For the detailed explanation of the
original model in the context of pandemic influenza with antiviral treatment and its
associated parameters, the reader may consult Alexander et al. [1].

3 Basic properties and reproduction numbers

The effective reproduction number Rc expresses the expected number of secondary
infections generated by a single exposed individual introduced into an entirely sus-
ceptible population, while treatment is administered as a control measure with a given
age of infection dependent rate r(a). To calculate a formula forRc, we trace a single
exposed individual and count its contributions throughout the different stages towards
the next generation of infections [6]. Clearly there is a nontrivial disease-free equi-
librium P0 = (S0, 0, 0, 0, 0), where S0 = Λ/γ . The probability of surviving the
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exposed period is
μE

μE +γ
. Then, the individual becomes asymptomatic with probabil-

ity 1 − p, and infects with a reduction factor δA for a period of 1/(μA + γ ). With
probability p it moves to the primary stage of symptomatic infection, and throughout
this period the expected infectivity is expressed by g̃(a). At the end of primary stage,
a fraction q remains untreated, and a fraction 1− q will be further treated for periods
of 1/(μU + dU + γ ) and 1/(μT + dT + γ ), respectively, provided they survived the
primary stage which has probability e−γ n . Summing up all the above, we find

Rc= μEβS0
μE + γ

(
(1− p)δA

μA +γ
+ pqe−γ nδU

μU +dU +γ
+ p(1 − q)e−γ nδT δU

μT + dT + γ
+ p

∫ n

0
g̃(a)da

)
.

(17)
In the absence of any treatment we have r(a) = 0, thus q(a) = 1 and Rc reduces to
the basic reproduction number

R0 = μEβS0
μE + γ

(
(1 − p)δA

μA + γ
+ pe−γ nδU

μU + dU + γ
+ p

∫ n

0
g̃(a)da

)
. (18)

Since there are delays in the right hand side of system (11)–(15), but only in the E
variable, the natural phase space is X = R × C × R

3, where C is the Banach space
of continuous function from [−n, 0] to R with the supremum norm. Standard results
show that for any x ∈ X there is a unique solution of system (11)–(15) with initial data
x . Biologically relevant solutions live in the non-negative cone X+ = R+

0 × C+
0 ×

(R+
0 )3,whereC+

0 represents the set of nonnegative continuous functions on the interval
[−n, 0]. Let us denote the segment of E(t) by Et ∈ C0, which is Et (θ) = E(t+θ) for

any θ ∈ [−n, 0]. We also use the notation u(t) :=
(
S(t), Et , A(t), IU (t), IT (t)

)
∈ X

for the solutions, with the norm

|u(t)| = |S(t)| + sup
θ∈[−n,0]

|E(t + θ)| + |A(t)| + |IU (t)| + |IT (t)|.

Proposition 1 Solutions with non-negative initial data remain non-negative, and the
system is point dissipative.

Proof Whenever u(t) is in the non-negative cone and any component of u(t) is zero,
then it is easily seen from the equation that the time derivative of that component
is non-negative, thus we can apply Proposition 1.2 from [19] to guarantee that non-
negative initial data give rise to non-negative solutions. For a given solution u(t),
consider the function

N (t) := S(t) + E(t) + A(t) + IU (t) + IT (t) + pμE

∫ t

t−n
e−(t−a)γ E(a)da,

which actually represents the total population in the susceptible and infected com-
partments. It can easily be seen that N ′(t) ≤ Λ − γ N (t), and therefore by a
standard comparison argument, N (t) is bounded by max{N (0),Λ/γ }, furthermore
if M > Λ/γ , then there exists a T such that for all t > T , N (t) < M. Then, for
t > T + τ we also have the simple estimate |u(t)| ≤ (1 + n)M. ��
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4 Extinction of infection

Theorem 1 The disease will be eradicated if Rc < 1, i.e. all infected compartments
converge to zero.

Proof Recall

S′(t) = Λ − βS(t)Q(t) − γ S(t), (19)

E ′(t) = βS(t)Q(t) − (μE + γ )E(t), (20)

A′(t) = (1 − p)μE E(t) − (μA + γ )A(t), (21)

I ′
U
(t) = pμE e

−γ n E(t − n)q − (μU + dU + γ )IU (t), (22)

I ′
T
(t) = pμE e

−γ n E(t − n)(1 − q) − (μT + dT + γ )IT (t). (23)

From Proposition 1, we have S∞ ≤ Λ/γ = S0, where S∞ denotes lim supt→∞ S(t).
From the boundedness of solutions, we can apply the fluctuation lemma to E(t), so
there exists a sequence tk → ∞ as k → ∞ such that E ′(tk) → 0 and E(tk) → E∞.
From non-negativity of solutions and (12), we find the relation

(μE + γ )E∞ ≤ βS0Q
∞.

Similarly, we obtain

(μA + γ )A∞ ≤ (1 − p)μE E
∞,

(μU + dU + γ )I∞
U

≤ pμE e
−γ n E∞q,

(μT + dT + γ )I∞
T

≤ pμE e
−γ n E∞(1 − q).

Combining all these with

Q∞ ≤ δA A
∞ + δU I

∞
U

+ δT δU I
∞
T

+ E∞
∫ n

0
g(a)da

gives

E∞ ≤ RcE
∞.

If Rc < 1, then the only possibility is E∞ = 0. But then also A∞ = I∞
U

= I∞
T

= 0.
��

5 Endemic equilibrium

A non-negative equilibrium of system (11)–(15) is called an endemic equilibrium if it
has at least one positive component corresponding to an infected compartment.

Proposition 2 An endemic equilibrium exists if and only if Rc > 1, and it is unique.
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Proof From the steady state equations

0 = Λ − βS∗Q∗ − γ S∗, (24)

0 = βS∗Q∗ − (μE + γ )E∗, (25)

0 = (1 − p)μE E
∗ − (μA + γ )A∗, (26)

0 = pμE e
−γ n E∗q − (μU + dU + γ )I ∗

U
, (27)

0 = pμE e
−γ n E∗(1 − q) − (μT + dT + γ )I ∗

T
, (28)

Q∗ = δA A
∗ + δU I

∗
U

+ δT δU I
∗
T

+ E∗
∫ n

0
g(a)da, (29)

we derive

A∗ = (1 − p)μE E
∗

μA + γ
, I ∗

U
= pμE e

−γ n E∗q
μU + dU + γ

, I ∗
T

= pμE e
−γ n E∗(1 − q)

μT + dT + γ
,

hence

Q∗ =E∗
(

δA (1 − p)μE

μA +γ
+ δU pμE e

−γ nq

μU + dU + γ
+ δT δU pμE e

−γ n(1 − q)

μT + dT + γ
+

∫ n

0
g(a)da

)
.

If E∗ = 0, then A∗ = I ∗
U

= I ∗
T

= Q∗ = 0, and we obtain the disease free equilibrium.
Now assume that E∗ �= 0, and note that S∗ �= 0 when Λ > 0. Then from (25) we
have

μE

(
δA(1− p)

μA +γ
+ δU pe−γ nq

μU +dU + γ
+ δT δU pe−γ n(1 − q)

μT + dT + γ
+ p

∫ n

0
g̃(a)da

)
= μE + γ

βS∗ ,

which is equivalent to

S∗ = S0
Rc

.

Summing (24) and (25) gives

E∗ = Λ − γ S∗

μE + γ
= Λ(Rc − 1)

Rc(μe + γ )
,

and so

A∗ = (1 − p)μEΛ(Rc − 1)

(μA + γ )Rc(μe + γ )
, I ∗

U
= pμE e

−γ nΛ(Rc − 1)q

(μU + dU + γ )Rc(μe + γ )
,

I ∗
T

= pμE e
−γ nΛ(Rc − 1)(1 − q)

(μT + dT + γ )Rc(μe + γ )
,

therefore the obtained equilibrium is unique and the components are positive if and
only ifRc > 1. ��
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6 Convergence to endemic state

Theorem 2 The endemic equilibrium is globally asymptotically stable whenever
Rc > 1.

Proof We construct a suitable Lyapunov function. We shall use the function

f (ξ) = ξ − 1 − ln ξ,

and to facilitate the analysis, we introduce the notations

x = S

S∗ , y = E

E∗ , z = A

A∗ , u = IU
I ∗
U

, v = IT
I ∗
T

.

Consider the following two functions

V = S∗ f (x) + E∗ f (y) + βδAS∗A∗

(1 − p)μE E∗ A
∗ f (z)

+ βδU S∗ I ∗
U

pμEe−γ n E∗q
I ∗
U f (u) + βδT δU S∗ I ∗

T

pμEe−γ n E∗(1 − q)
I ∗
T f (v)

and

W = βS∗E∗
∫ n

0
g(a)

∫ t

t−a
f (y(σ ))dσda + βδU S∗ I ∗

U

∫ t

t−n
f (y(σ ))dσ

+ βδT δU S∗ I ∗
T

∫ t

t−n
f (y(σ ))dσ.

To show that L = V + W is a Lyapunov function such that L ′ ≤ 0, we calculate the
derivative term by term:

(
S∗ f (x)

)′ =
(
1 − 1

x

)
S′ =

(
1 − 1

x

)
(Λ − βSQ − γ S)

=
(
1 − 1

x

) (
βS∗Q∗+γ S∗ − βSQ − γ S

)

=
(
1 − 1

x

)[
βS∗

(
δA A

∗+δU I ∗
U+δT δU I ∗

T+E∗
∫ n

0
g(a)da

)

−βS

(
δA A+δU IU+δT δU IT+

∫ n

0
E(t − a)g(a)da

)
+γ S∗(1 − x)

]

=
(
1 − 1

x

)
β

[
δAS

∗A∗(1−xz)+δU S∗ I ∗
U (1 − xu)+δT δU S∗ I ∗

T (1−xv)

+ S∗E∗
∫ n

0
(1 − xy(t − a)) g(a)da

]
+γ S∗

(
1− 1

x

)
(1−x). (30)
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Note that
(
1 − 1

x

)
(1 − xz) =

(
1 − 1

x
− xz + z

)
=

(
− f

(
1

x

)
− f (xz) + f (z)

)
,

(
1 − 1

x

)
(1 − xu) =

(
1 − 1

x
− xu + u

)
=

(
− f

(
1

x

)
− f (xu) + f (u)

)
,

(
1 − 1

x

)
(1 − xv) =

(
1 − 1

x
− xv + v

)
=

(
− f

(
1

x

)
− f (xv) + f (v)

)
,

(
1 − 1

x

)
(1 − xyt−a) =

(
1 − 1

x
− xyt−a + yt−a

)

=
(

− f

(
1

x

)
− f (xyt−a) + f (yt−a)

)
,

(
1 − 1

x

)
(1 − x) =

(
1 − 1

x
− x + 1

)
=

(
− f

(
1

x

)
− f (x)

)
,

where yt−a = y(t − a). Hence, (30) can be rearranged as follows.

(
S∗ f (x)

)′ = βδAS
∗A∗

(
− f

(
1

x

)
− f (xz) + f (z)

)

+ βδU S∗ I ∗
U

(
− f

(
1

x

)
− f (xu) + f (u)

)

+ βδT δU S∗ I ∗
T

(
− f

(
1

x

)
− f (xv) + f (v)

)

+ βS∗E∗
∫ n

0

(
− f

(
1

x

)
− f (xyt−a) + f (yt−a)

)
g(a)da

+ γ S∗
(

− f

(
1

x

)
− f (x)

)
. (31)

Similarly, we have

(
E∗ f (y)

)′ =
(
1 − 1

y

)
E ′ =

(
1 − 1

y

)
(βSQ − (μE + γ )E)

=
(
1 − 1

y

)
(βSQ − (μE + γ )E∗y) =

(
1 − 1

y

)
(βSQ − βS∗Q∗y)

=
(
1 − 1

y

)
β

[
δAS

∗A∗(xz − y) + δU S∗ I ∗
U (xu − y)

+ δT δU S∗ I ∗
T (xv − y) + S∗E∗

∫ n

0
((xyt−a) − y) g(a)da

]

= βδAS
∗A∗

(
f (xz) − f

(
xz

y

)
− f (y)

)

+ βδU S∗ I ∗
U

(
f (xu) − f

(
xu

y

)
− f (y)

)
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+ βδT δU S∗ I ∗
T

(
f (xv) − f

(
xv

y

)
− f (y)

)

+ βS∗E∗
∫ n

0

(
f (xyt−a) − f

(
xyt−a

y

)
− f (y)

)
g(a)da, (32)

and

(
βδAS

∗A∗
(1 − p)μE E∗ A∗ f (z)

)′
= βδAS

∗A∗
(1 − p)μE E∗

(
1 − 1

z

)
A′

= βδAS
∗A∗

(1 − p)μE E∗
(
1 − 1

z

)
((1 − p)μE E − (μA + γ )A)

= βδAS
∗A∗

(1 − p)μE E∗
(
1 − 1

z

)
((1 − p)μE E − (μA + γ )A∗z)

= βδAS
∗A∗

(1 − p)μE E∗
(
1 − 1

z

)
((1 − p)μE E − (1 − p)μE E

∗z)

= βδAS
∗A∗

(
1 − 1

z

)
(y − z) = βδAS

∗A∗
(
f (y) − f

(
y

z

)
− f (z)

)
, (33)

(
βδU S∗ I∗U

pμEe−γ n E∗q I∗U f (u)

)′

= βδU S∗ I∗U
pμEe−γ n E∗q

(
1 − 1

u

)
I ′U

= βδU S∗ I∗U
pμEe−γ n E∗q

(
1 − 1

u

)

· (pμEe
−γ n E(t − n)q − (μU + dU + γ )IU )

= βδU S∗ I∗U
pμEe−γ n E∗q

(
1 − 1

u

)

· (pμEe
−γ n E(t − n)q − (μU + dU + γ )I∗Uu)

= βδU S∗ I∗U
pμEe−γ n E∗q

(
1 − 1

u

)

· (pμEe
−γ n E(t − n)q − pμEe

−γ n E∗qu)

= βδU S∗ I∗U
(
1 − 1

u

)
(yt−n − u)

= βδU S∗ I∗U
(
f (yt−n) − f

( yt−n

u

)
− f (u)

)
, (34)

and

(
βδT δU S∗ I∗T

pμEe−γ n E∗(1 − q)
I∗T f (v)

)′

= βδT δU S∗ I∗T
pμEe−γ n E∗(1 − q)

(
1 − 1

v

)
I ′T

= βδT δU S∗ I∗T
pμEe−γ n E∗(1 − q)

(
1 − 1

v

)
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· (pμEe
−γ n E(t − n)(1 − q) − (μT + dT + γ )IT )

= βδT δU S∗ I∗T
pμEe−γ n E∗(1 − q)

(
1 − 1

v

)

· (pμEe
−γ n E(t − n)(1 − q) − (μT + dT + γ )I∗T v)

= βδT δU S∗ I∗T
pμEe−γ n E∗(1 − q)

(
1 − 1

v

)

· (pμEe
−γ n E(t − n)(1 − q) − pμEe

−γ n E∗(1 − q)v)

= βδT δU S∗ I∗T
(
1 − 1

v

)
(yt−n − v)

= βδT δU S∗ I∗T
(
f (yt−n) − f

( yt−n

v

)
− f (v)

)
. (35)

Combining (31), (32), (33), (34) and (35), we can calculate the derivative of V as
follows.

V ′ = βδAS
∗A∗

(
− f

(
1

x

)
− f (xz) + f (z) + f (xz) − f

(
xz

y

)
− f (y)

+ f (y) − f

(
y

z

)
− f (z)

)

+ βδU S∗ I ∗
U

(
− f

(
1

x

)
− f (xu) + f (u) + f (xu) − f

(
xu

y

)
− f (y)

+ f (yt−n) − f
( yt−n

u

)
− f (u)

)

+ βδT δU S∗ I ∗
T

(
− f

(
1

x

)
− f (xv) + f (v) + f (xv) − f

(
xv

y

)
− f (y)

+ f (yt−n) − f
( yt−n

v

)
− f (v)

)

+ βS∗E∗
∫ n

0

(
− f

(
1

x

)
− f (xyt−a) + f (yt−a)

+ f (xyt−a) − f

(
xyt−a

y

)
− f (y)

)
g(a)da + γ S∗

(
− f

(
1

x

)
− f (x)

)

= βδAS
∗A∗

(
− f

(
1

x

)
− f

(
xz

y

)
− f

(
y

z

))

+ βδU S∗ I ∗
U

(
− f

(
1

x

)
− f

(
xu

y

)
− f (y) + f (yt−n) − f

( yt−n

u

))

+ βδT δU S∗ I ∗
T

(
− f

(
1

x

)
− f

(
xv

y

)
− f (y) + f (yt−n) − f

( yt−n

v

))

+ βS∗E∗
∫ n

0

(
− f

(
1

x

)
+ f (yt−a) − f

(
xyt−a

y

)
− f (y)

)
g(a)da

+ γ S∗
(

− f

(
1

x

)
− f (x)

)
. (36)
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On the other hand, the derivative of W is calculated as follows.

W ′ = βS∗E∗
∫ n

0
g(a) ( f (y) − f (yt−a)) da + βδU S∗ I ∗

U ( f (y) − f (yt−n))

+ βδT δU S∗ I ∗
T ( f (y) − f (yt−n)) . (37)

Hence, combining (36) and (37), we have

L ′ = V ′ + W ′ = βδAS
∗A∗

(
− f

(
1

x

)
− f

(
xz

y

)
− f

(
y

z

))

+ βδU S∗ I ∗
U

(
− f

(
1

x

)
− f

(
xu

y

)
− f

( yt−n

u

))

+ βδT δU S∗ I ∗
T

(
− f

(
1

x

)
− f

(
xv

y

)
− f

( yt−n

v

))

+ βS∗E∗
∫ n

0

(
− f

(
1

x

)
− f

(
xyt−a

y

))
g(a)da

+ γ S∗
(

− f

(
1

x

)
− f (x)

)
. (38)

Recalling that f (ξ) = ξ − 1 − ln ξ ≥ 0, we see from (38) that L ′ ≤ 0, and L ′ = 0
only if all the arguments of f in the above expression are exactly one. The set G =
{φ ∈ X+ : L(φ) ≤ L(u(0))} is closed and positive invariant, therefore the continuous
L is a Lyapunov functional on G. Let Σ = {φ ∈ G : L ′(φ) = 0} and M be the largest
invariant set inΣ . Ifφ ∈ M , then x = 1 and from the invariancewe find that S(t) = S∗
along the solution starting from φ, consequently Q is constant. For L ′ = 0 one needs
y = z = u = v too, which implies that all components are constants, therefore M
includes only the endemic equilibrium, which is, from LaSalle’s invariance principle,
globally attractive on G (see Chapter 5.3 of [7]). To conclude global stability, we can
apply Corollary 3.1 of [7] with choosing a(r) and b(r) as the non-delayed terms of L
and −L ′. ��

7 Concluding remarks

In this paper we constructed Lyapunov functions (similar to those in [12–14]) to
investigate the global dynamics of a delay differential equations system, which was
obtained from an age structured model with age-since-infection dependent treatment
rates. Models with age-of-infection have been vastly studied in the literature, see for
example [3–5,8,11,17,20]; however, the global stability of the endemic steady state
has rarely been established for suchmodels formulated as partial differential equations.

The structure of our model can be applied to describe the dynamics of an array
of infectious diseases, including influenza and other respiratory illnesses with similar
characteristics. Since in practice, treatment can not start immediately following the
onset of infectiousness in an infected individual, but likely with some delay τ , we may
assume r(a) = 0 for a ∈ [0, τ ]. For simplicity and the purpose of illustration in the
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discussion below, we consider a constant treatment rate r(a) = θ for a ∈ [τ, n]. In
this special case, q(a) = 1 for a ∈ [0, τ ] and q(a) = e−(a−τ)θ for a ∈ [τ, n]. We note
that 1 − q(n) represents the fraction of infected individuals who receive treatment in
the period [τ, n]. Then

g̃(a) = e−γ a for a ∈ [0, τ ],
and

g̃(a) := e−γ a[e−(a−τ)θ + δT (1 − e−(a−τ)θ )
]
for a ∈ [τ, n].

A straightforward calculation gives

∫ n

0
g̃(a)da =

∫ τ

0
e−γ ada +

∫ n

τ

e−γ a[e−(a−τ)θ + δT (1 − e−(a−τ)θ )
]
da

= 1 − e−γ τ

γ
+ δT

(
e−γ τ − e−γ n

γ

)

+ (1 − δT )

(
e−γ τ − e−nτq(n)

γ + θ

)
, (39)

and thus the effective reproduction number becomes

Rc = μEβS0
μE + γ

(
(1 − p)δA

μA + γ
+ pqe−γ nδU

μU + dU + γ
+ p(1 − q)e−γ nδT δU

μT + dT + γ

+ p

(
1 − e−γ τ

γ

)
+ pδT

(
e−γ τ − e−γ n

γ

)

+ p(1 − δT )

(
e−γ τ − e−(n−τ)θ−γ n

γ + θ

))
.

Since in Rc only the term
∫ τ

0 e−γ ada depends on the treatment strategy specified
by τ and θ , to assess how sensitive Rc is to these parameters, using (39), we may
consider

d

dτ

∫ n

0
g̃(a)da = (1 − δT )

θ

θ + γ
e−γ τ

(
1 − e−(θ+γ )(n−τ)

)

and

d

dθ

∫ n

0
g̃(a)da = (1 − δT )

e−γ τ−(n−τ)(γ+θ)
(
(γ + θ)(n − τ) + 1 − e(n−τ)(γ+θ)

)
(γ + θ)2

,

(40)
where the numerator of the fraction is negative due to ex > 1 + x . As one expects,
whenever treatment is beneficial to reduce disease transmission (δT < 1), then increas-
ing the delay increasesRc, and increasing the treatment rate decreasesRc. To illustrate
the amount of delay we can afford for a given treatment rate to reduce Rc below 1
(as a condition for disease eradication), we plotted the contours of Rc as a func-
tion of the delay in start of treatment (τ ) and the treatment level (1 − q(n)), when
R0 = 2 (Fig. 2) for influenza-like parameters. Note that the treatment level in this
case is 1 − q(n) = 1 − e−(n−τ)θ . As shown in Fig. 2, a higher level of treatment is
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Fig. 2 Dependence of the effective reproduction number on the delay in start of treatment and the level of
treatment with R0 = 2. Parameter values used for this simulation are: p = 0.6, δA = 1/14, δU = 1/7,
δT = 0.4, γ = 1/(70 × 365), μE = 1/1.25, μA = 1/4.1, μU = 1/2.85, μT = 1/1.35, dU = 0.002,
dT = 0.001, βS0 = 0.84753, and n = 2. The treatment rate θ was varied in the range 0–5 and τ was varied
in the range 0.25–2 [1]

required for Rc < 1 as the delay for start of treatment increases. However, when the
delay exceeds approximately 1 day, Rc cannot be reduced below 1 even with 100%
treatment level, indicating the importance of early treatment in the control of disease.

In conclusion, as shown in our global analysis of the system, the delay term (τ ) plays
an important role in determining the possibility of disease control, which is reflected
in the value of the effective reproduction number (Rc). As also demonstrated in our
previous studies [9,18], the delay term can be regarded as a control parameter in epi-
demic models. Apart from the theoretical aspects of the global dynamics, this control
parameter could provide important information on the long-term disease dynamics;
for example to minimize endemic states of drug-resistance with delay in start of treat-
ment [9], or to reduce timelines for achieving disease control in vaccine-preventable
diseases with optimal booster vaccine schedule [18].
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