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ABSTRACT. We study bounded, unbounded and blow-up solutions of a delay
logistic equation without assuming the dominance of the instantaneous feed-
back. It is shown that there can exist an exponential (thus unbounded) solution
for the nonlinear problem, and in this case the positive equilibrium is always
unstable. We obtain a necessary and sufficient condition for the existence of
blow-up solutions, and characterize a wide class of such solutions. There is a
parameter set such that the non-trivial equilibrium is locally stable but not
globally stable due to the co-existence with blow-up solutions.

1. Introduction. There is a vast literature on the study of delay logistic equations
describing population growth of a single species [6, 11]. In [14], the qualitative
studies of such logistic type delay differential equations have been summarized, see
also [1, 4, 7, 12, 16] and references therein.

In [12] the authors study the global asymptotic stability of a logistic equation
with multiple delays. Their global stability result is generalized in Theorem 5.6 in
Chapter 2 in [11], see also the discussion in [7]. Those conditions presented in [12]
and in Theorem 5.6 in Chapter 2 in [11] are delay independent conditions, exploiting
the dominance of the instantaneous feedback. In [7], applying the oscillation theory
of delay differential equations [9], the first author of this paper obtains a global
stability condition for a logistic equation without assuming the dominance of the
instantaneous feedback. See also [9] and references therein for the study of logistic
equations without instantaneous feedback.

When the instantaneous feedback term is small compared to the delayed feed-
back, the positive equilibrium is not always globally stable. Our motivation of this
note comes from interesting examples shown in [7], where the author shows the
existence of an exponential solution for a logistic equation with delay. Here we wish
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to investigate the properties of positive solutions of such an equation in detail. To
be more specific, we consider the logistic equation

d
@z(t) =rz(t) 1+ ax(t) —z(t —-1)), (1.1)

where r > 0, & € R. The equation (1.1) is a special case of the equations studied in
[7]. Note that (1.1) is a normalized form of the following delay differential equation
&
du
where r > 0, a € R and b > 0. If we define y(u) := 2N(u) and o := £, then we
obtain

N(u) = N(u) (F+ aN(u) — bN(u — 1)), (1.2)

L) = Fy(u) (1 + ay) —y(u 7).

Next we scale the time so that the delay is normalized to be one, by letting u := t7
and z(t) := y(u), then y(u — 1) = y(r(t — 1)) = 2(t — 1) and by calculating *z(t),
we obtain (1.1) with r = 77.

For (1.1) we show that there exist some unbounded solutions, when « is allowed to
be positive. More precisely, it is shown that a blow-up solution (i.e. a solution that
diverges to infinity in finite time) exists if and only if @ > 0 holds. We then show
that an exponential solution, namely z(t) = ce™, ¢ > 0, exists when o = ™" holds,
which is an unbounded but not blow-up solution. The case is further elaborated,
as we also find solutions which blows up faster than the exponential solutions.

This paper is organized as follows. In Section 2 we collect previous results on
boundedness and stability, which are known in the literature, with the exception
about the existence of blow-up solutions. In Section 3, we focus on the exponential
solution for the nonlinear differential equation (1.1) and its relation to stability. In
Section 4 we characterize a large class of initial functions that generate superex-
ponential blow-up solutions, and we also find a class of subexponential solutions.
Section 5 is devoted to a summary and discussions.

2. Boundedness, stability and blow-up. Denote by C the Banach space
C([-1,0],R) of continuous functions mapping the interval [—1,0] into R and desig-
nate the norm of an element ¢ € C by ||¢|| = sup_;<y<o |#(0)|. The initial condition
for (1.1) is a positive continuous function given as

z(0) = ¢(0), 0 € [-1,0].
There exists a unique positive equilibrium given by

1
Tr =
11—«
if and only if @ < 1 holds. In the following theorem we characterize global and local
dynamics of the solutions. The result on the existence of a blow-up solution seems
to be new.

Theorem 1. The following statements are true.
1. If
a< -1, (2.1)

then the positive equilibrium is globally asymptotically stable.
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2. If =1 < a < 1, then the positive equilibrium is locally asymptotically stable

for

11—«

r<y/1 T arccos(a), (2.2)
and it is unstable for
1—
r>4/7 +Z arccos(o). (2.3)

Moreover,

(a) If =1 < a <0, then every solution is bounded.

(b) If 0 < «, then there exists a blow-up solution in a finite time.
3. If a > 1, then for every solution, which exists globally, one has

lim sup,_, ., z(t) = oo.

Proof. 1) For the global stability of the equilibrium we refer to the proof of Theorem
5.6 in Chapter 2 in [11].

2) The result for local asymptotic stability is well-known, see for example Theo-
rems 2 and 3 in [14].

2-a) Notice that a solution of (1.1) satisfies z(t) = z(0)e" Jo 1tow(s)—a(s=1)ds
hence positive solutions remain positive. When —1 < a < 0, the result follows from
a simple comparison principle applied for the inequality «/(t) < x(t)r(1 + ax(t)).
In the case a = 0 we obtain the Wright’s equation for which boundedness is known,
see [5].

2-b) Let us assume that o > 0. We show that there exists a solution that blows
up in a finite time. Consider a positive continuous initial function satisfying

1, e [-1,-1],
¢(e>—{q7 o_o.

where ¢ is a positive constant to be determined later. Since one has

1
1-a(t—=1)=0,0<t< g,
it holds 1
2 (t) = rax(t)?, 0 <t < 3 (2.4)
Then equation (2.4) is easily integrated as
1
a(t) = —,
( ) % —rat
for t < q%a where the solution exists. Let us set
h
q = —, h 2 27
ra
then we have .
lim z(t) = lim —F—— = o0,
t—+~ t—E " TOé(ﬁ - t)

so the solution blows up at t = % < %
3) The result follows from Theorem 5.1 in [7].
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Unstable

FIGURE 2.1. Stability region for the positive equilibrium in the
(a, r)-parameter plane. The shaded region is the stability region
given by (2.1) and (2.2). The positive equilibrium is globally stable
for « < —1 and is unstable above the stability boundary. Expo-
nential solutions exist on the denoted curve. Blow-up solutions
exist for @ > 0, hence we can observe a region where the positive
equilibrium is locally stable yet blow-up solutions also exist.

3. Instability and exponential solutions. A remarkable feature of the logis-
tic equation with positive feedback (1.1) is the possible existence of exponential
solutions, despite the equation being nonlinear. As in [7], we find the following.

Proposition 2. There exists an exponential solution
T(t) == ce™, t > —1 (3.1)

of the generalized logistic equation

k
%x(t) = ra(t) (1 +) it - n)) , (3.2)
i=1

if and only if
k
Z a;e” " = 0. (3.3)
i=1

The proof is straightforward, and for (1.1) it means that an exponential solution
exists if and only if
a=e " (3.4)
holds.

It can be shown that the existence of the exponential solution implies the insta-
bility of the positive equilibrium.
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Proposition 3. Let us assume that (3.4) holds. Then the positive equilibrium of
(1.1) is unstable.

Proof. We compare the two conditions (3.4) and (2.3). We set
w = arccos(a) for a € (0,1). (3.5)

Note that w € (0, g) Using the parameter transformation (3.5) we get

l1—« 1 —cosw
arccos(a)y / =w—
1+« sin w

and the condition (3.4) is written as r = —In(cosw). Define
1—cosw
g1 (w) == w———m—
sinw
g2(w) :== —In(cosw)

for w € (0, g) We claim that

g2(w) > g1(w), we (O, g) (3.6)

It is easy to see that lim,, g+ g1(w) = lim,,_,o+ g2(w) = 0. Straightforward calcula-

tions show
1 —cosw w
gi(w) = (1+=2).

sinw sinw
, _ sin w
go(w) = cosw
Then we see
ga(w) — gh(w) = - {sinzw —cosw (1 — cosw) (1 + v )}
2 ! CcoS w sin w sin w
1—cos
- Y {(1 + cosw) — cosw (1 +— )}
cos w sin w sinw
1 —cosw COSw
e (e
cos w sin w sinw
>0
for w € (0,%). Thus we get (3.6) and obtain the conclusion. O

In Figure 2.1 we visualize the condition (3.4) in (a,r) parameter plane. In
accordance with Proposition 3, Figure 2.1 shows that the curve o = e™" belongs to
the region of instability of the positive equilibrium in the («,r) parameter plane.

4. A new class of blow-up solutions. We investigate other solutions of (1.1)
when (3.4) holds.

Theorem 4. Let the condition (3.4) hold. Consider a solution with the initial
function satisfying

0< ¢(s) <ce™, se[-1,0] (4.1)

with
#(0) = ¢, (4.2)
o(—1) <ce™” (4.3)

for ¢ > 0. Then one has x(t) > z.(t) = ce™ for t > 0 and the solution blows up at
a finite time.
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Proof. Looking for a contradiction, we assume that x(t) exists on [0,00). Then
x(t) > 0, t > —1. Define

2(t) :==In <:ch(§2)) =In (“Zgz) L t> 1.

¢4@;:1n<¢“)>,se[—Loy

Ce’l‘S

Let

Then z(s) = 1(s) for s € [—1,0], and we have
from (4.1), (4.2) and (4.3). Now we obtain the relation

Tt ./ rt rt /
iz(t) ez (t)ce x(t)rce oz t) -
dt x(t) c2e?rt x(t)

which can be rewritten by using (1.1) and a =e™"

d —r
a,z(t) :7‘(6 I(t) _ZE(t_ 1))7

as

and by z(t) = e*(!)ce™ we obtain a nonautonomous differential equation for z:
2 (t) = reem D (ez(t) — ez(t*1)> , t>0 (4.4)

using (3.4). First we show that 2/(t) > 0 for any ¢ > 0. Since

(0) =In (‘Z’(CO)> — 0> ¢(-1) =In (‘f’c((:_l))

follows from (4.2) and (4.3), one finds
2'(0) =rce”" (ew(o) — ew(*l)) > 0.

Assume that there exists t; > 0 such that 2/(t) > 0 for 0 <¢ < t¢; and 2/(¢t1) =0
hold. If t; € (0,1) then, since t; — 1 € (—1,0),

2 (t) = ree” =1 (ez(tl) — ez(tl—l)) 7

while
z(t1) — 2(t1 = 1) = 2(t1) — 2(0) + ¥(0) — ¥ (t1 — 1) > 0,
thus we obtain a contradiction. If t; > 1, then
t1
(b)) — 2t — 1) = / S (s)ds > 0,
t1—1

which leads to a contradiction again. Therefore, we obtain z'(¢) > 0 for ¢ > 0.
We can fix a T' > 2 such that
1<(1—a)re " ce™.
Since z(t) exists on [0,00) and 2/(¢) > 0 for ¢t > 0, 2/(¢) > 0 for 0 <t <7T. Thus

m:= min 2z'(t) > 0.
0<t<T
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By the intermediate value theorem, for each 0 < ¢ < T, there exists £(t) €
[2(t — 1), 2(t)] such that e*®) — e*(=1) = &) (2() — 2(t — 1)). Since &(t) > z(t —
1) > 0, we have
2 (t) = ree” VD (2(t) — 2(t — 1))
> ree” Y (2(t) — 2(t — 1))

t
:Tcer(t_l)/ 2 (s)ds.
t—1
This yields
t
2'(t) >/ Z'(s)ds, t>T (4.5)
t—1

and hence 2/(T) > fg_l z'(s)ds > m. This implies that 2/(¢) > m for t > T.
Otherwise there is a t; > T > 1 such that 2/(t) > m for 0 <t < t; and 2/(t1) = m.
But from (4.5)

ty
2 (ty) > / 2/ (s)ds > m,
ti—1
which is a contradiction.
Thus for any ¢t > 1 we have

o) _ p2(t=1) _ (1) (1 _ e—(z(t)—z(t—l)))

— ez(t) (1 _ effttl z'(s)ds)
> e#(t) (1 - e*m) .
Therefore,
2(t) > ree” (=1 ez(®) (1 — e_m) L t>1,
or equivalently
Z(t)e*® > (ree”"(1—e"™))e™, t > 1.
Integrating both sides of the above equation,

t s=
/ 2 (s)e *ds = {—e‘z(s)} - e *) =)

1 s=1
t

> (ree"(1— e™™) / " ds

1
=(ce"(1—e™) (e =€), t > 1.
This yields
e ) > (ce_r(l - e_m)) (e —e") + e * > (c(l — e_m)) (eT(t_l) —-1), t>1,

which is a contradiction since ¢(1 —e™™) > 0 and (e"!"1) — 1) tends to infinity as
t — 00, while e *(1) is a constant. Therefore, z does not exist on [0, 00) , moreover
Z'(t) >0, t > 0.

Consequently we should have a T' € (0, 00) such that lim;_,7_ z(t) = +00. Then,
corresponding to z(t), we also have

z(t) = DTt 5 00, t — T,

therefore x(¢) is a blow-up solution. O
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Proposition 5. The following estimate is valid:

1 T
ln(l—i-e) <T,
T C

where T is the blow-up time for a blow-up solution x in Theorem /.

Proof. We can find the lower bound for the blow-up time T' by the standard com-
parison principle. Consider the following ordinary differential equation
y'(t) =yt)r (1+e"y(t)
with y(0) = ¢ = z(0). By the comparison theorem, we have z(t) < y(t), t > 0.
Integrating the equation, we get
ce

t) =
y(t) I1+(1—-et)e e
for sufficiently small ¢. From this expression, we find the finite blow-up time for y
and then we obtain the required estimation. O

rt

Similar to the proof of Theorem 4, we obtain the following theorem.

Theorem 6. Let the condition (5.4) hold. Consider a solution with the initial
function satisfying

ce™ < ¢(s), s€[-1,0] (4.6)

with
¢(0) =c, (4.7)
d(—1) > ce™" (4.8)

for ¢ > 0. Then one has x(t) < x.(t) = ce™ fort >0, and consequently the solution
exists on [—1,00).

For the initial functions considered in Theorems 4 and 6, f(—(tt)) is a monotone

function for ¢ > 0, thus the order of the solution with respect to the exponential

solution, z.(t) = ce™, is preserved. We do not analyze the qualitative behavior of

the solution with the initial condition that oscillates about the exponential solution.
z(t)

Numerical simulations suggest that, for many solutions, @) eventually becomes a

monotone function.

5. Discussion. In this paper we study the logistic equation (1.1). In the stability
analysis of delayed logistic equations, negative instantaneous feedback is usually
assumed, see [4, 7, 14, 16] and references therein. Only a few stability results
are available in the literature for the case of positive instantaneous feedback e.g.,
[12, 13]. However, the blow-up solutions, which are present due to the positive
instantaneous feedback, have not been analyzed in detail, since the publication of
the paper [7]. This manuscript has been inspired by the work done in [7], espe-
cially, paying attention to the examples and open questions given in Section 5 of
the paper [7]. Our primary goal was to clarify and understand a relation between
the stability condition of the positive equilibrium and the existence condition for
the exponential solution. For the logistic equation (1.1), we show that the existence
of the exponential solution implies instability of the positive equilibrium in Propo-
sition 2, see also Fig. 2.1. Since stability analysis becomes extremely hard for the
differential equation with multiple delays, the comparison of the existence condi-
tion of the exponential solution to the stability condition is not straightforward in
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general, thus it remains an open problem whether the positive equilibrium of (3.2)
is always unstable whenever exists and (3.3) holds.

Finding a global stability condition for (1.1) in the case of —1 < a < 0 is still
an open problem. For a = 0 the global stability problem is known as the famous
Wright conjecture [2], that has been recently solved [17]. On the other hand, for
0 < a < 1, due to the existence of the blow-up solution, it is shown that the stable
equilibrium can not attract every solution, thus there is no hope to obtain global
stability condition for 0 < o < 1. Numerical simulations also suggest that there are
many bounded and oscillatory solutions .

In Theorems 4 and 6 we fix the parameters as in (3.4) in Proposition 2 so that the
exponential solution exists for the logistic equation (1.1). We consider some solu-
tions that preserve the order with respect to the exponential solution, and show that
some blow up, while others exist for all positive time. The qualitative behaviour
of the solution with the initial condition that oscillates about the exponential solu-
tion is not studied. For such an initial function, careful estimation of the solution

seems to be necessary to understand the long term solution behaviour. Numerical
z(t)
zc(t)
function. The detailed understanding of the evolution of such solutions is also left
for future work.

Finally, one might be interested in the equation

simulations suggest that, for many solutions, eventually becomes a monotone

%y(t) =y(t)r (1 +ay(t) +y(t - 1)),

which has an opposite sign for the delayed feedback term. For this equation the
qualitative dynamics is studied in the literature. The positive equilibrium

1
1+4a
exists if and only if @ < —1. According to Theorem 5.6 in Chapter 2 in [11], the
positive equilibrium is globally asymptotically stable. When o > —1 the solutions
are unbounded, see again Theorem 5.1 in [7].
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