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Abstract When the body gets infected by a pathogen the immune system develops
pathogen-specific immunity. Induced immunity decays in time andyears after recovery
the host might become susceptible again. Exposure to the pathogen in the environment
boosts the immune system thus prolonging the time in which a recovered individual
is immune. Such an interplay of within host processes and population dynamics poses
significant challenges in rigorous mathematical modeling of immuno-epidemiology.
We propose a framework to model SIRS dynamics, monitoring the immune status
of individuals and including both waning immunity and immune system boosting.
Our model is formulated as a system of two ordinary differential equations (ODEs)
coupled with a PDE. After showing existence and uniqueness of a classical solution,
we investigate the local and the global asymptotic stability of the unique disease-free
stationary solution.Under particular assumptions on the generalmodel, we can recover
known examples such as large systems of ODEs for SIRWS dynamics, as well as SIRS
with constant delay.
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1 Introduction

Models of SIRS type are a traditional topic in mathematical epidemiology. Clas-
sical approaches present a population divided into susceptibles (S), infectives (I)
and recovered (R), and consider interactions and transitions among these compart-
ments. Susceptibles are those hosts who either have not contracted the disease in
the past or have lost immunity against the disease-causing pathogen. When a sus-
ceptible host gets in contact with an infective one, the pathogen can be transmitted
from the infective to the susceptible and with a certain probability, the susceptible
host becomes infective himself. After pathogen clearance the infective host recov-
ers and becomes immune for some time, afterwards he possibly becomes susceptible
again.
From the in-host point of view, immunity to a pathogen is the result of either active
or passive immunization. The latter one is a transient protection and is due to the
transmission of antibodies from the mother to the fetus through the placenta, thanks to
which the newborn is immune for several months after birth (McLean and Anderson
1988a). Active immunization is either induced by natural infection or can be achieved
by vaccine administration (Siegrist 2008; Goldsby et al. 2003).

Let us first consider the case of natural infection. A susceptible host, also called
naive host, has a very low level of specific immune cells for a pathogen (mostly a
virus or a bacterium, but possibly also a fungus). The first response to a pathogen
is nonspecific, as the innate immune system cannot recognize the physical structure
of the pathogen. The innate immune response slows down the initial growth of the
pathogen, while the adaptive (pathogen-specific) immune response is activated. Clonal
expansion of specific immune cells (mostly antibodies or CTL cells) and pathogen
clearance follow. The population of pathogen-specific immune cells is maintained for
long time at a level that is much higher than in a naive host. These are the so-called
memory cells and are activated in case of secondary infection (see Fig. 1). Memory
cells rapidly activate the immune response and the host mostly shows mild or no
symptoms (Wodarz 2007; Antia et al. 2005).

Each exposure to the pathogen might have a boosting effect on the population of
specific memory cells. Indeed, the immune system reacts to a new exposure as it
did during primary infection, thus yielding an increased level of memory cells (Antia
et al. 2005). Though persisting for long time after pathogen clearance, thememory cell
population slowly decays, and in the long run the host might lose his pathogen-specific
immunity. Wodarz (2007) writes that it “is unclear for how long hosts are protected
against reinfection, and this may vary from case to case.”

Vaccine-induced immunity works similarly to immunity induced by the natural
infection. Agents contained in vaccines resemble, in a weaker form, the disease-
causing pathogen and force a specific immune reaction without leading to the disease.
If the vaccine is successful, the host is immunized for some time. Vaccinees expe-
rience immune system boosting and waning immunity, just as hosts recovered from
natural infection do. In general, however, disease-induced immunity induces a much
longer lasting protection than vaccine-induced immunity does (Siegrist 2008).Waning
immunity might be one of the factors which cause, also in highly developed regions,
recurrent outbreaks of infectious diseases such as measles, chickenpox and pertussis.
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Fig. 1 Level of pathogen-specific immune cells with respect to the time. Generation of memory cells takes
a few weeks: Once primary infection occurred the adaptive immune system produces a high number of
specific immune cells (clonal expansion). After pathogen clearance, specific immune cells (memory cells)
are maintained for years at a level that is much higher than in a naive host. Memory cells are activated in
case of secondary infection

On the other side, immune system boosting due to contact with infectives prolongs
the protection duration.

In order to understand the role played by waning immunity and immune system
boosting in epidemic outbreaks, in the recent past several mathematical models were
proposed. Few of these models describe only in-host processes which occur dur-
ing and after the infection (Wodarz 2007; Heffernan and Keeling 2008; De Graaf
et al. 2014). Many more models, formulated in terms of ordinary differential equa-
tions (ODEs), consider the problem only at population level, defining compartments
for individuals with different levels of immunity and introducing transitions between
these compartments (Dafilis et al. 2012; Heffernan and Keeling 2009). Possibly, also
vaccinated hosts or newborns with passive immunity are included, and waning of
vaccine-induced or passive immunity are observed (Rouderfer et al. 1994; Mossong
and Nokes 1999; Moghadas et al. 2008). In some cases, e. g. in the model by Hef-
fernan and Keeling (2009), a discretization of the immune status leads to a very large
system of ODEs. Simplified versions were suggested by Glass and Grenfell (2003),
Arinaminpathy et al. (2012) who add the class W of hosts with waning immunity.
W-hosts can receive immune system boosting due to contact with infectives or move
back to the susceptible compartment due to immunity loss. Lavine et al. (2011) extend
the SIRWS model by Glass and Grenfell (2003), dividing each population into age-
classes of length of 6 months each and further classifying immune hosts (R) and hosts
with waning immunity (W) by the level of immunity. Aron (1988a, b) proposed some
ODE models of SIRS type, including immune system boosting and one parameter for
the fixed duration of disease-induced immunity.

To describe the sole waning immunity process, authors have chosen delay differ-
ential equations (DDEs) models with constant or distributed delay (Kyrychko and
Blyuss 2005; Taylor and Carr 2009; Blyuss and Kyrychko 2010; Bhattacharya and
Adler 2012; Yuan and Bélair 2013). The delay represents the average duration of the
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disease-induced immunity. However, neither a constant nor a distributed delay allows
for the description of immune system boosting.

Martcheva and Pilyugin (2006) suggest an SIRS model in which infective and
recovered hosts are structured by their immune status. In infective hosts the immune
status increases over the course of infection, while in recovered hosts the immune
status decays at some nonconstant rate. When the immune status has reached a crit-
ical level, recovered hosts transit from the immune to the susceptible compartment.
Physiologically structured populations are also considered in the very recent work by
Gandolfi et al. (2015). Here the compartment of infected individuals is structured by
pathogen load and by the level of specific immunity.
The goal of the present paper is to suggest a general framework for modeling waning
immunity and immune system boosting in the context of population dynamics. We
want to understand how the population dynamics, and in particular the number of
infectives, affects waning immunity and immune system boosting in a recovered host
and how, in turn, these two in-host processes influence the population dynamics. In
contrast to themodels proposed byHeffernan andKeeling (2009), Lavine et al. (2011),
we shall maintain the number of equations as low as possible. For the sake of simplicity
we do not include vaccination in this model.

We suggest a model in which the immune population is structured by the level
of immunity, z ∈ [zmin, zmax ]. Individuals who recover at time t enter the immune
compartment (R)withmaximal level of immunity zmax . The level of immunity tends to
decay in time andwhen it reaches theminimal value zmin , the host becomes susceptible
again. Immune system boosting is included by themean of the probability p(z, z̃), z ≥
z̃, z, z̃ ∈ R, that an individual with immunity level z̃ moves to immunity level z, when
exposed to the pathogen. At the same time we choose the susceptible and the infective
populations to be non-structured. In this way we combine a PDE for the immune
population with two ODEs for susceptible and infective hosts, obtaining a hybrid
system. The physiological structure in the immune population is the key point of the
modeling approach, as it allows to describe at once both waning immunity (as a natural
process which occurs as time elapses) and immune system boosting. There is hence
no need to include any compartment for hosts with waning immunity as it was done,
e. g. by Glass and Grenfell (2003), Arinaminpathy et al. (2012).

The paper is organized as follows. In Sect. 2 we carefully derive the model equa-
tions for the SIRS dynamics. This system will be referred to as model (M1). ODEs for
susceptibles and infectives are easily introduced, whereas the PDE for the structured
immune population is derived from balance laws. Though at a first glance the result-
ing immune hosts equation might resemble a size-structured model, there is a crucial
difference. In size-structured models, indeed, transitions occur only in one direction,
i. e., individuals grow in size but never shrink. On the other hand, our physiologically
structured population is governed by a differential equation which includes transport
(decay of immune status) and jumps (boosting to any higher immune status), describ-
ing movements to opposite directions. This makes the model analysis particularly
challenging.

In Sect. 3 we consider fundamental properties of solutions for the model (M1).
Writing the system as an abstract Cauchy problem in the state-space X := R × R ×
L1 ([zmin, zmax ];R)\{0, 0, 0}, we can guarantee existence of a unique classical solu-
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tion. The proof requires a quite long computation which is postponed to the appendix.
Further, using an appropriate comparison system, we show nonnegativity of solutions
and determine an invariant subset in X .

In Sect. 4 we consider stationary solutions. The proof of existence of stationary
solution requires connection with the theory of Volterra integral equations. We show
that there exists a unique disease free equilibrium (DFE) and investigate its local and
global stability. Investigation of endemic equilibria is considered in a following work.
Finally in Sects. 5 and 6 we show how to obtain from the general model (M1) various
systems of ODEs, such as those by Glass and Grenfell (2003), Arinaminpathy et al.
(2012), Heffernan and Keeling (2009), Lavine et al. (2011), and systems of equations
with constant delay, such as those by Taylor and Carr (2009), Kyrychko and Blyuss
(2005), Aron (1983).

2 A new class of models

In this section we derive the model equations for the SIRS dynamics. We start with the
ODEs for susceptibles and infectives, which can be easily introduced, and continue
with a PDE for the structured immune population, which we obtain from a discrete
approach. The result is the general model (M1).We conclude the session with remarks
on the total immune population.

2.1 Susceptibles and infectives

Let S(t) and I (t) denote the total population of susceptibles, respectively infectives,
at time t . In contrast to previous models which include short-term passive immunity
(e. g. Rouderfer et al. 1994; McLean and Anderson 1988b; Moghadas et al. 2008),
we assume that newborns are all susceptible to the disease. To make the model closer
to real world phenomena we suppose that newborns enter the susceptible population
at rate b(N ), dependent on the total population size N . In general one could choose
the natural death rate d(N ) to be a function of the total population, too. However, for
simplicity of computation, we consider the case of constant death rate d(N ) ≡ d > 0.
The death rate d is assumed to be the same for all individuals, but infectives might die
due to the infection, too.

Assumption 1 Let b : [0,∞) → [0, b+], N �→ b(N ), with 0 < b+ < ∞, be a
nonnegative C1-function, with b(0) = 0.

To guarantee that there exists a nontrivial equilibrium N∗ > 0, such that b(N∗) = dN∗
(see Fig. 2), we require the following.

Assumption 2 There is an N∗ > 0 such that for N ∈ (0, N∗) we have that
b(N ) > dN , whereas for N > N∗ we have dN > b(N ). Further it holds that
b′(N∗) := d b(N )

dN |N=N∗ < d.

When we include disease-induced death at rate dI > 0, an equilibrium satisfies

b(N ) = dN + dI I. (1)
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Fig. 2 Model Assumptions: Birth and death rate as functions of the total population N . In absence of
disease-induced death there exists an equilibrium N∗ such that b(N∗) = dN∗

Contact with infectives (at rate β I/N ) induces susceptible hosts to become infective
themselves. Infected hosts recover at rate γ > 0, that is, 1/γ is the average infection
duration. Once recovered from the infection, individuals become immune, however
there is no guarantee for life-long protection. Immune hosts who experience immunity
loss become susceptible again.
The dynamics of S and I is described by the following equations:

S′(t) = b(N (t))
︸ ︷︷ ︸

birth

−β
S(t)I (t)

N (t)
︸ ︷︷ ︸

infection

− dS(t)
︸ ︷︷ ︸

death

+ Λ
︸︷︷︸

immunity loss

,

I ′(t) = β
S(t)I (t)

N (t)
︸ ︷︷ ︸

infection

− γ I (t)
︸ ︷︷ ︸

recovery

− d I (t)
︸ ︷︷ ︸

natural
death

− dI I (t)
︸ ︷︷ ︸

disease-induced
death

.

The termΛ, which represents transitions from the immune compartment to the suscep-
tible one,will be specified below togetherwith the dynamics of the immunepopulation.

2.2 Immune hosts

Let r(t, z) denote the density of immune individuals at time t with immunity level
z ∈ [zmin, zmax ], 0 ≤ zmin < zmax < ∞. The total population of immune hosts is
given by

R(t) =
∫ zmax

zmin

r(t, z) dz.

The parameter z describes the immune status and can be related to the number of
specific immune cells of the host (cf. Sect. 1). The value zmax corresponds to maximal
immunity, whereas zmin corresponds to low level of immunity.
We assume that individuals who recover at time t enter the immune compartment
(R) with maximal level of immunity zmax . The level of immunity tends to decay in
time and when it reaches the minimal value zmin , the host becomes susceptible again.
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Fig. 3 Model assumptions for the immune population. a Natural infection induces the maximal level of
immunity zmax . The level of immunity decays in time and when it reaches the minimal value zmin , the
host becomes susceptible again. Exposure to the pathogen has a boosting effect on the immune system.
b Contact with infectives can boost the immunity level z ∈ [zmin , zmax ] to any higher value

However, contact with infectives, or equivalently, exposure to the pathogen, can boost
the immune system from z ∈ [zmin, zmax ] to any higher immune status, see Fig. 3. It
is not straightforward to determine how this kind of immune system boosting works,
as no experimental data are available. Nevertheless, laboratory analysis on vaccines
tested on animals or humans suggest that the boosting efficacymight depend on several
factors, among which the current immune status of the recovered host and the amount
of pathogen he receives (Amanna et al. 2007; Luo et al. 2012). Possibly, exposure to
the pathogen can restore the maximal level of immunity, just as natural infection does
(we shall consider this special case in Sect. 3.1).

Let p(z, z̃), z ≥ z̃, z, z̃ ∈ Rdenote the probability that an individualwith immunity
level z̃ moves to immunity level z, when exposed to the pathogen. Due to the definition
of p(z, z̃) we have p(z, z̃) ∈ [0, 1], z ≥ z̃ and p(z, z̃) = 0, for all z < z̃. As we
effectively consider only immunity levels in the interval [zmin, zmax ], we set

p(z, z̃) = 0, for all z̃ ∈ (−∞, zmin) ∪ (zmax ,∞).

Then we have

∫ ∞

−∞
p(z, z̃) dz =

∫ zmax

z̃
p(z, z̃) dz = 1, for all z̃ ∈ [zmin, zmax ].

Exposure to the pathogen might restore exactly the immunity level induced by the
disease (zmax ). In order to capture this particular aspect of immune system boosting,
we write the probability p(z, z̃) as the combination of a continuous (p0) and atomic
measures (Dirac delta):

p(z, z̃) = cmax (z̃)δ(zmax − z̃) + c0(z̃)p0(z, z̃) + c1(z̃)δ(z − z̃),

where

cmax : [zmin, zmax ] → [0, 1], y �→ cmax (y), is a continuously differentiable func-
tion and describes the probability that, due to contact with infectives, a host with
immunity level y boosts to the maximal level of immunity zmax .
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c0 : [zmin, zmax ] → [0, 1], y �→ c0(y), is a continuously differentiable function
and describes the probability that, due to contact with infectives, a host with immu-
nity level y boosts to any other level z ∈ (y, zmax ), according to the continuous
probability p0(z, y).

c1(y) : [zmin, zmax ] → [0, 1], y �→ c1(y) = 1 − cmax (y) − c0(y), describes the
probability that getting in contact with infectives, the host with immunity level y
does not experience immune system boosting.

The immunity level decays in time at some rate g(z)which is the same for all immune
individuals with immunity level z, that is,

d

dt
z(t) = g(z).

Assumption 3 Let g : [zmin, zmax ] → (0, Kg], Kg < ∞ be continuously differen-
tiable.

The positivity of g(z) is given by the fact that, if g(z̃) = 0 for some value z̃ ∈
[zmin, zmax ], there would be no change of the immunity level at z̃, contradicting the
hypothesis of natural decay of immune status.
In absence of immune system boosting, an infected host who recovered at time t0
becomes again susceptible at time t0 + T , where

T =
∫ zmax

zmin

1

g(z)
dz.

The above equality becomes evident with an appropriate change of variables. Setting
u = z(s), we find du = z′(s) ds = g(z(s)) ds. For the integration boundaries we have
zmax = z(t0) and zmin = z(t0 + T ). It follows that

∫ zmax

zmin

1

g(z)
dz =

∫ t0+T

t0
ds = T .

To obtain a correct physical formulation of the equation for r(t, z), we start from a
discrete approach, as it could be done for age-structured or size-structured models
(Webb 2008; Ellner 2009). The number of immune individuals in the immunity range
[z − Δz, z], z ∈ [zmin, zmax ], is r(t, z)Δz.

We track howmany individuals enter and exit a small immunity interval [z−Δz, z]
in a short time Δt � 1. Starting at a time t with r(t, z)Δz individuals, we want to
describe the number of individuals at time t+Δt . Recall that the immunity level tends to
decay, hence individuals enter the interval from z and exit from z−Δz (i. e., transition
occurs the other way around than in age-structured or size-structured models). As
contact with infective individuals might boost the immune system, an immune host
with immunity level in [z−Δz, z] can move from this interval to any higher immunity
level. For the same reason, immune individuals with any lower immunity level can
“jump” to the interval [z − Δz, z]. We assume that contacts between infectives and
immune hosts occur at the same rate, β I/N , as between infectives and susceptibles.
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Given any z ∈ [zmin, zmax ], denote by Gz the partition of the interval [zmin, z] into
small intervals of length Δz. Observe Gz ⊂ Gzmax for all z ∈ [zmin, zmax ].
The total number of immune individuals with immunity level in [z − Δz, z] at time
t + Δt is given by

r(t + Δt, z)Δz = r(t, z)Δz
︸ ︷︷ ︸

at time t

+ r(t, z)g(z)Δt
︸ ︷︷ ︸

incoming (waning)

− r(t, z − Δz)g(z − Δz)Δt
︸ ︷︷ ︸

outgoing (waning)

− dr(t, z)ΔzΔt
︸ ︷︷ ︸

die out

− β
I (t)

N (t)
r(t, z)ΔzΔt

︸ ︷︷ ︸

outgoing (boosting)

+
∑

v∈Gz

β
I (t)

N (t)
p(z, v)Δz r(t, v)Δv Δt

︸ ︷︷ ︸

incoming (boosting)

.

Perform division by Δz > 0,

r(t + Δt, z) = r(t, z) + r(t, z)g(z)
Δt

Δz
− r(t, z − Δz)g(z − Δz)

Δt

Δz
− dr(t, z)Δt

−β
I (t)

N (t)
r(t, z)Δt +

∑

v∈Gz

β
I (t)

N (t)
p(z, v) r(t, v)Δv Δt,

and compute the limitΔz → 0 (observe that alsoΔv → 0, asΔz andΔv are elements
of the same partition) to get

r(t + Δt, z) − r(t, z) = Δt
∂

∂z

(

g(z)r(t, z)
) − dr(t, z)Δt

−β
I (t)

N (t)
r(t, z)Δt + β

I (t)

N (t)
Δt

∫ z

zmin

p(z, v)r(t, v) dv.

Finally, we divide by Δt and let Δt → 0. From the discrete approach derivation it
becomes clear that the quantity Λ, initially introduced in the equation S′(t), appearing
above heading 2.2 to represent the hosts who experience immunity loss, is given by the
number g(zmin)r(t, zmin) of immune hosts who reach the minimal level of immunity.
Altogether for t ≥ 0 we have the system of equations

S′(t) = b(N (t)) − β
S(t)I (t)

N (t)
− dS(t) + g(zmin)r(t, zmin)

︸ ︷︷ ︸

=:Λ
,

I ′(t) = β
S(t)I (t)

N (t)
− (γ + d + dI )I (t), (2)

with initial values S(0) = S0 > 0, I (0) = I 0 ≥ 0, coupled with a partial differential
equation for the immune population,
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Table 1 Notation for model (M1)

Symbol Description

S(t) Number of susceptibles at time t

I (t) Number of infective hosts at time t

R(t) Number of immune individuals at time t

r(t, z) Density of immune individuals with immunity level z at time t

N (t) Total population (N (t) = S(t) + I (t) + R(t)) at time t

b(N ) Recruitment rate

d Natural death rate

dI Disease-induced death rate

β Transmission rate

γ Recovery rate

g(z) Natural decay of immunity

p(z, z̃) Probability that boosting raises immunity level z̃ to level z

zmax Maximal level of immune status in immune hosts

zmin Minimal level of immune status in immune hosts

ψ(z) Initial distribution for r(t, z)

All quantities are nonnegative

∂

∂t
r(t, z)− ∂

∂z
(g(z)r(t, z))=−dr(t, z)+β

I (t)

N (t)

(∫ z

zmin

p(z, v)r(t, v) dv−r(t, z)

)

,

(3)

where z ∈ [zmin, zmax ], with boundary condition

g(zmax )r(t, zmax ) = γ I (t) + β
I (t)

N (t)

∫ zmax

zmin

p(zmax , v)r(t, v) dv, (4)

and initial distribution r(0, z) = ψ(z), z ∈ [zmin, zmax ].
At a first glance Eq. (3) might resemble a size-structured model, but there is an impor-
tant difference. In size-structured models transitions occur only in one direction, i. e.,
individuals grow in size but never shrink. The PDE (3) for the immune population is
governed by a transport process (decay of immune status) and jumps (boosting to any
higher immune status). The model analysis results much more challenging than the
one of classical size-structured models.
In the followingwe refer to the complete system (2)–(4) as tomodel (M1).Anoverview
on the model notation is provided in Table 1.

2.3 Total number of immune individuals

From the PDE (3)–(4) we obtain the total number R(t) of immune individuals at time
t ≥ 0. Integrating the left-hand side of (3) in [zmin, zmax ], we find
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∫ zmax

zmin

∂

∂t
r(t, z) dz −

∫ zmax

zmin

∂

∂z
(g(z)r(t, z)) dz

= ∂

∂t

∫ zmax

zmin

r(t, z) dz − g(zmax )r(t, zmax ) + g(zmin)r(t, zmin)

= R′(t) −
(

γ I (t) + β
I (t)

N (t)

∫ zmax

zmin

p(zmax , v)r(t, v) dv

)

︸ ︷︷ ︸

=
(4)

g(zmax )r(t,zmax )

+g(zmin)r(t, zmin).

Similarly, integrating the right-hand side of (3) we have

−
∫ zmax

zmin

dr(t, z) dz + β
I (t)

N (t)

[∫ zmax

zmin

(∫ z

zmin

p(z, v)r(t, v) dv − r(t, z)

)

dz

]

= −dR(t) + β
I (t)

N (t)

[∫ zmax

zmin

∫ z

zmin

p(z, v)r(t, v) dv dz − R(t)

]

.

Altogether:

R′(t) = γ I (t) − dR(t) − g(zmin)r(t, zmin) + β
I (t)

N (t)

[∫ zmax

zmin

p(zmax , v)r(t, v) dv

+
∫ zmax

zmin

∫ z

zmin

p(z, v)r(t, v) dv dz − R(t)

]

. (5)

When an immune host comes in contact with infectives, his immune system gets
boosted so that either the maximal level of immunity or any other higher (or equal)
level of immunity is restored. This means that the terms in the square bracket in (5)
cancel out and the total immune population at time t satisfies

R′(t) = γ I (t) − g(zmin)r(t, zmin) − dR(t). (6)

In other words, inflow at time t into the immune class occurs by recovery of infected
hosts, while outflow is either due to death or to immunity loss. Observe that the result
(6) holds also in the special case of no boosting (c0(z) ≡ 0 and cmax (z) ≡ 0, ∈
[zmin, zmax ]), and in the case in which boosting always restores the maximal level of
immunity (c0(z) ≡ 0 and cmax (z) ≡ 1, z ∈ [zmin, zmax ]).

3 Existence, uniqueness and positivity

Consider model (M1), with given initial data S(0) = S0 ≥ 0, I (0) = I 0 ≥ 0 and
ψ(z) ≥ 0 for all z ∈ [zmin, zmax ]. Let Y := L1 ([zmin, zmax ];R) with its usual norm,
and let r̃ ∈ Y be defined by

r̃(t) : [zmin, zmax ] → R, z �→ r(t, z), t ≥ 0.
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For given values of I and N , we define the map F (I,N ) : Y → Y, φ �→ F (I,N )φ by

(

F (I,N )φ
)

(z) = β
I

N

[∫ z

zmin

φ(v)(π(v)(z)) dv − φ(z)

]

, (7)

with π(v)(z) = p(z, v) ∈ [0, 1], v ∈ [zmin, zmax ]. In this notation the initial condi-
tion for r is given by r̃(0)(z) = ψ(z), z ∈ [zmin, zmax ].
The state space for model (M1) is X := R × R × Y\{0, 0, 0} with the norm ‖·‖X
defined by

‖x‖X := |x1| + |x2| +
∫ zmax

zmin

|x3(z)| dz, for all x = (x1, x2, x3) ∈ X.

Observe that for well-posedness of the model (M1) the zero is not an element of X .
For all t ≥ 0, we define x(t) = (S(t), I (t), r̃(t)) ∈ X . Then the model (M1) can be
formulated as a perturbation of a linear abstract Cauchy problem,

d

dt
x(t) + Ax(t) = Q(x(t)), t > 0,

x(0) = (S0, I 0, ψ), (8)

where A and Q are respectively a linear and a nonlinear operator on X , defined by

A1(x1, x2, x3) := dx1 + g(zmin)x3(zmin),

A2(x1, x2, x3) := (γ + d + dI )x2,

A3(x1, x2, x3) := dx3 + ∂

∂z
(g(z)x3(z)) ,

and

Q1(x1, x2, x3) := b(x̂) − β
x1x2
x̂

,

Q2(x1, x2, x3) := β
x1x2
x̂

,

Q3(x1, x2, x3) := F (x2,x̂)x3,

with x̂ := x1 + x2 + ∫ zmax
zmin

x3(z) dz.
The next result guarantees the existence and uniqueness of a classical solution. We
remark that it is called mild solution of (8) the continuous solution x of the integral
equation

x(t) = T (t)u(0) +
∫ t

0
T (t − s)Q(x(s)) ds,

where {T (t)}t≥0 is the C0-semigroup on X generated by −A. On the other side, a
function x : [0, T ) → X is a classical solution of (8) on [0, T ) if x is continuous on
[0, T ), continuously differentiable on (0, T ), u(t) is in the domain D(A) of A for all
t ∈ (0, T ) and (8) is satisfied on [0, T ) (see Pazy 1983).
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Theorem 1 Let S(0) = S0 ≥ 0, I (0) = I 0 ≥ 0 and ψ(z) ≥ 0 for all
z ∈ [zmin, zmax ] be given. Let d > 0, b : [0,∞) → [0, b+], 0 < b+ < ∞ sat-
isfy Assumptions 1 and 2, and g : [zmin, zmax ] → (0, Kg), 0 < Kg < ∞ satisfy
Assumption 3. For given values I and N, let F (I,N ) be defined by (7).

Then there exists a unique solution x on [0,∞) of the abstract Cauchy problem
(8), with initial data x(0) = (S0, I 0, ψ) ∈ X.

Proof To have existence of a unique (classical) solution on [0,∞) we need to show:
(i) that −A is the generator of a C0-semigroup on X and (ii) that Q is continuously
differentiable in X (see Pazy 1983, Chap. 6).
(i) The first hypothesis is easily verified as A corresponds to the linear homogeneous
part of the system and its domain is

D(A) = {

x ∈ R × R × C1([zmin, zmax ]) such that

A3(x) ∈ Y and g(zmax )x3(zmax ) = γ x2
} ⊂ X.

Similar linear operators arising from population dynamics were considered by Webb
(2008), Calsina and Farkas (2012).
(ii) Continuous differentiability of Q can be shown in two steps. First, for all x, w ∈ X ,
we determine the existence of the operator DQ(x;w) defined by

DQ(x;w) := lim
h→0

Q(x + hw) − Q(x)

h
.

Second, we show that the operator DQ(x; ·) is continuous in x , that is

lim ‖DQ(x; ·) − DQ(y; ·)‖OP = 0 for ‖x − y‖X → 0,

where ‖ · ‖OP is the operator norm. These two steps require the long computation
included in the “Appendix”. ��

Note that to have the existence of a classical solution one has to show continuous
differentiability of Q. To have existence and uniqueness of a mild solution, as well as
continuous dependence on the initial data, it is sufficient to prove Lipschitz continuity
of Q (see Pazy 1983).
From now on, we shall assume that all hypotheses of Theorem 1 hold.
Nextwe show that, given nonnegative initial data,model (M1) preserves nonnegativity.
We proceed in two steps. First we introducemodel (M2) in which boosting restores the
maximal immune status. The PDE in model (M2) has the same characteristic curves
as the PDE in model (M1), allowing us to use it as a comparison system in the proof
of nonnegativity. There are other reasons to consider model (M2) separately. On the
one side, the assumption of boosting restoring maximal immunity has been used in
previous models, e.g. by Arinaminpathy et al. (2012). On the other side, in Sect. 6.2
we shall use model (M2) to obtain a new SIRS system with delay.
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3.1 Model (M2): Boosting restores the maximal level of immunity

Let us assume that whenever an immune host comes in contact with the pathogen, his
immune system is boosted in such a way that the maximal immunity level is restored.
This means that

cmax (z) ≡ 1, c0(z) ≡ 0, z ∈ [zmin, zmax ],

or equivalently,

p(zmax , z) = 1 and p(z̃, z) = 0, for all z ∈ [zmin, zmax ], z̃ < zmax .

This assumption modifies the Eq. (3) and the boundary condition (4) in model (M1)
as follows

∂

∂t
r(t, z) − ∂

∂z
(g(z)r(t, z)) = −dr(t, z) − r(t, z)β

I (t)

N (t)
, (9)

g(zmax )r(t, zmax ) = γ I (t) + β
I (t)

N (t)
R(t). (10)

The equations for S and I in model (M1) remain unchanged. We shall refer to the
system (2), (9)–(10) as to model (M2).
Just for a moment, assume that for some t ≥ 0 the values I (t) and S(t) are known,
and recall N (t) = I (t) + S(t) + R(t). For all t ≥ 0 let us define

B(t) = γ I (t) + β
I (t)

N (t)
R(t),

and

μ(t, z) = d − g′(z) + β
I (t)

N (t)
.

Definition 1 (cf. Calsina and Saldaña 1995) Let T > 0. A nonnegative function
r(t, z), with r(t, ·) integrable, is a solution of the problem (9) on [0, T )×[zmin, zmax ] if
the boundary condition (10) and the initial condition r(0, z) = ψ(z), z ∈ [zmin, zmax ]
are satisfied and

Dr(t, z) = −μ(t, z)r(t, z), t ∈ [0, T ), z ∈ [zmin, zmax ],

with

Dr(t, z) := lim
h→0

r(t + h, ϕ(t + h; t, z)) − r(t, z)

h
,

where ϕ(t; t0, z0) is the solution of the differential equation z′(t) = g(z(t))with initial
value z(t0) = z0.
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We introduce the characteristic curve ζ(t) = ϕ(t; 0, zmax ) which identifies the cohort
of individuals who recovered (hence have maximal level of immunity) at time t = 0.
In this way we distinguish between those individuals who recovered before time t = 0
and are already immune at the initial time, and those who recovered later than t = 0.
Then the problem (9)–(10) can be solved along the characteristics (see, e.g Calsina
and Saldaña 1995; Webb 2008) and we have the solution

r(t, z) =

⎧

⎪
⎨

⎪
⎩

B(t∗)
g(zmax )

exp
(

− ∫ t
t∗ μ(s, ϕ(s; t∗, zmax )) ds

)

, z ≥ ζ(t)

ψ(ϕ(0; t, z)) exp
(

− ∫ t
0 μ(s, ϕ(s; t, z)) ds

)

, z < ζ(t),
(11)

where the time t∗ is implicitly given by

ϕ(t; t∗, zmax ) = z.

As the death rate d > 0 is bounded, we can extend the solution to all positive times
t > 0 (see also Calsina and Saldaña 1995, Sect. 3.3). It is obvious that the solution
r(t, z) is nonnegative for all t ≥ 0, z ∈ [zmin, zmax ].

3.2 Nonnegative solutions of model (M1)

Define the set

D = {(S, I, r̃) such that S ≥ 0, I ≥ 0, and r̃(z) ≥ 0, z ∈ [zmin, zmax ]} ⊂ X.

Theorem 2 The cone D is positively invariant for the model (M1).

Proof We start with the infective population. Let I (0) ≥ 0 be given. If I (t̄) = 0 for
some t̄ > 0, we have I ′(t̄) = 0, hence the I component is always nonnegative. Further
we have that

(

I (t)

N (t)

)′
= I (t)

N (t)

(

βS(t) − (γ + d + dI ) + 1

N (t)
(b(N (t)) − dN (t) − dI I (t)

)

.

It follows that, given positive initial values, the total population is larger than zero for
all t > 0.

The equation for S includes the term g(zmin)r(t, zmin), which is given by the
solution r(t, z) of the PDE (3)–(4). Let S(0) ≥ 0 be given. Assume r(t, zmin) ≥ 0
for all t ≥ 0, hence g(zmin)r(t, zmin) ≥ 0 (recall g(z) > 0 by Assumption 3). We see
that S = 0 implies

S′(t) = b(N (t)) + g(zmin)r(t, zmin) ≥ 0.

Hence, if g(zmin)r(t, zmin) ≥ 0, also S does not leave the nonnegative cone.
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To conclude the proof, we have to show that r(t, z) ≥ 0 for all t ≥ 0, z ∈ [zmin, zmax ].
First we show that strictly positive initial data r(0, z) = ψ(z) > 0, z ∈ [zmin, zmax ]
lead to a strictly positive solution for all t > 0, z ∈ [zmin, zmax ]. Assuming the
contrary, there is a time t̄ > 0 such that

(i) I (t) > 0, S(t) ≥ 0, N (t) > 0, for all t ∈ [0, t̄];
(ii) for all t ∈ [0, t̄), z ∈ [zmin, zmax ], r(t, z) > 0, whereas r(t̄, z̄) = 0, for some

z̄ ∈ [zmin, zmax ).

In other words, t̄ is the first time at which for some value z̄ ∈ [zmin, zmax ) the solution
r(t, z) of (3)–(4) is zero. Note that the PDE (3) in model (M1) and the PDE (9) have
the same characteristic curves. By assumptions (i)–(ii), along the characteristics we
have the estimate

∂

∂t
r(t, z) − ∂

∂z
(g(z)r(t, z)) = −

(

d + β
I (t)

N (t)

)

r(t, z)

+β
I (t)

N (t)

∫ z

zmin

p(z, u)r(t, u) du

︸ ︷︷ ︸

≥0

≥ −
(

d + β
I (t)

N (t)

)

r(t, z).

We can use the Eqs. (9)–(10) as comparison system for (3)–(4) along characteristics.
From (11) it is evident that the solution r(t̄, z̄) of (9)–(10) is going to be zero if and
only if the characteristic curve associated to the point (t̄, z̄) has a starting value (either
ψ(ϕ(0; t̄, z̄)) or I (t∗), t∗ < t̄) equal to zero, contradicting to (i)–(ii). We conclude
that, given strictly positive initial data ψ(z) > 0, the solution r of (3)–(4) is strictly
positive.
To complete the proof, we extend the result to nonnegative initial data. Let ψ(z) ≥ 0.
We introduce a value ε > 0 and repeat the same argument as above for initial data
ψε(z) := ψ(z) + ε > 0. Finally we let ε → 0. From the continuous dependence on
initial data (cf. Theorem 1 and Pazy 1983, Chap. 6), it follows that r(t, z) ≥ 0 for
ψ(z) ≥ 0. ��

4 The disease free equilibrium

For investigation of stationary solutions ofmodel (M1)we set the time derivative equal
to zero and consider the problem

0 = b(N∗) − β
S∗ I∗
N∗

− dS∗ + g(zmin)r̄(zmin), (12)

0 = β
S∗ I∗
N∗

− (γ + d + dI )I∗, (13)

d

dz
(g(z)r̄(z)) = dr̄(z) − β

I∗
N∗

∫ z

zmin

p(z, u)r̄(u) du + r̄(z)β
I∗
N∗

, (14)
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g(zmax )r̄(zmax ) = γ I∗ + β
I∗
N∗

∫ zmax

zmin

p(zmax , u)r̄(u) du, (15)

where the star denotes a fixed point and the bar a stationary distribution. A stationary
solution of model (M1) is a triple {S∗, I∗, r̄(·)} ∈ X which satisfies (12)–(15).

The total population N∗ = S∗ + I∗ +∫ zmax
zmin

r̄(u)du satisfies condition (1). From the

Eq. (13) we see that either I∗ = 0 or I∗ > 0 and β S∗
N∗ = (γ +d+dI ). In this paper we

shall consider only the disease-free equilibrium (DFE), that is, the case I∗ = 0. The
study of the endemic case (I∗ > 0) requires a long and nontrivial analysis, including
the theory of Volterra integral equations, which is beyond the scope of this manuscript.
Before presenting further results we introduce the basic reproduction number R0 of
model (M1),

R0 = β

γ + d + dI
,

which indicates the average number of secondary infections generated in a fully sus-
ceptible population by one infected host over the course of his infection. The basic
reproduction number is a reference parameter in mathematical epidemiology used to
understand if, and in which proportion, the disease will spread among the population.

Proposition 1 (Existence and uniqueness of DFE) There is exactly one disease free
equilibrium (DFE), namely (S∗, 0, r̄(·)) = (N∗, 0, 0).

Proof In the case I∗ = 0, from (14)–(15) we have

d

dz
r̄(z) = 1

g(z)

(

d − g′(z)
)

r̄(z),

g(zmax )r̄(zmax ) = 0,

hence the trivial solution r̄(z) ≡ 0. Since r̄(zmin) = 0, from (12) it follows that
b(N∗) − dS∗ = 0. In particular we have R∗ = ∫ zmax

zmin
r̄(z) dz = 0 and S∗ = N∗. From

Assumption 2 and condition (1), we obtain N∗ = N∗. ��
Theorem 3 (Local stability of DFE) If R0 < 1, the DFE is locally stable.

Proof We prove the stability from first principle. Fix ε > 0. From the Assumptions
1 and 2 on b(N ) and d, there exists an ω > 0 such that ω < ε/3 and b(N ) − dN is
monotone decreasing on (N∗ −ω, N∗ +ω). Let us define M := b(N∗ −ω)−d(N∗ −
ω) > 0. Choose δ > 0 such that

δ ≤ min

{

ε

3
,
ε

3

d

γ
,
M

dI
,
ω

3

}

.

Assume that the initial data are given such that |S(0) − N∗| < δ, I (0) < δ and
R(0) = ∫ zmax

zmin
r(0, z)dz < δ. Then we show that |S(t) − N∗| < ε, I (t) < ε and

R(t) = ||r(t, ·)|| < ε holds for all t ≥ 0.
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Since I (t) ≤ I (0)e−qt < δe−qt , we have I (t) < ε
3 < ε. Further, from R′(t) <

γ δ − dR(t), we easily find R(t) < max{δ, γ δ
d } and R(t) < ε

3 < ε is also guaranteed.
Now we consider the susceptible population. Note that S(t) ≤ N (t). Let ν̂(t) be
the solution of the comparison equation to (16), ν̂′(t) = b(ν̂(t)) − d ν̂(t). Then for
given initial value ν̂(0) ∈ (N∗ − 3δ, N∗ + 3δ), the solution ν̂(t) converges to N∗
monotonically. Hence, we have that N (0) = S(0) + I (0) + R(0) < N∗ + 3δ implies
S(t) < N∗ + 3δ < N∗ + ε for all t > 0. It remains to show that S(t) ≥ N∗ − ε for
t ≥ 0. From the assumptions on b(N ), there is a value N̄ ∈ (N∗ − ω, N∗) such that
b(N̄ ) − d N̄ − δdI = 0. Recall that

N ′(t) > b(N (t)) − dN (t) − dI δ.

Let ν̆(t) be the solution of the comparison equation ν̆′(t) = b(ν̆(t)) − d ν̆(t) − dI δ,
with ν̆(0) = N∗ − ω. Since N (0) > N∗ − 3δ > N∗ − ω, and ν̆(t) converges
monotonically to N̄ , from N (t) > ν̆(t) we find that N (t) > N∗ − ω. Observe that
N (t) = S(t) + I (t) + R(t) guarantees that S(t) > N (t) − 2ε

3 , since I (t) < ε
3 and

R(t) < ε
3 hold. In particular, S(t) > N∗ − ω − 2ε

3 > N∗ − ε.
Therefore we can conclude the global asymptotic stability of the disease free equi-

librium in X . ��
Define the threshold quantity R̃0 := β

γ+d , that coincides with the basic reproduction
number in case of non-lethal diseases.

Theorem 4 (Global stability of DFE) If R̃0 < 1, the DFE is globally asymptotically
stable.

Proof First we show that the components I and R of (2) converge to zero for t → ∞.

Let q := β
(

1
R0

− 1
)

> 0. Then from (2), for any solution I (t) > 0 we have

I ′(t) = β I (t)

(

S(t)

N (t)
− 1

R0

)

< −q I (t),

hence I (t) < I (0)e−qt for all t > 0. Further, from (6), we have the estimate

R′(t) < γ I (0)e−qt − dR(t),

which implies R(t) → 0 as t → ∞.
Next we prove that there is an η > 0 such that for any positive solution, N∞ :=
lim inf t→∞ N (t) > η. Observe that the total population N = S + I + R satisfies the
equation

N ′(t) = b(N (t)) − dN (t) − dI I (t). (16)

Recall the Assumption 2 on b(N ) and d. Fix a value ξ < 1 such that b′(0)ξ > d.
Then we can choose a small η > 0 such that b(N ) > b′(0)ξN for N ∈ (0, η).

Nowwe show that N∞ ≥ η. Assume the contrary. Then, there are two possibilities:
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(i) there is a t∗ such that N (t) < η for all t > t∗, or
(ii) there is a sequence tk → ∞ as k → ∞ such that N (tk) = η and N ′(tk) ≤ 0.

If (i) holds, then for t > t∗ we have from (16)

N ′(t) > (b′(0)ξ − d)N (t) − dI I (0)e
−qt .

Consider the ODE

x ′(t) = Ax(t) − Be−Ct , (17)

with A, B, C > 0, which has the solution

x(t) = Be−Ct

A + C
+ eAt

(

x(0) − B

A + C

)

.

Then clearly x(t) → ∞ whenever
(

x(0) − B
A+C

)

> 0. We can use the Eq. (17) as a

comparison system to (16) for t > t∗ with x(0) = N (0), and A = (b′(0)ξ − d) >

0, B = dI I (0) > 0,C = q > 0. From R̃0 < 1 it follows that dI < dI +d+γ −β = q.
Then B

A+C < B
C = dI

q I (0) < I (0) ≤ N (0), hence N (t) → ∞ and we have found a
contradiction to N (t) < η.
On the other side, if (ii) holds, then from I (tk) → 0 and b(η) − dη > 0, there is a k∗
such that dI I (tk) < b(η) − dη for k > k∗. But then

0 ≥ N ′(tk) = b(N (tk)) − dN (tk) − dI I (tk) > b(η) − dη − dI I (tk) > 0,

which is a contradiction.We conclude that N∞ ≥ η. From the fluctuation lemma, there
is a sequence tk → ∞ such that N (tk) → N∞ and N ′(tk) → 0. Now, considering
Eq. (16) with t = tk , and taking the limit for k → ∞, we obtain

0 = b(N∞) − dN∞,

which has the only solutions N∞ = 0 and N∞ = N∗. Clearly, only N∞ = N∗ is
possible. By the same argument, the fluctuation lemma provides us with N∞ = N∗,
thus N (t) → N∗. Given that I (t) → 0 and R(t) → 0, we proved that S(t) → N∗.
Thus every positive solution converges to the DFE. Moreover, from Theorem 3, R0 <

R̃0 < 1 guarantees the local stability of the DFE, and the proof is complete. ��
Proposition 2 (Instability of DFE) If R0 > 1 the DFE is unstable.

Proof By straightforward computation, the linearization of the I -equation of model
(M1) about the DFE yields the simple equation

v′(t) = (β − γ − d − dI )v(t) = (γ + d + dI )(R0 − 1)v(t),

where v(t) is the linear perturbation of I∗ = 0. It is now evident that if R0 > 1, the
DFE repels the I component thus it is unstable. ��
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5 Connection with ODE models

In Sect. 1 we mentioned several previous works which suggest compartment models
for waning immunity and immune system boosting in terms of ODE systems (Ari-
naminpathy et al. 2012; Lavine et al. 2011; Heffernan and Keeling 2009; Glass and
Grenfell 2003; Dafilis et al. 2012). Thanks to the well-known method of lines we can
obtain such ODE systems from our model (M1).

The method of lines, mostly used to solve parabolic PDEs, is a technique in which
all but one dimension are discretized (see, e. g. Schiesser 1991). In our case, we
shall discretize the level of immunity (z) and obtain a system of ordinary differential
equations in the time variable.
Let us define a sequence

{

z j
}

j∈N, with h j := z j+1 − z j > 0, for all j ∈ N. To
keep the demonstration as simple as possible, we choose a grid with only few points,
z1 := zmin < zW < zF < zmax and assume that h j = 1 for all j . We define the
following three subclasses of the R population:

– RF (t) := r(t, zF ) immune hosts with high level of immunity at time t . As their
immunity level is quite high, these individuals do not experience immune system
boosting. Level of immunity decays at rate μ := g(zF ) > 0.

– RW (t) := r(t, zW ) immune hosts with intermediate level of immunity at time
t . These individuals can get immune system boosting and move to RF . Level of
immunity decays at rate ν := g(zW ) > 0.

– RC (t) := r(t, zmin) immune hosts with critically low level of immunity at time
t . With probability θ boosting moves RC individuals to RW (respectively, with
probability (1 − θ) to RF ). Level of immunity decays at rate σ := g(zmin) > 0.
If they do not get immune system boosting, these hosts become susceptible again.

In the followingwe showhow to proceed in absence of immune systemboosting.When
immune system boosting is added, the approximation technique remains unchanged.
For practical reasons we write the equation for r(t, z) in model (M1) in the form

∂

∂t
r(t, z) = ∂

∂z

(

g(z)r(t, z)
) − dr(t, z), (18)

with boundary condition Rzmax (t) := r(t, zmax ) = γ I (t)/g(zmax ).
Using forward approximation for the z-derivative in (18), we obtain, e. g. for RF (t),

RF
′(t) = ∂

∂t
r(t, zF )

= ∂

∂z

(

g(zF )r(t, zF )
) − dr(t, zF )

≈ g(zmax )r(t, zmax ) − g(zF )r(t, zF )

zmax − zF
︸ ︷︷ ︸

=1

− dr(t, zF )

= g(zmax )Rzmax (t) − μRF (t) − dRF (t)

= γ I (t) − (μ + d)RF (t).

123



Immuno-epidemiology of a population structured... 1757

Analogously we find equations for RW and RC . Altogether we obtain a system in
which a linear chain of ODEs replaces the PDE for the immune class,

S′(t) = b(N (t)) − β
S(t)I (t)

N (t)
− dS(t) + σ RC (t),

I ′(t) = β
S(t)I (t)

N (t)
− (γ + d + dI )I (t),

RF
′(t) = γ I (t) − μRF (t) − dRF (t),

RW
′(t) = μRF (t) − νRW (t) − dRW (t),

RC
′(t) = νRW (t) − σ RC (t) − dRC (t).

The linear chain of ODEs provides a rough approximation of the PDE in model (M1).
Indeed, with the method of lines we approximate the PDE dynamics considering
changes only at the grid points (zmin, zW , zF , zmax ), whereas the dynamics remains
unchanged in the interval between one grid point and the next one. In other words, we
average out over the immunity level in one immunity interval [z j , z j+1] and consider as
representative point of the interval the lowest boundary z j . This is also the reason why
we do not have a differential equation for Rzmax (t), but simply a boundary condition
at this point.

Including immune system boosting
Now we use the same approximation scheme for the full model (M1), which includes
also immune system boosting to any higher immunity level (Fig. 4). To this purpose it
is necessary to specify the boosting probability p(z, z̃) with z ∈ [zmin, zmax ], which
we choose as follows

p(z, z̃) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1 if z̃ = zW , and z = zF ,

θ if z̃ = zmin, and z = zW ,

1 − θ if z̃ = zmin, and z = zF ,

0 otherwise.

The integral term in model (M1) is discretized by the mean of a finite sum and the
resulting ODE system is

S′(t) = b(N (t)) − β
S(t)I (t)

N (t)
− dS(t) + σ RC (t),

I ′(t) = β
S(t)I (t)

N (t)
− (γ + d + dI )I (t),

RF
′(t) = γ I (t) − μRF (t) − dRF (t) + β

I (t)

N (t)

(

(1 − θ)RC (t) + RW (t)

)

,

RW
′(t) = μRF (t) − νRW (t) − dRW (t) + β

I (t)

N (t)

(

θRC (t) − RW (t)

)

,

RC
′(t) = νRW (t) − σ RC (t) − dRC (t) − β

I (t)

N (t)
RC (t). (19)
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Fig. 4 Diagram of model (19). After recovery, individuals enter the RF class and are protected for a while.
Due to contact with infectives, the immune system of partially immune individuals (RW and RC ) can be
boosted to a higher level of immunity. Natural decay of the immune status moves individuals from RF to
RW , from RW to RC and finally from RC to S

To obtain an ODE system frommodel (M2), that is, the special case in which boosting
always restores the maximal level of immunity, we include all hosts who get immune
system boosting in the boundary condition,

Rzmax (t) = 1

g(zmax )

(

γ I (t) + β
I (t)

N (t)
(RW (t) + RC (t))

)

.

This correspond to setting θ = 0 in (19).

6 Connection with DDE models

Delay models with constant delay can be obtained from special cases of model (M1)
defining the delay τ as the duration of immunity induced by the natural infection. We
show here how the classical SIRS model with delay, as well as a new SIS model with
delay arise from model (M1).

6.1 SIRS with constant delay

Consider the general model (M1) and neglect the boosting effects after recovery, that
is, set cmax (z) ≡ 0 ≡ c0(z) for all z ∈ [zmin, zmax ]. This means that Eqs. (3)–(4)
change into

∂

∂t
r(t, z) − ∂

∂z
(g(z)r(t, z)) = −dr(t, z)

g(zmax )r(t, zmax ) = γ I (t).
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From our assumptions, the disease-induced immunity lasts for a fix time, τ > 0 years,
given by

∫ zmax

zmin

1

g(x)
dx = τ.

We can express the total immune population at time t as the number of individuals
who recovered in the time interval [t − τ, t],

R(t) = γ

∫ t

t−τ

I (y)e−d(t−y) dy = γ

∫ τ

0
I (t − x)e−dx dx .

Differentiation with respect to t yields

R′(t) = γ I (t) − γ I (t − τ)e−dτ − dR(t). (20)

On the other side, we have the relation (6). Comparison between (20) and (6) yields

g(zmin)r(t, zmin) = γ I (t − τ)e−dτ ,

which confirms the model assumptions, namely, τ time after recovery immune hosts
who did not die in the τ interval of time become susceptible again. In other words,
if an individual who recovers at time t1 survives up to time t1 + τ , he exits the R
class and enters S. In turn, we find a delay term in the equation for S too, and have a
classical SIRS model with constant delay

S′(t) = b(N (t)) − β
S(t)I (t)

N (t)
− dS(t) + γ I (t − τ)e−dτ ,

I ′(t) = β
S(t)I (t)

N (t)
− (γ + d + dI )I (t),

R′(t) = γ I (t) − γ I (t − τ)e−dτ − dR(t).

This model was studied by Taylor and Carr (2009).

6.2 A challenging class of SIRS models with constant delay

Consider the special case (M2) in which boosting restores the maximal level of immu-
nity. As in the previous case, let τ > 0 be the duration of immunity induced by the
natural infection. With the definition of the characteristic curve ζ(t) = ϕ(t; 0, zmax )

(cf. Sect. 3.1), we have the relation

zmin = ϕ(t; t − τ, zmax ).

123



1760 M. V. Barbarossa, G. Röst

Thus, solving along the characteristics, for t > τ we have

r(t, zmin) = B(t − τ)

g(zmin)
exp

(

−
∫ t

t−τ

μ(u, ϕ(u; t − τ, zmax )) du

)

= B(t − τ)

g(zmin)
exp

(

−
∫ t

t−τ

(

d + β
I (u)

N (u)

)

du

)

= I (t − τ)

g(zmin)

(

γ + βR(t − τ)

N (t − τ)

)

exp

(

−dτ − β

∫ t

t−τ

I (u)

N (u)
du

)

.

Assume for simplicity that there is no disease-induced death (dI = 0) and that the
total population is constant N (t) ≡ 1. Then, R(t) = 1 − S(t) − I (t) and we end up
with the system

S′(t) = d(1 − S(t)) − β I (t)S(t)

+ I (t−τ) (γ +β (1−S(t−τ) − I (t−τ))) exp

(

−dτ − β

∫ t

t−τ

I (u) du

)

,

I ′(t) = β I (t)S(t) − (γ + d)I (t). (21)

Immunity loss occurs at time t either for hosts who recovered from infection at time
t − τ , or for host who, being immune, were exposed to the pathogen at time t − τ , and
in the interval of time [t − τ, t] did neither die nor come in contact with infectives.
The analysis of system (21) results particularly challenging because of the integral in
the exponential term. We shall consider the problem in a forthcoming work.

If in system (21) we neglect population dynamics (d = 0) and assume constant
force of infection (β I (t) ≡ h for all t ≥ 0), then we find the system with constant
delay proposed by Aron (1983).

7 Discussion

This paper provides a general framework for modeling waning immunity and immune
systemboosting. Themodel (M1) combines the in-host perspectivewith the population
dynamics, while keeping the number of equations as low as possible. To the best of our
knowledge, only the model proposed by Martcheva and Pilyugin (2006) achieved a
similar result. However Martcheva and Pilyugin (2006) give a different interpretation
of immune system boosting (observed only during the infectious period).

Although, when first examined, the immune hosts equation (3) inmodel (M1) could
look like a size-structuredmodel, we explained in Sect. 2 that this is not the case. Equa-
tion (3) describes a physiologically structured population whose dynamics includes
a transport process and jumps. Such kind of models are very rare in mathematical
biology (for an example see Metz and Diekmann 1986), possibly because they are not
easily derived or because their qualitative analysis turns out to be very challenging.
A somehow similar example for the transmission of a micro-parasite was suggested
by White and Medley (1998). Their model is given by two PDEs for uninfected and
infected hosts structured by the level of immunity. Though the transport process is
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analogous to the one we described, the micro-parasite system does not include jumps
in the opposite direction. Moreover, existence/uniqueness, positivity of solutions, or
stability analysis were not considered by White and Medley (1998). In contrast, we
provided in Sect. 3 results on existence of a unique classical solution and on pos-
itive invariance, whereas in Sect. 4 we discussed the global behavior of solutions
with respect to the disease-free equilibrium. In this manuscript we did not consider
endemic equilibria. In the special cases when the model can be reduced to ODEs or
DDEs, finding the endemic equilibrium is a straightforward calculation. However, the
investigation of the endemic steady state for the general model (M1) seems to be a
challenging problem. It requires, among others, the analysis of some Volterra integral
equations (see Eqs. (12)–(15)), as well as working in Sobolev spaces for linearized
stability. Given its high technicality, we postpone such study to future work.
We have shown that (M1) is a general framework which allows to recover previous
models from the literature, such as systems of ODEs (Sect. 5), as well as models with
constant delay (Sect. 6). Systems of ODEs presented, e. g. by Arinaminpathy et al.
(2012), Lavine et al. (2011) can be obtained by discretizing the PDE for the immune
population in model (M1) with the help of the method of lines. This method, however,
provides only a rough approximation of the structured population.

The system suggested by Dafilis et al. (2012) includes a boosting term where a
constant value ν > 0, the boosting rate, is multiplied by the force of infection β. Our
work includes the case ν ≤ 1, nevertheless our results can be easily extended to the
case of any positive ν.

Models with constant delay, such as those by Taylor and Carr (2009), Kyrychko and
Blyuss (2005), are obtained from model (M1) neglecting immune system boosting.
The delay represents the duration of the immunity after natural infection. Starting
from model (M2), the special case in which boosting always restores the maximal
level of immunity, we could obtain a challenging class of SIS models with constant
delay, a particular case of which was presented by Aron (1983). Both limit cases,
without boosting or with boosting always to the maximal level of immunity, can be
reduced to systems of equations with constant delays. The same cannot be stated for
the more general case in which boosting can restore any higher immunity level. In this
case, indeed, the obtained delay is of state-dependent type. As the connection between
model (M1) and system of equations with state-dependent delay is nontrivial, we leave
it as a future project.
A limitation ofmodel (M1) is that waning immunity is considered only for the immune
population. For this reason the model does not capture the dynamic (presented e.g. by
Heffernan andKeeling2009) of those individualswho, being affectedby asymptomatic
infections, can still transmit the disease and experience immune system boosting.
This feature can be incorporated into our model by adding a PDE for the susceptible
class, leading to a more complicated system. The analysis of such a model is rather
challenging and can be a subject of future research.
Setting up our model we did not restrict ourselves to a particular pathogen. Our goal
is to provide a general framework for immune response, immune system boosting and
waning immunity in the context of population dynamics. Choosing appropriate model
coefficients, which can be deduced from experimental data, the system (M1) can be
adapted to model epidemic outbreaks, such as measles, chickenpox, rubella, pertussis
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or malaria. In this context it is worth mentioning that, to date, not many data are
available about immune system boosting after natural infection. Recent experimental
data provide some information on the effects of vaccines on the antibody level, see
for example (Luo et al. 2012) for hepatitis B in mice or (Amanna et al. 2007; Li et al.
2013) for measles, mumps, rubella and influenza in humans.
We conclude with some remarks on vaccination. As we have mentioned in Sect. 1,
immunization is not only the result of natural infection, but also of vaccination and
transmission of maternal antibodies (passive-immunity). In a highly vaccinated popu-
lation there are a lot of individuals with vaccine-induced immunity and few infection
cases, as well as more individuals with low level of immunity. In other words, if a high
portion of the population gets the vaccine, there are very few chances for exposure
to the pathogen and consequently for immune system boosting in protected individ-
uals. This might be one aspect which causes recurrent outbreaks of, e. g. measles or
pertussis in highly vaccinated populations.

In order to understand how in-host processes like waning immunity and immune
system boosting are related to the dynamics of the population, and to provide a correct
and whole-comprehensive mathematical formulation for these phenomena we chose
not to include vaccination in our model (M1). One natural extension of our work
in the future is to include vaccine-induced immunity in our framework. The resulting
approachmayprovide a general settingwhich connects variousmodels in the literature,
for example byMossong andNokes (1999);Glass andGrenfell (2003);Arinaminpathy
et al. (2012); Arino and van den Driessche (2006); Mossong and Muller (2003).
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8 Proof of Theorem 1

In the following we show the continuous differentiability of the map Q, which is
necessary to have existence and uniqueness of a classical solution of the abstract
Cauchy problem (8). Continuous differentiability of Q can be shown in two steps: (a)
First we determine the existence of the operator DQ(x;w), for all x, w ∈ X , defined
by

DQ(x;w) := lim
h→0

Q(x + hw) − Q(x)

h
.

(b) Second we show that the operator DQ(x; ·) is continuous in x , that is

lim ‖DQ(x; ·) − DQ(y; ·)‖OP = 0 for ‖x − y‖X → 0,

where ‖ · ‖OP is the operator norm.

123



Immuno-epidemiology of a population structured... 1763

For simplicity of notation we write

DQ1(x;w) := P1(x;w) − P2(x;w),

DQ2(x;w) := P2(x;w),

DQ3(x;w) := −P3(x;w) + P4(x;w),

where

P1(x;w) := lim
h→0

b(x̂ + hŵ) − b(x̂)

h
,

P2(x;w) := lim
h→0

1

h
β

(

(x1 + hw1)(x2 + hw2)

x̂ + hŵ
− x1x2

x̂

)

,

P3(x;w) := lim
h→0

1

h
β

(

(x2 + hw2)(x3(z) + hw3(z))

x̂ + hŵ
− x2x3(z)

x̂

)

,

P4(x;w) := lim
h→0

1

h
β

(

(x2 + hw2)
∫ z
zmin

(x3(u) + hw3(u)) p(z, u) du

x̂ + hŵ

− x2
∫ z
zmin

x3(u)p(z, u) du

x̂

)

.

Proof of (a) We compute the limit for the first component of Q1,

P1(x;w) = lim
h→0

1

h

(

b
(

x̂ + hŵ
) − b

(

x̂ + hw1 + hw2
)

)

+ lim
h→0

1

h

(

b
(

x̂ + hw1 + hw2
) − b

(

x̂ + hw1
)

)

+ lim
h→0

1

h

(

b
(

x̂ + hw1
) − b

(

x̂
))

= lim
h→0

b
(

x̂ + hŵ
) − b

(

x̂ + hw1 + hw2
)

h
∫ zmax
zmin

w3(u) du

∫ zmax

zmin

w3(u) du

+ lim
h→0

b
(

x̂ + hw1 + hw2
) − b

(

x̂ + hw1
)

hw2
w2

+ lim
h→0

b
(

x̂ + hw1
) − b

(

x̂
)

h w1
w1

= b′(x̂)ŵ.

For the second term in Q1(x) we have

P2(x; w) = β lim
h→0

1

h

(

(x1 + hw1)(x2 + hw2)

x̂ + hŵ
− (x1 + hw1)(x2 + hw2)

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

(x1 + hw1)(x2 + hw2)

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
− x1(x2 + hw2)

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du

)
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+β lim
h→0

1

h

(

x1(x2 + hw2)

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
− x1(x2 + hw2)

x̂ + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

x1(x2 + hw2)

x̂ + h
∫ zmax
zmin

w3(u) du
− x1x2

x̂ + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

x1x2
x̂ + h

∫ zmax
zmin

w3(u) du
− x1x2

x̂

)

= −β lim
h→0

(x1 + hw1)(x2 + hw2)
(

x̂ + hŵ
)
(

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
) w1

+β lim
h→0

x2 + hw2

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
w1

−β lim
h→0

x1(x2 + hw2)
(

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
) (

x̂ + h
∫ zmax
zmin

w3(u) du
) w2

+β lim
h→0

x1
x̂ + h

∫ zmax
zmin

w3(u) du
w2

−β lim
h→0

x1x2
(

x̂ + h
∫ zmax
zmin

w3(u) du
)

x̂

∫ zmax

zmin

w3(u) du

= β

[

x2(x̂ − x1)

x̂2
w1 + x1(x̂ − x2)

x̂2
w2 − x1x2

x̂2

∫ zmax

zmin

w3(u) du

]

.

The first term in Q3(x):

P3(x; w) = β lim
h→0

1

h

(

(x2 + hw2)(x3(z) + hw3(z))

x̂ + hŵ
− (x2 + hw2)(x3(z) + hw3(z))

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

(x2 + hw2)(x3(z) + hw3(z))

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
− x2(x3(z) + hw3(z))

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

x2(x3(z) + hw3(z))

x̂ + w2 + h
∫ zmax
zmin

w3(u) du
− x2(x3(z) + hw3(z))

x̂ + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

x2(x3(z) + hw3(z))

x̂ + h
∫ zmax
zmin

w3(u) du
− x2x3(z)

x̂ + h
∫ zmax
zmin

w3(u) du

)

+β lim
h→0

1

h

(

x2x3(z)

x̂ + h
∫ zmax
zmin

w3(u) du
− x2x3(z)

x̂

)

.

Hence we have

P3(x;w) = −β lim
h→0

(x2 + hw2)(x3(z) + hw3(z))
(

x̂ + hŵ
)
(

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
) w1

+β lim
h→0

x3(z) + hw3(z)

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
w2
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−β lim
h→0

x2(x3(z) + hw3(z))
(

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
) (

x̂ + h
∫ zmax
zmin

w3(u) du
) w2

+β lim
h→0

x2
x̂ + h

∫ zmax
zmin

w3(u) du
w3(z)

−β lim
h→0

x2x3(z)

x̂
(

x̂ + h
∫ zmax
zmin

w3(u) du
)

∫ zmax

zmin

w3(u) du

= β

[

− x2x3(z)

x̂2
w1 + x3(z)(x̂ − x2)

x̂2
w2 + x2

x̂
w3(z)

− x2x3(z)

x̂2

∫ zmax

zmin

w3(u) du

]

.

Analogously, compute the last term in Q3(x),

P4(x;w) = β lim
h→0

∫ z
zmin

(x3(u) + hw3(u)) p(z, u) du

x̂ + hŵ
w2

−β lim
h→0

x2
∫ z
zmin

(x3(u) + hw3(u)) p(z, u) du
(

x̂ + hŵ
)
(

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
) w1

+β lim
h→0

x2
x̂ + hw2 + h

∫ zmax
zmin

w3(u) du

∫ z

zmin

w3(u) p(z, u) du

−β lim
h→0

x2
∫ z
zmin

x3(u) p(z, u) du
(

x̂ + hw2 + h
∫ zmax
zmin

w3(u) du
) (

x̂ + h
∫ zmax
zmin

w3(u) du
) w2

−β lim
h→0

x2
∫ z
zmin

x3(u) p(z, u) du
(

x̂ + h
∫ zmax
zmin

w3(u) du
)

x̂

∫ zmax

zmin

w3(u) du

= β

[

− x2
∫ z
zmin

x3(u) p(z, u) du

x̂2
w1 + (x̂ − x2)

∫ z
zmin

x3(u) p(z, u) du

x̂2
w2

+
x2

(

x̂ − ∫ z
zmin

x3(u) p(z, u) du
)

x̂2

∫ zmax

zmin

w3(u) du

⎤

⎦ .

To prove that the operator DQ(x; ·) is continuous in x we consider the norm
‖DQ(x; ·) − DQ(y; ·)‖OP , that is

sup
‖w‖X≤1

‖DQ(x;w) − DQ(y;w)‖X

= sup
‖w‖X≤1

{

|P1(x;w)−P1(y;w) − P2(x;w)+P2(y;w)|+|P2(x;w) − P2(y;w)|

+
∫ zmax

zmin

|(P3(y;w) − P3(x;w) + P4(x;w) − P4(y;w))(z)| dz
}

,
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and show that

‖DQ(x; ·) − DQ(y; ·)‖OP → 0, for ‖x − y‖X → 0.

We estimate the operator norm as follows

sup
‖w‖X≤1

‖DQ(x;w) − DQ(y;w)‖X ≤ sup
‖w‖X≤1

4
∑

j=1

Tj (x, y;w),

with

T1(x, y;w) = |P1(x;w) − P1(y;w)|,
T2(x, y;w) = 2|P2(x;w) − P2(y;w)|,
T3(x, y;w) =

∫ zmax

zmin

|(P3(x;w) − P3(y;w))(z)| dz,

T4(x, y;w) =
∫ zmax

zmin

|(P4(x;w) − P4(y;w))(z)| dz.

Then we show the convergence to zero of the above sum. It is obvious that

sup
‖w‖X≤1

T1(x, y;w) → 0, for ‖x − y‖X → 0,

as b is continuously differentiable (see Assumption 1),

|P1(x;w) − P1(y;w)| = |b′(x̂)ŵ − b′(ŷ)ŵ| ≤ |b′(x̂) − b′(ŷ)| ‖w‖X .

The term in T2(x, y;w) can be estimated as follows:

|P2(x;w) − P2(y;w)| ≤ β

∣

∣

∣

∣

(

x2(x̂ − x1)

x̂2
− y2(ŷ − y1)

ŷ2

)∣

∣

∣

∣
|w1|

︸ ︷︷ ︸

=:L1(x,y;w)

+β

∣

∣

∣

∣

(

x1(x̂ − x2)

x̂2
− y1(ŷ − y2)

ŷ2

)∣

∣

∣

∣
|w2|

︸ ︷︷ ︸

=:L2(x,y;w)

+β

∣

∣

∣

∣

(

x1x2
x̂2

− y1y2
ŷ2

)∣

∣

∣

∣

∫ zmax

zmin

|w3(u)| du
︸ ︷︷ ︸

=:L3(x,y;w)

.

Since the addends of the last sum are all similar, we show convergence to zero for only
one of them.
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sup
‖w‖X≤1

L3(x, y;w)

≤ β

∣

∣

∣

∣

x1x2
x̂2

− y1y2
ŷ2

∣

∣

∣

∣

≤ β

(∣

∣

∣

∣

x1x2
x̂2

− x1x2
x̂ ŷ

∣

∣

∣

∣
+

∣

∣

∣

∣

x1x2
x̂ ŷ

− x1y2
x̂ ŷ

∣

∣

∣

∣
+

∣

∣

∣

∣

x1y2
x̂ ŷ

− x1y2
ŷ2

∣

∣

∣

∣
+

∣

∣

∣

∣

x1y2
ŷ2

− y1y2
ŷ2

∣

∣

∣

∣

)

≤ β

(∣

∣

∣

∣

x1x2(ŷ − x̂)

x̂2 ŷ

∣

∣

∣

∣
+

∣

∣

∣

∣

x1(x2 − y2)

x̂ ŷ

∣

∣

∣

∣
+

∣

∣

∣

∣

x1y2(ŷ − x̂)

x̂ ŷ2

∣

∣

∣

∣
+

∣

∣

∣

∣

(x1 − y1)y2
ŷ2

∣

∣

∣

∣

)

≤ 3β

|ŷ| ‖x − y‖X .

It works analogously for the terms L1(x, y;w) and L2(x, y;w). Hence we have that

sup
‖w‖X≤1

T2(x, y;w) → 0, for ‖x − y‖X → 0.

In a similar way one can estimate T3(x, y;w) and T4(x, y;w). We show the compu-
tation for T4 which is the most challenging of the two, as it includes double integrals.

T4(x, y; w)

≤ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

x3(u) p(z, u) du

x̂2
− y2

∫ z
zmin

y3(u) p(z, u) du

ŷ2

∣

∣

∣

∣

∣

|w1| dz
︸ ︷︷ ︸

=:F1(x,y;w)

+ β

∫ zmax

zmin

∣

∣

∣

∣

∣

(x̂ − x2)
∫ z
zmin

x3(u) p(z, u) du

x̂2
− (ŷ − y2)

∫ z
zmin

y3(u) p(z, u) du

ŷ2

∣

∣

∣

∣

∣

|w2| dz
︸ ︷︷ ︸

=:F2(x,y;w)

+ β

∫ zmax

zmin

∣

∣

∣

∣

x2
x̂

− y2
ŷ

∣

∣

∣

∣

∫ zmax

zmin

|w3(u)| du dz
︸ ︷︷ ︸

=:F3(x,y;w)

+ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

x3(u) p(z, u) du

x̂2
− y2

∫ z
zmin

y3(u) p(z, u) du

ŷ2

∣

∣

∣

∣

∣

∫ zmax

zmin

|w3(u)| du dz
︸ ︷︷ ︸

=:F4(x,y;w)

.

Before proceeding to the next estimate, it is useful to observe that

∫ zmax

zmin

∫ z

zmin

x3(v)p(z, v) dv dz =
∫ zmax

zmin

∫ zmax

v

x3(v)p(z, v) dz dv

=
∫ zmax

zmin

x3(v)

∫ zmax

v

p(z, v) dz
︸ ︷︷ ︸

=1

dv

=
∫ zmax

zmin

x3(v) dv.
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Let us now consider the last addend in T4(x, y;w). We have that

sup
‖w‖X≤1

F4(x, y;w)

≤ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

x3(u) p(z, u) du

x̂2
− y2

∫ z
zmin

y3(u) p(z, u) du

ŷ2

∣

∣

∣

∣

∣

dz

≤ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

x3(u) p(z, u) du

x̂2
− x2

∫ z
zmin

x3(u) p(z, u) du

x̂ ŷ

∣

∣

∣

∣

∣

dz

+ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

x3(u) p(z, u) du

x̂ ŷ
− x2

∫ z
zmin

y3(u) p(z, u) du

x̂ ŷ

∣

∣

∣

∣

∣

dz

+ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

y3(u) p(z, u) du

x̂ ŷ
− x2

∫ z
zmin

y3(u) p(z, u) du

ŷ2

∣

∣

∣

∣

∣

dz

+ β

∫ zmax

zmin

∣

∣

∣

∣

∣

x2
∫ z
zmin

y3(u) p(z, u) du

ŷ2
− y2

∫ z
zmin

y3(u) p(z, u) du

ŷ2

∣

∣

∣

∣

∣

dz.

A similar computation as the one for sup
‖w‖X≤1

L3(x, y;w) yields

sup
‖w‖X≤1

F4(x, y;w) ≤ β

∫ zmax

zmin

∫ z

zmin

|x3(u) p(z, u)| du dz
∣

∣

∣

∣

x2(ŷ − x̂)

x̂2 ŷ

∣

∣

∣

∣

+β

∫ zmax

zmin

∫ z

zmin

|x3(u) p(z, u)| du dz
∣

∣

∣

∣

x2(ŷ − x̂)

x̂ ŷ2

∣

∣

∣

∣

+β

∫ zmax

zmin

∫ z

zmin

|(x3(u) − y3(u)) p(z, u)| du dz

∣

∣

∣

∣

x2
x̂ ŷ

∣

∣

∣

∣

+β

∫ zmax

zmin

∫ z

zmin

|y3(u) p(z, u)| du dz
∣

∣

∣

∣

x2 − y2
ŷ2

∣

∣

∣

∣

≤ 3β

|ŷ| ‖x − y‖X .

Similar relations hold for the other terms F1(x, y;w), F2(x, y;w) and F3(x, y;w). It
is then obvious that the norm ‖DQ(x; ·) − DQ(y; ·)‖OP tends to zero, for ‖x − y‖X
going to zero, and the proof is complete. ��
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