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a b s t r a c t

Amathematical model is introduced to simultaneously study the dynamics of ectoparasite
infestation and infectious diseases spread by those ectoparasites. The system has four
potential equilibria. We identify three reproduction numbers that determine whether
the infectious or the non-infectious parasites can invade the population, and whether a
population already infested by non-infectious parasites can be invaded by the infection.
By using Lyapunov functions and persistence theory, we show that the solutions always
converge to one of the equilibria, depending on those three reproduction numbers. Hence
the global dynamics is completely characterized by the reproduction numbers.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ectoparasite infestations are widespread in several regions of the world, and these parasites may also be vectors for
various diseases [1,2]. The transmissionmechanismof these diseases is different frommosquito-borne diseases (e.g.malaria,
West Nile virus), as they are transmitted through the human contact network.

Lice have been recognized as human parasites for a very long time, and they are now increasingly present in developed
countries especially in homeless people or economically deprived population. Three of the more than 3000 louse species
affect humans: Pediculus humanus capitis (head lice), Pediculus humanus humanus (body lice), and Pthirus pubis (pubic
lice). P. humanus capitis affects all levels of society, P. pubis is transmitted sexually, and P. humanus humanus is associated
with lack of hygiene and extreme poverty. The transmission of lice needs a close body-to-body connection, thus crowded
environments usually facilitate infestation, especially when hygienic standards are lacking. We know three louse-borne
diseases: trench fever, first described duringWorldWar I and caused by B. quintana, epidemic typhus caused byR. prowazekii,
and relapsing fever caused by the spirochaete B. recurrentis.

Fleas are also widespread in the whole world. Flea species are not adapted to a specific host and may occasionally
bite humans. Most common fleas that parasite humans are the cat, the rat, and the human fleas, Ctenocephalides felis,
Xenopsylla cheopis, and Pulex irritans, respectively. Fleas transmit plague (spread by Xenopsylla cheopis, Pulex irritans), murine
typhus (spread by Xenopsylla cheopis), flea-borne spotted rickettsiosis (Rickettsia felis, spread by Ctenocephalides felis, Pulex
irritans), and maybe cat scratch disease (Bartonella henselae, spread by Ctenocephalides felis). There are diseases (such as
rickettsialpox) that can be transmitted by mites.

For more information on louse, flea and mite species and the diseases transmitted by them, see [1,2] and references
thereof.

The purpose of this paper is to establish and analyse a mathematical model that monitors a population infested by
infectious and non-infectious parasites. We identify threshold quantities that determine whether the parasites can invade
the population, and describe the asymptotic behaviour of solutions.
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Fig. 1. Transmission diagram.

2. Derivation of the model

In ourmodel we assume the presence of one ectoparasite species (for example lice) which is a vector for a disease as well
and transmitted to a susceptible host only upon adequate contact with an infested host.

Wedivide a population into three compartments depending on the presence of the vectors and the disease transmitted by
them: susceptibles (i.e. those who can be infested by the vector, denoted by S(t)), those who are infested by non-infectious
vectors (denoted by T (t)) and those who are infested by infectious vectors, and thus infected with the disease (denoted by
Q (t)). We have the following assumptions for the transmission of the parasites and the disease: someone infested by non-
infectious vectors can transmit the parasites to susceptibles, while an individual infested by infectious vectors can transmit
both the parasites and the disease to susceptibles. An individual infested by infectious vectors can transmit the infection to
individuals infested by non-infectious vectors, i.e. a member of compartment T canmove to compartment Q upon adequate
contact with someone from compartment Q . We assume that a person is infected by the disease if and only if he is infested
by infectious parasites. We assume that individuals infested by infected parasites transmit the disease at the same rate
to susceptibles and to those who are already infested by non-infected parasites. Denote this transmission rate by βQ , and
denote the transmission rate for non-infectious vectors (to susceptibles) by βT . The rate of disinfestation is denoted byµ for
the infected compartment and by θ for the non-infected compartment. We denote by b the natural birth and death rates,
and we assume the disease is not fatal, thus the population size is constant. In the model equations we use mass action
incidence (note that for constant population size it does not differ from standard incidence).

Then we have the following system of differential equations, where all the parameters are assumed to be positive:

S ′(t) = −βT S(t)T (t) − βQ S(t)Q (t) + θT (t) + µQ (t) + b − bS(t),

T ′(t) = βT S(t)T (t) − βQQ (t)T (t) − θT (t) − bT (t),

Q ′(t) = βQ S(t)Q (t) + βQQ (t)T (t) − µQ (t) − bQ (t).

(1)

The transmission chart of the model is depicted in Fig. 1. It is easy to see that any solution with nonnegative initial
values remains nonnegative for all forward time. Without loss of generality, we can assume that the total population
N(t) = S(t) + T (t) + Q (t) = 1.

3. Equilibria, reproduction numbers

By solving the algebraic equations

0 = −βT S∗T ∗
− βQ S∗Q ∗

+ θT ∗
+ µQ ∗

+ b − bS∗,

0 = βT S∗T ∗
− βQQ ∗T ∗

− θT ∗
− bT ∗,

0 = βQ S∗Q ∗
+ βQQ ∗T ∗

− µQ ∗
− bQ ∗,

we can determine the four equilibria of system (1), one of which is disease- and infestation-free, one is disease-free with
infestation, one is endemic where all vectors are infectious, and one is endemic where both infectious and non-infectious
vectors are present:

ES = (1, 0, 0),

ET =


b + θ

βT
, 1 −

b + θ

βT
, 0


,

EQ =


b + µ

βQ
, 0, 1 −

b + µ

βQ


,

EQT =


θ − µ + βQ

βT
,
b + µ

βQ
−

θ − µ + βQ

βT
, 1 −

b + µ

βQ


.

Due to the biological interpretation of the model, we are only interested in nonnegative equilibria. In the sequel, we say
that a given equilibrium exists, if each of its three coordinates is between 0 and 1.
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We can determine four reproduction numbers by introducing a single infested (infectious or non-infectious) individual
into a population in which neither infected and non-infected parasites are present (ES), only non-infected parasites are
present (ET ) or only infected parasites are present (EQ ), and calculating the expected number of generated secondary cases.

If we introduce an infested, non-infectious individual into the disease- and infestation-free equilibrium, we obtain the
reproduction number

R1 =
βT

b + θ
,

by introducing an infested and infectious individual into the same equilibrium we obtain the reproduction number

R2 =
βQ

b + µ
.

Calculating the expected number of secondary infections caused by the introduction of an infectious infested individual
into a population in the equilibrium ET , we obtain the same reproduction number R2, as the transmission rate from Q -
individuals is the same for the S- and T -compartment.

Now introduce a non-infectious infested individual into a population in the equilibrium EQ . Then by (1), the expected
sojourn time in the T -compartment is (βQQ ∗

+θ +b)−1, and the number of generated new T -cases by this single individual
per unit time isβT S∗. Taking the product of these two expressions and substituting the values ofQ ∗ and S∗ at the equilibrium
EQ , we obtain the reproduction number

R3 =
βT (b + µ)

βQ (βQ − µ + θ)
.

We shall use later the fact that R2 ≥ 1 implies R3 > 0. Indeed, R2 ≥ 1 is equivalent with βQ ≥ b+µ, so in this case obviously
βQ + θ > µ and thus R3 > 0.

In the next proposition we show how the reproduction numbers determine the existence of the four equilibria.

Proposition 3.1. The equilibrium ES always exists. The equilibrium ET exists if and only if R1 > 1. The equilibrium EQ exists if
and only if R2 > 1. The equilibrium EQT exists if and only if R2 > 1 and R3 > 1.

Proof. The first coordinate of ET is less than 1 if and only if R1 > 1. If this holds, also the second coordinate of this equilibrium
is between 0 and 1. Similarly, we have that EQ exists if and only if R2 > 1. In the case of the equilibrium EQT , the third
coordinate being between 0 and 1 is equivalent to R2 > 1. If R2 > 1, then the second coordinate being positive is equivalent
to R3 > 1. Thus for the existence of EQT , it is necessary that R2 > 1 and R3 > 1. To see the sufficiency, notice that
(R2R3)

−1
= (βQ − µ + θ)/βT , which is the first coordinate, thus if R2 > 1 and R3 > 1 then all three coordinates of

EQT are between 0 and 1. �

4. Local stability, persistence

Proposition 4.1. The stability of equilibria is determined by the reproduction numbers as follows.
(i) ES is locally asymptotically stable if R1 < 1 and R2 < 1, and unstable if R1 > 1 or R2 > 1.
(ii) ET is locally asymptotically stable if R1 > 1 and R2 < 1, and unstable if R2 > 1.
(iii) EQ is locally asymptotically stable if R2 > 1 and R3 < 1, and unstable if R3 > 1.
(iv) EQT is locally asymptotically stable if R2 > 1 and R3 > 1 (i.e. always when it exists).

Proof. Calculating the eigenvalues of the Jacobian of the linearization at equilibria is straightforward, hence omitted, here
we only discuss the consequences.
(i) The eigenvalues of the Jacobian of the linearized equation around the equilibrium ES are −b, −b − θ + βT =

(b + θ)(R1 − 1) and −b − µ + βQ = (b + µ)(R2 − 1). All of these eigenvalues are negative if R1 < 1 and R2 < 1, and
there is a positive one if R1 > 1 or R2 > 1.

(ii) Linearizing at the equilibrium ET , one finds the eigenvalues −b, b + θ − βT = (b + θ)(1 − R1), −b − µ + βQ =

(b + µ)(R2 − 1). The statement follows as in case (i).
(iii) Linearization around the steady state EQ gives the following eigenvalues of the Jacobian:−b, b+µ−βQ = (b+µ)(1−

R2), −θ + µ − βQ + (b + µ)βT/βQ = (R3 − 1)βT/(R2R3). If R2 < 1 then EQ does not exist, if R3 > 1 then the third
eigenvalue is positive. If R3 < 1 then the second eigenvalue is negative, and the third eigenvalue is also negative since
in this case from R2 > 1 (which required for the existence of EQ ) we know that R3 > 0.

(iv) Finally, if we linearize the system around the equilibrium EQT , we obtain the eigenvalues−b, b+µ−βQ = (b+µ)(1−

R2) and θ − µ + βQ − (b + µ)βT/βQ = (1 − R3)βT/(R2R3), and the conclusion follows as in case (iii). �

For the proof of persistence we use some notions and theorems from [3].

Definition 4.2. Let X be a nonempty set and ρ : X → R+. A semiflow Φ : R+ × X → X is called uniformly weakly
ρ-persistent, if there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.
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Φ is called uniformly (strongly) ρ-persistent if there exists some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

A set M ⊆ X is called weakly ρ-repelling if there is no x ∈ X such that ρ(x) > 0 and Φ(t, x) → M as t → ∞.

System (1) generates a continuous flow on the feasible state space

X := {(S, T ,Q ) ∈ R3
+

: S + T + Q = 1} ⊂ R3
+
.

Theorem 4.3. S(t) is always uniformly persistent. T (t) is uniformly persistent if R1 > 1 and R2 < 1 as well as if R2 > 1 and
R3 > 1. Q (t) is uniformly persistent if R2 > 1.

Proof. To prove the persistence of S(t)we use themethod of fluctuation (see for example Appendix A of [3]). Let S∞ denote
the limit inferior of S(t) as t → ∞. From the fluctuation lemma we know that there exists a sequence tk → ∞ such that
S(tk) → S∞ and S ′(tk) → 0 as k → ∞. Using this for the first equation of our system,

S ′(tk) + βT S(tk)T (tk) + βQ S(tk)Q (tk) + bS(tk) = θT (tk) + µQ (tk) + b,

and using 0 ≤ T (tk),Q (tk) ≤ 1 we obtain

(βT + βQ + b)S∞ ≥ b,

i.e.

S∞ ≥
b

βT + βQ + b
> 0.

In proving the persistence of T (t) and Q (t) we will use some theory from [3]. For the sake of simplicity, for the state of
the system we use the notation x = (S, T ,Q ) ∈ X . The ω-limit set of a point x ∈ X is defined in the usual way by

ω(x) := {y ∈ X : ∃{tn}n≥1 such that tn → ∞, Φ(tn, x) → y as n → ∞}.

Let us first suppose that R1 > 1 and R2 < 1 hold and let ρ(x) = T . Consider the extinction space

XT := {x ∈ X : ρ(x) = 0} = {(S, 0,Q ) ∈ R3
+

: S + Q = 1}.

Clearly XT is invariant. Following [3, Chapter 8], we examine the set Ω := ∪x∈XT ω(x). Since XT is a one-dimensional
closed segment and the solutions are bounded, Ω = {ES}. First we show weak ρ-persistence. To apply Theorem 8.17 of [3],
we letM1 = {ES}. ThenΩ ⊂ M1, andM1 is isolated (by Proposition 4.1), compact, invariant and acyclic. It remained to show
thatM1 is weakly ρ-repelling, then by [3, Chapter 8], the weak persistence follows.

Suppose that M1 is not ρ-repelling, i.e. there exists a solution such that limt→∞(S(t), T (t),Q (t)) = (1, 0, 0) and
T (t) > 0. Then for any ε > 0, for sufficiently large t, S(t) > 1 − ε and Q (t) < ε hold and we can give the following
estimation for T ′(t):

T ′(t) = T (t)(βT S(t) − βQQ (t) − θ − b) > T (t)(βT − βTε − βQ ε − θ − b).

As βT > b + θ , if ε is small enough then βT − βTε − βQ ε − θ − b > 0, contradicting to T (t) → 0.
Let us now suppose that R2 and R3 are both greater than 1. We proceed similarly as before. In this case also EQ exists, so

Ω = {ES, EQ }. We let M1 = {ES} and M2 = {EQ }. Then Ω ⊂ M1 ∪ M2 and {M1,M2} is acyclic and M1 and M2 are invariant,
isolated and compact. Similarly to the previous case, we have to show thatM1 andM2 are both weakly ρ-repelling.

First assume that M1 is not weakly ρ-repelling, so there exists a solution such that limt→∞(S(t), T (t),Q (t)) = (1, 0, 0)
and T (t) > 0. From

R2 =
βQ

b + µ
> 1 and R3 =

βT (b + µ)

βQ (βQ + θ − µ)
> 1

we have

R2R3 =
βT

βQ + θ − µ
> 1,

i.e. βT > βQ + θ − µ. As for any ε > 0, for t large enough S(t) > 1 − ε and Q (t) < ε hold, similarly to the previous case
we can estimate T ′(t):

T ′(t) = T (t)(βT S(t) − βQQ (t) − θ − b)
> T (t)(βT − βTε − βQ ε − θ − b)
> T (t)(βQ + θ − µ − βTε − βQ ε − θ − b)
= T (t)(βQ − b − µ − (βT + βQ )ε) > 0

for ε small enough, as R2 > 1, contradicting to T (t) → 0.
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To show the repelling property ofM2, assume that there exists a solution such that

lim
t→∞

(S(t), T (t),Q (t)) =


b + µ

βQ
, 0, 1 −

b + µ

βQ


and T (t) > 0. Similarly to the previous case, for any ε > 0, for t large enough we can estimate T ′(t) as

T ′(t) = T (t)(βT S(t) − βQQ (t) − θ − b)

> T (t)


βT


b + µ

βQ
− ε


− βQ


1 −

b + µ

βQ
+ ε


− θ − b


> T (t)


βT (b + µ)

βQ
− βTε − βQ + µ − θ − βQ ε


> 0,

as from the inequality R3 > 1, for sufficiently small ε we have

βT (b + µ)

βQ
> βQ + θ − µ,

contradicting to T (t) → 0.
To prove the persistence of Q (t), we choose ρ(x) = Q . We have the equilibrium ES if R1 ≤ 1 and the two equilibria ES

and ET if R1 > 1. We define the extinction space as

XQ := {x ∈ X : ρ(x) = 0} = {(S, T , 0) ∈ R3
+

: S + T = 1},

i.e. in this case we have

Ω :=


x∈XT

ω(x) = M1

if R1 ≤ 1, and

Ω :=


x∈XQ

ω(x) = M1 ∪ M2

if R1 > 1, where

M1 = {(1, 0, 0)} and M2 =


b + θ

βT
, 1 −

b + θ

βT
, 0


.

Similarly as in the proof of the persistence of T (t),M1 and M2 contain only one equilibrium, which means that these sets
are invariant. These two equilibria are isolated in XT ; M1 is acyclic if R1 ≤ 1 and {M1,M2} is acyclic if R1 > 1.

We can prove that M1 is weakly ρ-repelling similarly in the two cases R1 ≤ 1 and R1 > 1. Assume it does not hold,
i.e. there exists a solution such that limt→∞(S(t), T (t),Q (t)) = (1, 0, 0)with Q (t) > 0. For any ε > 0, for sufficiently large
t we have S(t) > 1 − ε, so we can estimate Q ′(t):

Q ′(t) = Q (t)(βQ S(t) + βQ T (t) − µ − b) > Q (t)(βQ (1 − ε) − µ − b) > 0

for ε small enough, as R2 > 1, i.e. βQ > b + µ. This contradicts Q (t) → 0.
Now let us consider the case R1 > 1, i.e. when also ET exists. Suppose that M2 is not weakly ρ-repelling, i.e. there exists

a solution such that

lim
t→∞

(S(t), T (t),Q (t)) =


b + θ

βT
, 1 −

b + θ

βT
, 0


and Q (t) > 0. For any ε > 0, for t large enough we have

S(t) >
b + θ

βT
− ε, T (t) > 1 −

b + θ

βT
− ε.

Using these relations, we can give the following estimation for the derivative Q ′(t):

Q ′(t) = Q (t)(βQ S(t) + βQ T (t) − µ − b)

> Q (t)


βQ


b + θ

βT
− ε


+ βQ


1 −

b + θ

βT
− ε


− µ − b


= Q (t)


βQ − (µ + b) − 2βQ ε


> 0

for ε small enough, as R2 > 1, i.e. βQ > b + µ. This contradicts Q (t) → 0.
We have proved uniform weak persistence in all of the cases, and for the transition to uniform (strong) persistence, we

use [3, Theorem 4.5].



A. Dénes, G. Röst / Nonlinear Analysis: Real World Applications 18 (2014) 100–107 105

Clearly, our flow is continuous, and the subspaces XT , XQ , X \ XT and X \ XQ are all invariant. The existence of a compact
attractor is also obvious, as the phase space X is compact. Thus, all the conditions of [3, Theorem 4.5] hold. �

5. Global stability

In this section we extend the statements about local stability in the previous section to global asymptotic stability by
means of Lyapunov functions and LaSalle’s invariance principle, where we also apply the persistence results of the previous
section.

Theorem 5.1. Equilibrium ES is globally asymptotically stable if R1 ≤ 1 and R2 ≤ 1.
Proof. Let us choose V1(S, T ,Q ) = T + Q as a Lyapunov function. The derivative of the Lyapunov function along solutions
of (1) is

V̇1 = TβT


S −

b + θ

βT


+ QβQ


S −

b + µ

βQ


≤ TβT


1 −

1
R1


+ QβQ


1 −

1
R2


,

which is less than or equal to zero if R1 ≤ 1 and R2 ≤ 1. From LaSalle’s invariance principle [4] we know that the limit set
of each solution is a subset of the set V̇1 = 0. The first term of the derivative can be equal to zero if and only if T is zero or
S = (b+θ)/βT . The latter case is only possible if (b+θ)/βT = S = 1, as R1 ≤ 1. However, from thiswe have that T = Q = 0.
Similarly, the second term is equal to zero if Q = 0 or S = (b + µ)/βQ . The latter case only holds if (b + µ)/βQ = S = 1.
The remaining possibility for V̇ = 0 is that T = Q = 0. Thus, the limit set of any solution is the equilibrium ES . �

Theorem 5.2. Equilibrium ET is globally asymptotically stable on X\XT if R1 > 1 and R2 ≤ 1. On XT , ES is globally asymptotically
stable.
Proof. Let us choose the Lyapunov function V2(S, T ,Q ) = Q 2. The derivative of this Lyapunov function along the solutions
is

V̇2 = −2Q 2βQ


b + µ

βQ
− (S + T )


,

which is less than or equal to zero as R2 ≤ 1 and S + T ≤ 1. We have V̇2 = 0 if Q = 0 or (b + µ)/βQ − (S + T ) = 0. The
latter can hold only if R2 = 1 and S + T = 1, which implies Q = 0. Thus, V̇2 is equal to zero if and only if Q = 0. Using
LaSalle’s invariance principle we have that the limit set of each solution is a subset of the set V̇2 = 0.

For Q = 0 the equations for S and T have the form

S ′(t) = −βT S(t)T (t) + θT (t) + b − bS(t)

T ′(t) = βT S(t)T (t) − θT (t) − bT (t).
(2)

This systemhas two equilibria, the unstable equilibrium (1, 0) and the locally stable equilibrium ((b+θ)/βT , 1−(b+θ)/βT ).
If T = 0, then S = 1. If T > 0, then T is decreasing if S < (b+θ)/βT , i.e. if T > 1−(b+θ)/βT and increasing if S > (b+θ)/βT ,
i.e. if T < 1 − (b + θ)/βT . From this follows the assertion of the theorem. �

Theorem 5.3. Assume R2 > 1. Then the following statements hold:
(i) If R3 ≤ 1 and R1 ≤ 1, then EQ is globally asymptotically stable on X \ XQ and ES is globally asymptotically stable on XQ .
(ii) If R3 ≤ 1 and R1 > 1, then EQ is globally asymptotically stable on X \ XQ and ET is globally asymptotically stable on XQ .
(iii) If R3 > 1, then EQT is globally asymptotically stable on X \ (XQ ∪ XT ), ET is globally asymptotically stable on XQ and EQ is

globally asymptotically stable on XT .
Proof. In proving all three statements, we apply the Lyapunov function

V3(S, T ,Q ) =


Q −


1 −

b + µ

βQ

2

.

The derivative of this Lyapunov function along solutions of (1) is

V̇3 = −2QβQ


b + µ

βQ
− (S + T )

 
b + µ

βQ
− 1 + Q


= −2QβQ


b + µ

βQ
− 1 + Q

2

≤ 0.

Again we use LaSalle’s invariance principle. This derivative is equal to zero if and only if Q = 0 or Q = 1 − (b + µ)/βQ . If
Q = 0, then from the Eq. (2) we get that ES is globally asymptotically stable on the extinction space XQ if R1 ≤ 1 and ET is
globally asymptotically stable onXQ ifR1 > 1. IfQ > 0, then, using the persistence result of the previous sectionwehave that
Q > 0 holds also on the limit set. From this follows that for any solution of (1) in X \XQ limt→∞ Q (t) = 1−(b+µ)/βQ > 0
if R2 > 1.
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On the limit set, the solutions satisfy

S ′(t) = −βT S(t)T (t) − βQ S(t)

1 −

b + µ

βQ


+ θT (t) + µ


1 −

b + µ

βQ


+ b − bS(t),

T ′(t) = βT S(t)T (t) − βQ


1 −

b + µ

βQ


T (t) − θT (t) − bT (t),

0 =


1 −

b + µ

βQ


(βQ S(t) + βQ T (t) − µ − b).

From the last of these equations we obtain that βQ S(t) + βQ T (t) − µ − b = 0, i.e. S(t) = (b + µ)/βQ − T (t) holds on the
limit set. Substituting this expression for S into the equation for T ′ we obtain

T ′(t) = βT


b + µ

βQ
− T (t)


T (t) − βQ


1 −

b + µ

βQ


T (t) − θT (t) − bT (t)

= −βTT 2(t) + γ T (t)

on the limit set, where

γ = µ − θ − βQ +
βT (b + µ)

βQ
.

The solution started from T (0) = 0 is the function T (t) ≡ 0. The nontrivial solutions of this logistic equation have the form

T (t) =
γ Ceγ t

βTCeγ t + 1

for C ∈ R+. Notice that γ > 0 if and only if R3 > 1. Therefore, if R3 ≤ 1 then on X \ XQ we have limt→∞ T (t) = 0, thus
limt→∞ S(t) = (b + µ)/βQ , and we obtain the convergence to EQ . On XQ our system is reduced to (2), and for R1 > 1 we
have that ET , while for R1 ≤ 1 we have that ES is globally asymptotically stable on XQ . We proved (i) and (ii).

If R3 > 1 then

lim
t→∞

T (t) =
γ

βT
=

µ − θ − βQ

βT
+

b + µ

βQ
,

so on X \ (XQ ∪XT ), both Q (t) and T (t) converge to the corresponding coordinates of EQT . On XT , we have S(t) = (b+µ)/βQ
on the limit set, thus solutions converge to EQ . If R3 > 1 and R2 > 1 then

1 < R2R3 = R1
b + θ

R2(b + µ) + θ − µ
< R1,

and for R1 > 1 we already established the global asymptotic stability of ET on XQ . The proof of (iii) is complete. �

6. Discussion

We established a system of differential equations for the simultaneous modelling of the spread of an ectoparasite and
a disease transmitted by it. We calculated three reproduction numbers and four potential equilibria of the system. The
reproduction numbers Ri (i = 1, 2, 3) determine whether the infectious or the non-infectious parasites can invade the
population, and whether a population already infested by non-infectious parasites can be invaded by the infection. By
using Lyapunov functions and persistence theory, we showed that the solutions always converge to one of the equilibria,
depending on those three reproduction numbers. The results are summarized in Table 1. Depending on Ri ≤ 1 or Ri > 1 for
i = 1, 2, 3, there are eight possible scenarios. Cases (a) and (b) include four of them. We showed that R2 > 1 and R3 > 1
imply R1 > 1 (see the proof of Theorem 5.3), so one of the eight cases can be excluded. The remaining three possibilities are
covered by (c), (d) and (e). Thereforeweprovide a complete characterization of the global dynamics in each possible scenario.
We proved the global asymptotic stability of one of the equilibria in all of the five different cases by giving three Lyapunov
functions. Depending on the reproduction numbers, we can determinewhich of the four equilibria is globally asymptotically
stable. Each of the five cases can be realized as we illustrate the dynamics on the TQ -plane in Fig. 2. From our results we can
see that to eradicate the disease, we have to decrease R2 to be less than 1, which is possible by reducing βQ or increasing
µ. If we also want to eliminate the parasites, then besides decreasing R2, we also have to decrease R1 (possible by reducing
βT or increasing θ ). Decreasing only R1 is not enough for the elimination of the parasites. The reproduction number R3 is a
threshold parameter which, in the case when the parasites persist, shows whether all of them become infectious or not.

It is natural to ask what happens if we incorporate disease induced mortality in our model. In this case the equation for
Q (t) has the form

Q ′(t) = βQ S(t)Q (t) + βQQ (t)T (t) − µQ (t) − bQ (t) − dQ (t),
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Table 1
Reproduction numbers and global stability: the complete characterization of the dynamics.

Case Reproduction numbers Existing equilibria Global stability

(a) R1 ≤ 1, R2 ≤ 1 ES ES GAS
(b) R1 > 1, R2 ≤ 1 ES , ET ET GAS on X \ XT , ES GAS on XT
(c) R1 ≤ 1, R2 > 1, R3 ≤ 1 ES , EQ EQ GAS on X \ XQ , ES GAS on XQ
(d) R1 > 1, R2 > 1, R3 ≤ 1 ES , ET , EQ EQ GAS on X \ XQ , ET GAS on XQ
(e) R1 > 1, R2 > 1, R3 > 1 ES , ET , EQ , EQT EQT GAS on X \ (XQ ∪ XT ), ET GAS on XQ , EQ GAS on XT

Fig. 2. Representation of the flow on the TQ -plane in the five cases (see Table 1). Dots denote equilibria.

where d > 0 denotes the excess mortality caused by the disease. Introducing d makes R2 smaller, thus, disease mortality
facilitates the elimination of the disease. On the other hand, if Q (t) is persistent, then disease mortality reduces the total
population in the long run. Numerical simulations suggest that the qualitative behaviour of the solutions of the modified
model is similar to system (1). Some of our proofs can be performed in a similar, butmore intricateway, however, as the total
population is not constant any more, we cannot make the reduction to a planar system. As a consequence, one needs com-
pletely new proofs for some global stability results such as the ones in Theorem 5.3.We leave this problem as a future work.
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