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a b s t r a c t

We investigate an SIVS model with pulse vaccination strategy. First we compute the
disease free periodic solution and prove its global asymptotic stability in the disease free
subspace. We identify the corresponding control reproduction number Rc and prove that
the disease free periodic solution is locally asymptotically stable if Rc < 1, and under some
additional conditions it is globally asymptotically stable as well. For Rc > 1 we prove the
uniform persistence of the disease. Our main result is that nontrivial endemic periodic
solutions are bifurcating from the disease free periodic solution as Rc is passing through
the threshold value one. A complete bifurcation analysis is provided for the associated
nonlinear fixed point equation. We show that backward bifurcation of periodic orbits is
possible for suitable parameter values, and give explicit conditions to determine whether
the bifurcation is backward or forward. The main mathematical tools are comparison
principles and Lyapunov–Schmidt reduction. Finally, we compare the pulse vaccination
strategy with continuous vaccination, and illustrate that backward bifurcation occurs in
more realistic models as well when pulse vaccination is applied.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vaccination is a common and effective strategy to control and to prevent the spread of communicable diseases, thus
understanding the impact of various vaccination schemes on the transmission dynamics is of major public health con-
cern. In compartmental models we divide the population being studied into several disjoint classes (Susceptible, Infected,
Vaccinated, Recovered, etc.), and use differential equations to describe the transition of individuals among those classes. The
basic reproduction number R0 (corresponds to models of uncontrolled epidemics) and the control reproduction number Rc
(corresponds to models where some control measure is applied) are key concepts in mathematical epidemiology, as they
express the expected number of secondary infections caused by a single infective introduced into a wholly susceptible (or
controlled) population.

Typically, the infection dies out if Rc < 1, and the disease remains endemic if Rc > 1. In most models, for Rc < 1 the
disease free equilibrium is the unique steady state and there is a bifurcation at Rc = 1, when the disease free equilibrium
loses its stability and a stable endemic equilibrium appears for Rc > 1. Such a transition of stability is called forward bifur-
cation. However, in some models the situation is very different: there exist multiple endemic equilibria for Rc < 1, even
stable one. In this case, there may be a self-sustained epidemic even though the reproduction number is less than one. This
situation is called backward bifurcation (see Fig. 1 for a sketch). The nature of this bifurcation has serious implications for
disease control: in the first case, it is sufficient to apply a control measure such that Rc becomes less than one to eradicate
the disease, while in the second case it is necessary to decrease Rc well below one to ensure that the disease will die out. In
various vaccination models, backward bifurcation can appear if the vaccination is imperfect.
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Fig. 1. The types of bifurcation appearing in simple SIVS model.

The susceptible–vaccinated–infected–removed–susceptible (SVIRS) model

S ′(t) = Λ(1 − Φ)+ ωvV (t)+ ωrR(t)−
βI(t)
N(t)

S(t)− µS(t),

V ′(t) = ΛΦ − (1 − ψ)
βI(t)
N(t)

V (t)− (ωv + µ)V (t),

I ′(t) =
βI(t)
N(t)

S(t)+ (1 − ψ)
βI(t)
N(t)

V (t)− (σu + µ)I,

R′(t) = σuI(t)− (ωr + µ)R(t)

(1)

with waning immunity and imperfect cohort vaccination was analyzed in [1], where one can read the detailed explanation
of the terms and parameters.

This model can be simplified if we replace the recruitment term Λ by µN(t), then the recruitment and the mortality
is balanced and the population size remains constant, what we can normalize to N(t) = 1 without loss of generality. The
model further reduces if infected individuals do not develop natural immunity, and patients moving immediately to the
susceptible class (this is the limit case when the length of immunity 1/ωr → 0, or equivalently ωr → ∞). We replace
cohort vaccination by continuous vaccination strategy, that isΦ = 0, and a new parameter φ is introduced which describes
the vaccination rate at which individuals are moving from the S-class to the V -class. By these simplifying assumptions and
modifications, we arrive at the simple SIVS model studied by Brauer [2]:

S ′(t) = µ− βS(t)I(t)− µS(t)+ γ I(t)+ θV (t)− ϕS(t),

I ′(t) = βS(t)I(t)− (µ+ γ )I(t)+ σβV (t)I(t),

V ′(t) = ϕS(t)− σβV (t)I(t)− (µ+ θ)V (t),

(2)

where we changed the notation ωv to θ , σu to γ and 1 − ψ to σ to follow the notation of [2] throughout this paper. In
model (2), β is the transmission rate, µ is the birth and death rate, γ is the recovery rate, ϕ is the vaccination rate. The
vaccination may reduce, but not completely eliminate susceptibility to infection: this is modeled by including a factor σ ,
0 ≤ σ ≤ 1. If σ = 0, the vaccine is perfectly effective, while σ = 1means that the vaccine has zero effect. It is assumed that
the vaccination loses effect at rate θ . In this model the constant population size S(t)+ I(t)+ V (t) = 1 is assumed. Brauer
investigated this vaccination model and proved the existence of multiple endemic equilibria and backward bifurcation for
suitable parameter values [2]. Backward bifurcation has been observed in different epidemic models in various contexts:
for malaria [3], influenza [4], HSV-2 [5], Hepatitis B and C [6], chlamydia trachomatis [7], dengue [8], tuberculosis in [9] and
general models with treatment [10].

Here we modify model (2), by replacing the continuous vaccination term by a pulse vaccination strategy. We study the
resulting system of impulsive differential equations. The pulse scheme is a repeated application of the vaccine at distinct
times, so we vaccinate a fraction ϕ of the susceptible population after each time T . It is known from [11–13], that sometimes
pulse vaccination is more effective than continuous vaccination, therefore it is natural to investigate the dynamics and the
backward–forward bifurcations of model (2) with pulse vaccination.

2. The model

Consider the following pulse vaccination model, based on (7):
S ′(t) = µ− βS(t)I(t)− µS(t)+ γ I(t)+ θV (t),

I ′(t) = βS(t)I(t)− (µ+ γ )I(t)+ σβV (t)I(t), if t ≠ nT ,

V ′(t) = −σβV (t)I(t)− (µ+ θ)V (t),
S

nT+


= (1 − ϕ)S


nT−


,

I

nT+


= I


nT−


, if t = nT .

V

nT+


= V


nT−


+ ϕS


nT−


,

(3)
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where n = 1, 2, . . . is the period of pulse vaccination, nT+ is the time, when we apply the n-th pulse, nT− is the time, just
before applying the n-th pulse. We may assume S(t)+ I(t)+ V (t) = 1, thus we can reduce system (3) to the following:

S ′(t) = µ+ θ − βS(t)I(t)− (µ+ θ)S(t)+ (γ − θ)I(t),

I ′(t) = βS(t)I(t)− (µ+ γ )I(t)+ σβ(1 − S(t)− I(t))I(t), if t ≠ nT ,
S

nT+


= (1 − ϕ)S


nT−


,

I

nT+


= I


nT−


, if t = nT .

(4)

Due to the biological interpretation, we study (3) in the set

Ω =

(S, I, V ) ∈ R3

: S + I + V = 1, S ≥ 0, I ≥ 0, V ≥ 0

,

which is invariant (it can be seen from the right-hand side of (4)).
The more general form of an impulsive differential equation with fixed impulse times reads as

x′(t) = f (x(t)), t ≠ ti,

x

t+i


= Ji

x

t−i

,

where {ti} is monotone increasing and unbounded, f : Rn
→ Rn and Ji : Rn

→ Rn are continuous functions, i = 1, 2, . . ..
Impulsive differential equations naturally arise in many fields of mathematical biology: besides pulse vaccination, they can
be applied for example to modeling chemotherapeutic treatment of tumors [14,15] or pest control [16].

In the context of disease transmission, there are several papers in the literature considering pulse vaccination strategy.
The basic SIR model was extended by pulse vaccination in [13,17] and [18]. Exposed and carrier compartments were added
in [19–21], where the global asymptotic stability of the disease free periodic solution was shown for Rc < 1. When Rc > 1,
usually the systemhas permanence, whichwas proved in [22] with nonlinear incidence. The existence of a periodic endemic
solution for Rc > 1 was established in [23] and [12] for somewhat different models. In the next sections, besides the usual
results for the stability of the disease free periodic solution and persistence, we prove that in system (4) subthreshold
nontrivial periodic endemic solutions may exist, via a backward bifurcation of periodic solutions from the disease free
periodic solution at Rc = 1.

To the best of our knowledge, this is the first paper where backward bifurcation is proved for a pulse vaccination model.

3. Disease-free periodic solution

Lemma 1. The unique disease-free periodic solution

S̄(t) = 1 + e−(t−nT )(µ+θ)


1 − e−T (µ+θ)


(1 − ϕ)

1 − (1 − ϕ)e−T (µ+θ)
− 1


, t ∈ (nT , (n + 1)T ),

S̄(nT ) =


1 − e−T (µ+θ)


(1 − ϕ)

1 − (1 − ϕ)e−T (µ+θ)
,

Ī(t) = 0, t ≥ 0,

(5)

of system (4) is globally asymptotically stable in the disease-free subspace.

Proof. First we calculate the disease-free periodic solution, i.e. we assume I(t) = 0, t ≥ 0. Under this condition (4) simpli-
fies to 

S ′(t) = µ+ θ − (µ+ θ)S(t),

S

nT+


= (1 − ϕ)S


nT−


.

(6)

In the time interval nT ≤ t ≤ (n + 1)T , system (6) has the solution

S(t) = 1 + e−(t−nT )(µ+θ)(S(nT+)− 1). (7)

Let Sn+1 the size of susceptible population after the (n + 1)-th pulse, i.e. Sn+1 = S

(n + 1)T+


. From (7),

Sn+1 = (1 − ϕ)

1 + e−T (µ+θ) (Sn − 1)


=: ψ (Sn) .

The map ψ has a unique positive fixed point

S∗
=


1 − e−T (µ+θ)


(1 − ϕ)

1 − (1 − ϕ)e−T (µ+θ)
.
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If t ≠ nT ,

S̄(t) = 1 + e−(t−nT )(µ+θ)


1 − e−T (µ+θ)


(1 − ϕ)

1 − (1 − ϕ)e−T (µ+θ)
− 1



= 1 + e−(t+T−(n+1)T )(µ+θ)


1 − e−T (µ+θ)


(1 − ϕ)

1 − (1 − ϕ)e−T (µ+θ)
− 1


= S̄(t + T ),

and in case t = nT , S̄(t) = S∗
= S̄((n + 1)T ), so (5) is periodic with period T. Thus, (5) is a solution of system (4) not only

in the time interval [0, T ), but also for all t ≥ 0. Since (5) in the time interval [0, T ) is

S̄(t) = 1 + e−t(µ+θ)


1 − e−T (µ+θ)


(1 − ϕ)

1 − (1 − ϕ)e−T (µ+θ)
− 1


,


S̄(t), 0


is a solution of (4). From the above calculations, at t = nT the pulse conditions are satisfied.

From 0 <

ψ ′ (S∗)

′
= (1 − ϕ)


e−T (µ+θ)


< 1, we obtain that S∗ is a stable fixed point of ψ . Since ψ is a linear map, S∗

is asymptotically stable. �

Analogously to the concept of the basic reproduction number, the control reproduction number is the expected number
of secondary infections caused by a single infected individual introduced into a disease free population where some control
measure is applied (in our case, vaccination). In our model, in the absence of the disease, the number of susceptibles
is a T -periodic function, thus the control reproduction number can be expressed as the product of the mean infectious
period


1

µ+γ


and the number of secondary infections generated per unit time, averaged over a period of length T . That

is the transmission coefficient β multiplied by the average number of susceptibles in such a period (i.e. 1
T

 T
0 S̄(u)du)

and additionally, since vaccination is not perfect, the average number of vaccinated individuals who contract the infection
σ 1

T

 T
0


1 − S̄(u)


du

, so we define

Rc :=
β

µ+ γ


1
T

 T

0
S̄(u)du + σ

1
T

 T

0


1 − S̄(u)


du

.

In the next theorem we show that Rc is indeed a stability threshold for the disease free periodic solution.

Theorem 1. The disease-free periodic solution (5) is locally asymptotically stable, if Rc < 1 and unstable, if Rc > 1

Proof. We linearize (4) around the disease-free periodic solution, so let
S(t) = s(t)+ S̄(t),
I(t) = i(t)+ Ī(t),

and we obtain
s′(t) = −β S̄(t)i(t)− µs(t)+ γ i(t)+ θ(−s(t)− i(t)),
i′(t) = β S̄(t)i(t)− (µ+ γ )i(t)+ σβ


1 − S̄(t)


i(t),

(8)

subject to the vaccination scheme
s

T+


= (1 − ϕ)s

T−

,

i

T+


= i

T−

.

(9)

We have to investigate the stability of equilibrium (0, 0) of system (8). Consider the corresponding fundamental matrix

A(t) =


s1(t) s2(t)
i1(t) i2(t)


,

where (s1(t), i1(t)) and (s2(t), i2(t)) are solutions of (8) with initial values (s1(0), i1(0)) and (s2(0), i2(0)). Set

s1(0) = 1, s2(0) = 0,
i1(0) = 0, i2(0) = 1.

To apply Floquet-theory, we calculate themonodromymatrix (A(T ) after we apply the first impulse), which is the following:

M :=


(1 − ϕ)e−(µ+θ)T (1 − ϕ)s2(T )

0 e
 T
0 β S̄(u)−(µ+γ )+σβ(1−S̄(u)) du


.
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Since the characteristic equation ofM is
(1 − ϕ)e−(µ+θ)T

− λ
 

e
 T
0 β S̄(u)−(µ+γ )+σβ(1−S̄(u)) du − λ


= 0,

we do not need to calculate s2(T ). The eigenvalues of M are λ1 = (1 − ϕ)e−(µ+θ)T and λ2 = e
 T
0 β S̄(u)−(µ+γ )+σβ(1−S̄(u)) du.

From the Floquet-theorem, the equilibrium (0, 0) is locally asymptotically stable, if the moduli of all eigenvalues are less
than 1. It is obvious that λ1 < 1, and λ2 < 1 if and only if

 T
0 β S̄(u) − (µ + γ ) + σβ


1 − S̄(u)


du < 0, that is

1
T

 T
0 S̄(u)+ σ


1 − S̄(u)


du < µ+γ

β
. This inequality can be rearranged as Rc < 1. �

The next theorem states that under an additional condition, the disease-free periodic solution is globally asymptotically
stable.

Theorem 2. Suppose γ − θ ≤ 0, then the disease-free periodic solution is globally asymptotically stable if Rc < 1.

Proof. If γ − θ ≤ 0, then

S ′(t) = µ+ θ − βS(t)I(t)− (µ+ θ)S(t)+ (γ − θ)I(t) ≤ µ+ θ − (µ+ θ)S(t),

so we consider the following comparison system:
x′(t) = µ− µx(t)+ θ − θx(t),
x

nT+


= (1 − ϕ)x


nT−


.

(10)

The disease-free periodic solution is a solution of this system and according to Lemma 1, the periodic solution S̄(t) is globally
asymptotically stable. By the comparison principle [24], for all ϵ1 > 0 there exists anm1 ≥ 0, such that

S(t) < S̄(t)+ ϵ1, nT < t < (n + 1)T , nT ≥ m1T .

From the second equation of system (4), we have

I ′(t) ≤ I(t)(β(1 − σ)(S̄(t)+ ϵ1)− (µ+ γ − σβ)), nT ≤ t ≤ (n + 1)T , nT ≥ m1T .

Then we consider the following comparison system:
y′(t) = y(t)


β(1 − σ)(S̄(t)+ ϵ1)− (µ+ γ − σβ)


,

y

nT+


= y


nT−

 (11)

so, we have y(t) ≥ I(t) for large t . Integrating system (11) between pulses [nT , (n + 1)T ], we obtain

y((n + 1)T ) = y(nT )e
 (n+1)T
nT β(1−σ)(S̄(t)+ϵ1)−(µ+γ−σβ) dt .

Using iteration step by step, we find

y(nT ) = ym1e
(n−m1)

 T
0 β(1−σ)(S̄(t)+ϵ1)−(µ+γ−σβ) dt

where ym1 = y

m1T+


> 0. Since Rc ≤ 1, i.e. 1

T

 T
0 S̄(u)+σ


1 − S̄(u)


du < µ+γ

β
, we can choose ϵ1 sufficiently small, such

that 1
T

 T
0 S̄(u) + σ


1 − S̄(u)


+ ϵ1 du <

µ+γ

β
, then we obtain limn→∞ y(nT ) = 0. Thus, we know each solution of system

(11)

y(t) = y(nT )e
 t
nT β(1−σ)(S̄(t)+ϵ1)−(µ+γ−σβ)ds, nT ≤ t ≤ (n + 1)T

tends to zero, i.e. limt→∞ y(t) = 0. So we have limt→∞ I(t) = 0. Then, for any (sufficiently small) ϵ2 > 0 there exists
m2 ≥ 0,m2 ∈ Z, m1 < m2, such that I(t) < ϵ2 (t > m2T > m1T ).

Similarly, from the first equation of (4), we have S ′(t) > µ − βS(t)ϵ2 − µS(t) + θ (1 − S(t)− ϵ2). Next consider the
comparison system

z ′(t) = µ− βz(t)ϵ2 − µz(t)+ θ (1 − z(t)− ϵ2) ,

z

nT+


= (1 − ϕ)z


nT−


.

Similarly, we can calculate the unique periodic solution z̄(t) with period T and the fixed point z∗, which is globally
asymptotically stable. The periodic solution z̄(t) is the following:

z̄(t) =
µ+ θ (1 − ϵ2)

µ+ θ + βϵ2
+ e−(t−nT )(µ+θ+βϵ2)

(1 − ϕ)
µ+θ(1−ϵ2)
µ+θ+βϵ2


1 − e−(µ+θ+βϵ2)T


1 − (1 − ϕ)e−(µ+θ+βϵ2)T

− e−(t−nT )(µ+θ+βϵ2)
µ+ θ (1 − ϵ2)

µ+ θ + βϵ2
, nT < t < (n + 1)T .



104 G. Röst, Z. Vizi / Nonlinear Analysis: Hybrid Systems 14 (2014) 99–113

Let z(t) be any solution of the comparison system with initial value z0 = z

0+

> 0. It follows from the comparison

principle that any solution of system (4) with initial values S0 = S

0+


= z0 > 0 and I0 = I

0+

> 0, there exists an

m3 ≥ 0,m3 ∈ Z, m1 < m2 < m3, such that

S(t) > z̄(t)− ϵ2, nT < t < (n + 1)T , nT > m3T .

Thus we have z̄(t) − ϵ2 < S(t) < S̄(t) + ϵ1, where z̄(t) → S̄(t) uniformly as ϵ2 → 0. Because ϵ1 and ϵ2 are arbitrarily
small we have S(t) → S̄(t), as t → ∞. Thus, S̄(t) is globally attractive, which implies the disease-free periodic solution is
globally asymptotically stable. �

4. Persistence of the disease

Theorem 3. If Rc > 1, then there exists a positive constant mI , such that for any positive solution I(t) of system (4), lim inft→∞

I(t) ≥ mI , i.e. the disease is uniformly strongly persistent.
Proof. Weconsider a solution (S, I) of system (4) and a constant I∗ ∈ (0, 1). Suppose there exists t0 > 0, such that I(t0) < I∗.
Let t1 := sup {s : I (t0 + u) < I∗, u < s}. This time interval of length t1 can be finite or infinite. First, we prove t1 is finite
when I∗ is appropriately chosen. Assume that t1 = ∞. We see that I(t) < I∗ holds in interval [t0,∞). Then, from the first
equation of (4),

S ′(t) > µ− βI∗ − µS(t)+ θ

1 − S(t)− I∗


as t ≥ t0. We consider the following comparison system:

w′(t) = µ− βI∗ − µw(t)+ θ

1 − w(t)− I∗


,

w

nT+


= (1 − ϕ)w


nT−


,

w

t̃+0


= 0,

(12)

as t > t̃0, where t̃0 :=
 t0

T


T . We can calculate the periodic solution w̄ with period T and we can deduce (similarly as in

Lemma 1) that this solution is globally asymptotically stable:

w̄(t) =
µ+ θ − (β + θ)I∗

µ+ θ

+ e−(µ+θ)(t−nT )
(1 − ϕ)

µ+θ−(β+θ)I∗

µ+θ


1 − e−(µ+θ)T


1 − (1 − ϕ)e−(µ+θ)T

− e−(µ+θ)(t−nT )µ+ θ − (β + θ)I∗

µ+ θ
, nT < t < (n + 1)T . (13)

From the first equation of (4), we also get S ′(t) ≤ µ + θ − (µ + θ)S(t) + |γ − θ | I∗, so we can consider the following
comparison system:

u′(t) = µ+ θ − (µ+ θ)u(t)+ |γ − θ | I∗,
u

nT+


= (1 − ϕ)u


nT−


,

u

t̃0


= 1.

We compute the globally asymptotically stable, T-periodic solution ū:

ū(t) =
µ+ θ + (γ − θ)I∗

µ+ θ

+ e−(µ+θ)(t−nT )
(1 − ϕ)

µ+θ+|γ−θ |I∗

µ+θ


1 − e−(µ+θ)T


1 − (1 − ϕ)e−(µ+θ)T

− e−(µ+θ)(t−nT )µ+ θ + |γ − θ | I∗

µ+ θ
, nT < t < (n + 1)T . (14)

From the comparison principle, for any ϵ > 0 there exists t2 > 0, such that ū(t)+ ϵ > u(t) ≥ S(t) ≥ w(t) > w̄(t)− ϵ, as
t > t̃0 + t2.

From the second equation of system (4), we obtain

I ′(t) ≥ I(t)

β (w̄(t)− ϵ)− (µ+ γ )+ σβ


1 − ū(t)− ϵ − I∗


if t > t̃0 + t2. Let K ∗

∈ Z+, K ∗T > t̃0 + t2 and integrating between pulses [kT , (k + 1)T ] for k > K ∗ yields

I((k + 1)T ) ≥ I(kT )e
 (k+1)T
kT β(w̄(t)−ϵ)−(µ+γ )+σβ(1−(ū(t)+ϵ)−I∗)dt , (15)
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then we obtain

I

K ∗

+ n

T


≥ I

K ∗T


en
 T
0 β(w̄(t)−ϵ)−(µ+γ )+σβ(1−(ū(t)+ϵ)−I∗)dt .

Define α :=
 T
0 β (w̄(t)− ϵ) − (µ + γ ) + σβ (1 − (ū(t)+ ϵ)− I∗) dt . We see from (13) and (14), that w̄(t) − ϵ → S̄(t)

and ū(t) + ϵ → S̄(t) as ϵ → 0 and I∗ → 0. If ϵ and I∗ are sufficiently small, then from Rc > 1 we have that α > 0. Thus
I ((K ∗

+ n) T ) ≥ I (K ∗T ) enα → ∞ as n → ∞, which contradicts the boundedness of I(t), therefore if I∗ is sufficiently
small, then t1 < ∞.

Let us fix these previous ϵ and I∗, for which t1 < ∞. Then two options remained: there exists a t3 > t̃0 + t2,
such that I(t) ≥ I∗ for all t ≥ t3 or I(t) oscillates about I∗. We begin with the second case: from the oscillatory
property we can define an unbounded, monotone increasing sequence {τi} such that τi > t̃0 + t1, I (τ2i) < I∗ and
I (τ2i+1) ≥ I∗. Choose an arbitrary τ2k. Let τ∗ := inf {τ : τ2k−1 < τ < τ2k, I(τ ) ≤ I∗}, τ̃∗ :=


τ∗
T


T − τ∗ and similarly

τ ∗
:= sup {τ : τ2k < τ < τ2k+1, I(τ ) ≤ I∗}, τ̃ ∗

:= τ ∗
−


τ∗

T


T . Let l := min


n ∈ N : e−(2T+t2)(µ+γ+σβ)+nα > 1


. We see

that τ̃∗ < T , τ̃ ∗ < T , and from the continuity of I(t), we have I (τ∗) = I (τ ∗) = I∗. There exists such an l, because α > 0. We
claim that τ ∗

− τ∗ < 2T + t2 + lT . Indirectly, assume that τ ∗
− τ∗ > 2T + t2 + lT . Then, from I ′(t) ≥ −(µ+ γ + σβ)I(t),

we have

I

τ∗ + τ̃∗ + τ̃ ∗

+ t2


≥ I∗e−(τ̃∗+τ̃∗
+t2)(µ+γ+σβ) > I∗e−(2T+t2)(µ+γ+σβ).

From the indirect assumption I(τ∗ + τ̃∗ + τ̃ ∗
+ t2 + lT ) < I∗, but from (15) we obtain

I

τ∗ + τ̃∗ + τ̃ ∗

+ t2 + lT


≥ I∗e−(τ̃∗+τ̃∗
+t2)(µ+γ+σβ)elα

> I∗e−(2T+t2)(µ+γ+σβ)elα > I∗,

which is a contradiction.
Hence τ ∗

− τ∗ < 2T + t2 + lT and I(t) > I∗e−(2T+t2+lT )(µ+γ+σβ) for t ∈ (τ∗, τ
∗), thus in the oscillatory case we can set

mI := I∗e−(2T+t2+lT )(µ+γ+σβ) and for any sufficiently large s for which I(s) < I∗, we have I(s) > mI , since we can choose {τi}
such that s ∈ (τ2k−1, τ2k+1) for some k.

Finally, if there exists a t3 > t̃0 + t1, such that I(t) > I∗ for all t > t3, then the same mI < I∗ works as well as a lower
estimate.

Note thatmI depends only on the fixed constants I∗ and ϵ, thus we have strong uniform persistence. �

5. Forward and backward bifurcation of nontrivial endemic periodic solutions

In this section, we give conditions for the existence of endemic periodic solution of system (4). We follow the scheme
of [14], however our bifurcation parameter is the vaccination rate ϕ, instead of the time-period T . Introduce the following
notations: the solution vector is X(t) := (S(t), I(t)), the right-hand side of system (4) is F(S, I) = (F1(S, I), F2(S, I)), with
components

(µ− βSI − µS + γ I + θ(1 − S − I), βSI − (µ+ γ )I + σβ(1 − S − I)I),

the impulsive effect isΘ(ϕ, (S, I)) = (Θ1(ϕ, (S, I)),Θ2(ϕ, (S, I)))with components

((1 − ϕ)S, I)

and the moments of impulses ti := iT . Then system (4) has the form

S ′
= F1(S, I), (16)

I ′ = F2(S, I), (17)

S

t+i


= Θ1

ϕ,

S

t−i

, I

t−i

, (18)

I

t+i


= Θ2

ϕ,

S

t−i

, I

t−i

. (19)

From the notations above, we obtain Θ1(ϕ, X) ≠ 0, if S ≠ 0, Θ2(ϕ, X) ≠ 0, if I ≠ 0 and F2(S, 0) ≡ Θ2(ϕ, (S, 0)) ≡

Θ1(ϕ, (0, I)) ≡ 0. Let Φt be the flow associated to (16)–(17): X(t) = Φt (X0), 0 < t ≤ T , where X0 = X(0). Then
X(T ) = ΦT (X0) =: Φ (X0) and X


T+


= Θ (ϕ,Φ (X0)). Define the operator Ψ by

Ψ (ϕ, X) := (Ψ1(ϕ, X),Ψ2(ϕ, X)) = Θ(ϕ,Φ(X)), (20)

and denote by DXΨ the derivative of Ψ with respect to X . Then X is a T -periodic solution of (16)–(19) if and only if
Ψ (ϕ, X0) = X0 and X0 is exponentially stable, if ρ (DXΨ ) < 1.

We use the notation S̄(t) for the locally asymptotically stable solution of (16), (18), with I = 0. Let us fix all parameters
but ϕ and denote ϕ0 the critical vaccination rate, which corresponds to Rc = 1. Let S0(t) be the corresponding T -periodic
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solution and denote by ζ (t) =

S0(t), 0


the T -periodic solution of system (16)–(19). From

DXΨ (ϕ, X) = DXΘ(ϕ,Φ(X))DXΦ(X)

=


∂Θ1(ϕ, X)

∂S
∂Θ1(ϕ, X)

∂ I
∂Θ2(ϕ, X)

∂S
∂Θ2(ϕ, X)

∂ I



∂Φ1(X)
∂S

∂Φ1(X)
∂ I

∂Φ2(X)
∂S

∂Φ2(X)
∂ I

 ,
at X0 = (x0, 0) (where x0 = S0(0) = S∗), we have the relation

DXΨ (ϕ0, X0) = DXΘ (ϕ0,Φ (X0))DXΦ (X0)

=


1 − ϕ0 0

0 1


∂Φ1 (X0)

∂S
∂Φ1 (X0)

∂ I

0
∂Φ2 (X0)

∂ I

 .
From the variational equation associated to system (16)–(17),

d
dt
(DXΦt (X0)) = DXF (Φt(X))DXΦt(X)

with the initial condition DXΦt (X0) = IdR2 , we obtain
∂Φ1 (X0)

∂S
= e

 T
0
∂F1(ζ (r))

∂S dr ,

∂Φ1 (X0)

∂ I
=

 T

0
e
 T
u
∂F1(ζ (r))

∂S dr ∂F1(ζ (u))
∂ I

e
 u
0
∂F2(ζ (r))

∂ I drdu,

∂Φ2 (X0)

∂S
= 0,

∂Φ2 (X0)

∂ I
= e

 T
0
∂F2(ζ (r))

∂ I dr .

We explore the bifurcation of nontrivial periodic solutions of system (16)–(19) near ζ . It is convenient for the computations
to change the variables ϕ and X to ϕ̄ and X̄ , such that ϕ = ϕ0 + ϕ̄ and X = X0 + X̄ . In terms of new variables, the fixed point
problem reads as

N

ϕ̄, X̄


= 0, (21)

where N

ϕ̄, X̄


=

N1

ϕ̄, X̄


,N2


ϕ̄, X̄


= X0 + X̄ −Ψ


ϕ0 + ϕ̄, X0 + X̄


. If

ϕ̄, X̄


is the zero of N , then X0 + X̄ is the fixed

point of Ψ (ϕ0 + ϕ̄, ·). Since ζ is a T -periodic solution of (16)–(19), it is associated to the fixed point X0 of Ψ (ϕ0, ·). From
the stability of S0(t) on the disease-free subspace, we get 1 −

(1 − ϕ0)
∂Φ1(X0)
∂S

 ≠ 0. Let the derivative of N be given by the
following matrix:

DX̄N

ϕ̄, X̄


=


a′ b′

c ′ d′


. (22)

Let a′
= a0, b′

= b0, c ′
= c0, d′

= d0 for

X̄; ϕ̄


= ((0, 0), 0):

a′
= 1 −

∂Θ1

ϕ0 + ϕ̄; X0 + X̄


∂S

∂Φ1

X0 + X̄


∂S

−
∂Θ1


ϕ0 + ϕ̄; X0 + X̄


∂ I

∂Φ2

X0 + X̄


∂S

,

b′
= −

∂Θ1

ϕ0 + ϕ̄; X0 + X̄


∂S

∂Φ1

X0 + X̄


∂ I

−
∂Θ1


ϕ0 + ϕ̄; X0 + X̄


∂ I

∂Φ2

X0 + X̄


∂ I

,

c ′
= −

∂Θ2

ϕ0 + ϕ̄; X0 + X̄


∂S

∂Φ1

X0 + X̄


∂S

−
∂Θ2


ϕ0 + ϕ̄; X0 + X̄


∂ I

∂Φ2

X0 + X̄


∂S

,

d′
= 1 −

∂Θ2

ϕ0 + ϕ̄; X0 + X̄


∂S

∂Φ1

X0 + X̄


∂ I

−
∂Θ2


ϕ0 + ϕ̄; X0 + X̄


∂ I

∂Φ2

X0 + X̄


∂ I

,

and from (22) we get

a0 = 1 − (1 − ϕ0)
∂Φ1 (X0)

∂S
,

b0 = − (1 − ϕ0)
∂Φ1 (X0)

∂ I
,

c0 = 0,

d0 = 1 −
∂Φ2 (X0)

∂ I
.



G. Röst, Z. Vizi / Nonlinear Analysis: Hybrid Systems 14 (2014) 99–113 107

Thus c0 = 0 and a0 > 0 from (1 − ϕ0)

∂Φ1(X0)
∂S


< 1, which comes from the stability of S̄0(t). The necessary condition

for the bifurcation of nontrivial zeros of the function N is that the determinant of the Jacobian matrix DXN(0, (0, 0)) equals
to zero. This reduces to d0 = 0, which is equivalent to Rc = 1. Assume this condition holds andwe now investigate sufficient
condition for the existence of bifurcating nontrivial T -periodic solutions.

Since we assumed det (DXN(0, (0, 0))) = 0, we cannot use the Implicit Function Theorem for giving variable X as a
function of ϕ. We carry out a Lyapunov–Schmidt reduction to obtain a system of equations, where we can use the Implicit
Function Theorem. In the following we use the terminology of [25]. Let DXN(0, (0, 0)) = E be the matrix of a linear map.

Step 1.Decompose the ambient space with the kernel and range of E.
We have dimKer(E) = 1 = co-dim(Im(E)). We denote by P and Q the projections onto Ker(E) and Im(E) respectively,

such that
P

R2


= Ker(E) = Span {Y0}, where Y0 =


−

b0
a0
, 1

,

Q

R2


= Im(E) = Span{I0}, where I0 = (1, 0), (I − Q )

R2


= Span{(0, 1)}.
Step 2. Transfer this decomposition to the equation.
It is obvious that for all u ∈ R2, u = 0 ⇔ Q (u) = 0 and (I − Q )(u) = 0. Thus we obtain N


ϕ̄, X̄


= 0 if and only

if Q

N

ϕ̄, X̄


= 0 and (I − Q )


N

ϕ̄, X̄


= 0, so this is true if and only if N1


ϕ̄, X̄


= 0 and N2


ϕ̄, X̄


= 0. From the

decomposition R2
= Ker(E)⊕ Im(E), we have X̄ = αY0 + zI0, where α, z ∈ R are unique. Thus (21) is equivalent to

N1 (ϕ̄, αY0 + zI0) = 0, N2 (ϕ̄, αY0 + zI0) = 0. (23)

Step 3. Show that the first equation of (23)may be solved for all but one of the variables, using the Implicit Function Theorem.
From the first equation of (23), we have

∂N1(0, (0, 0))
∂z

=
∂N1(0, (0, 0))

∂ X̄
∂ X̄
∂z

= a0 ≠ 0.

Thus from the Implicit Function Theorem, there exists δ > 0 sufficiently small and a unique, continuous function Z∗, such
that Z∗ (ϕ̄, α) =


z1∗ (ϕ̄, α) , 0


,

Z∗(0, 0) = (0, 0),
N1

ϕ̄, αY0 + Z∗ (ϕ̄, α)


= 0

(24)

for every (ϕ̄, α), such that |α| < δ and |ϕ̄| < δ, furthermore

∂z1∗

∂α


(ϕ̄,ᾱ)=(0,0)

= −

∂N1
∂α

∂N1
∂z


(ϕ̄,X̄)=(0,(0,0))

= −

∂N1
∂S

∂S
∂α

+
∂N1
∂ I

∂ I
∂α

∂N1
∂S

∂S
∂z


(ϕ̄,X̄)=(0,(0,0))

= −

∂N1
∂S


−b0
a0


+

∂N1
∂ I

∂ I
∂α

∂N1
∂S


(ϕ̄,X̄)=(0,(0,0))

= 0, (25)

so ∂z1∗(0,0)
∂α

= 0.
Step 4. Substitute the solution of first equation of (23) into the other equation.
Then N


ϕ̄, X̄


= 0 if and only if

f (ϕ̄, α) = N2


ϕ̄, α


−

b0
a0
, 1


+

z1∗ (ϕ̄, α) , 0


= N2


ϕ̄,


−

b0
a0
α + z1∗ (ϕ̄, α) , α


= 0. (26)

We know that f (ϕ̄, α) vanishes at (0, 0), thus it is necessary to compute higher order derivatives of f (ϕ̄, α) up to the order
i for which Dif (0, 0) ≠ 0. Let us introduce the following variables:

η (ϕ̄) = ϕ0 + ϕ̄,

η1 (ϕ̄, α) = x0 −
b0
a0
α + z1∗ (ϕ̄, α) ,

η2 (ϕ̄, α) = α.

The first partial derivatives of f .
We find
∂ f (ϕ̄, α)
∂ϕ̄

=
∂

∂ϕ̄
(η2 −Θ2 (η,Φ (η1, η2)))

= −
∂Φ2 (η1, η2)

∂S
∂η1

∂ϕ̄
−
∂Φ2 (η1, η2)

∂ I
∂η2

∂ϕ̄
,
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while
∂η2 (ϕ̄, α)

∂ϕ̄
= 0,

for all (ϕ̄, α) and

∂Φ2 (η1, η2)

∂S


(η1,η2)=(0,0)

= 0,

thus ∂ f (0,0)
∂ϕ̄

= 0. On the other hand,

∂ f (ϕ̄, α)
∂α

=
∂

∂α
(η2 −Θ2 (η,Φ (η1, η2)))

= 1 −


∂Φ2 (η1, η2)

∂S


−

b0
a0

+
∂z1∗ (ϕ̄, α)

∂α


+
∂Φ2 (η1, η2)

∂ I


,

but

∂Φ2 (η1, η2)

∂S


(η1,η2)=(0,0)

= 0,

and d0 = 1 −
∂Φ2(X0)
∂ I = 0 from our assumption, so ∂ f (0,0)

∂α
= 0.

Therefore, we obtain Df (0, 0) = (0, 0).
We need compute the second-order derivatives, and we use the following forms of ∂ f (ϕ̄,α)

∂α
and ∂ f (ϕ̄,α)

∂ϕ̄
:

∂ f (ϕ̄, α)
∂α

= 1 −


∂Φ2 (η1, η2)

∂S


−

b0
a0

+
∂z1∗ (ϕ̄, α)

∂α


+
∂Φ2 (η1, η2)

∂ I


,

∂ f (ϕ̄, α)
∂ϕ̄

= −


∂Φ2 (η1, η2)

∂S
∂z1∗ (ϕ̄, α)

∂ϕ̄


.

Second-order derivatives of f .
Let A =

∂2f (0,0)
∂ϕ̄2

, B =
∂2f (0,0)
∂α∂ϕ̄

and C =
∂2f (0,0)
∂α2

.
Calculation of A.
We have

∂2f (ϕ̄, α)
∂ϕ̄2

=
∂

∂ϕ̄


∂ f (ϕ̄, α)
∂ϕ̄


= −

∂z1∗ (ϕ̄, α)

∂ϕ̄


∂2Φ2 (η1, η2)

∂S2
∂z1∗ (ϕ̄, α)

∂ϕ̄
+
∂2Φ2 (η1, η2)

∂S∂ I
∂η2

∂ϕ̄


−
∂Φ2 (η1, η2)

∂S
∂2z1∗ (ϕ̄, α)

∂ϕ̄2
.

However,

∂η2 (ϕ̄, α)

∂ϕ̄
= 0,

for all (ϕ̄, α) and

∂Φ2 (η1, η2)

∂S


(η1,η2)=(0,0)

=
∂2Φ2 (η1, η2)

∂S2


(η1,η2)=(0,0)

= 0,

so A =
∂2f (ϕ̄,α)
∂ϕ̄2

= 0.
Calculation of C.
We have

∂2f (ϕ̄, α)
∂α2

=
∂

∂α


∂ f (ϕ̄, α)
∂α


= −

∂2Φ2 (η1, η2)

∂S2


−

b0
a0

+
∂z1∗ (ϕ̄, α)

∂α

2

− 2
∂2Φ2 (η1, η2)

∂S∂ I


−

b0
a0

+
∂z1∗ (ϕ̄, α)

∂α


−
∂Φ2 (η1, η2)

∂S
∂2z1∗ (ϕ̄, α)

∂α2
−
∂2Φ2 (η1, η2)

∂ I2
.
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From (25), we deduce

∂z1∗ (ϕ̄, α)

∂α


(ϕ̄,α)=(0,0)

= 0,

and
∂Φ2 (η1, η2)

∂S


(η1,η2)=(0,0)

=
∂2Φ2 (η1, η2)

∂S2


(η1,η2)=(0,0)

= 0,

so
∂2f (ϕ̄, α)
∂α2

= 2
∂2Φ2 (η1, η2)

∂S∂ I
b0
a0

−
∂2Φ2 (η1, η2)

∂ I2
=: C .

The following formulas were calculated also in [14]:

∂2Φ2 (T , X0)

∂S∂ I
=

 T

0
e
 T
0

∂
∂ I F2(ζ (r)) dr

∂2F2(ζ (u))
∂S∂ I

du,

∂2Φ2 (T , X0)

∂ I2
=

 T

0
e
 T
0

∂
∂ I F2(ζ (r)) dr

∂2F2(ζ (u))
∂2I

du +

 T

0


e
 T
u

∂
∂ I F2(ζ (r)) dr

∂2F2(ζ (u))
∂S∂ I


×

 u

0
e
 u
p

∂
∂S F1(ζ (r)) dr

∂F1(ζ (p))
∂ I

e
 p
0
∂
∂ I F2(ζ (r)) drdp


du.

Calculation of B.
Some calculations give

∂2f (ϕ̄, α)
∂α∂ϕ̄

=
∂

∂ϕ̄


∂ f (ϕ̄, α)
∂α


= −

∂2Φ2 (η1, η2)

∂S2
∂z1∗ (ϕ̄, α)

∂ϕ̄


−

b0
a0

+
∂z1∗ (ϕ̄, α)

∂α


−
∂Φ2 (η1, η2)

∂S
∂2z1∗ (ϕ̄, α)

∂α∂ϕ̄

−
∂2Φ2 (η1, η2)

∂ I∂S
∂z1∗ (ϕ̄, α)

∂ϕ̄
.

On the other hand,

∂z1∗ (ϕ̄, α)

∂α


(ϕ̄,α)=(0,0)

= 0,

and
∂Φ2 (η1, η2)

∂S


(η1,η2)=(0,0)

=
∂2Φ2 (η1, η2)

∂S2


(η1,η2)=(0,0)

= 0.

From (24) we know that N1 (ϕ̄, α) ≡ 0 near (0, 0), thus

∂

∂ϕ̄


x0 +


−

b0
a0


α + z1∗ (ϕ̄, α)− (1 − η)Φ1 (η1, η2)


= 0,

∂z1∗ (ϕ̄, α)

∂ϕ̄
−


−Φ1 (η1, η2)+ (1 − η)

∂Φ1 (η1, η2)

∂S
∂z1∗ (ϕ̄, α)

∂ϕ̄


= 0.

Evaluated at (ϕ̄, α) = (0, 0), we have

∂z1∗(0, 0)
∂ϕ̄

= −
Φ1 (x0, 0)

1 − (1 − ϕ0)
∂Φ1(x0,0)

∂S

= −
Φ1 (x0, 0)

a0
,

thus
∂2f (ϕ̄, α)
∂α∂ϕ̄

=
∂2Φ2 (η1, η2)

∂ I∂S
Φ1 (x0, 0)

a0
=: B.

From the calculations above, one has

D2f (0, 0) (ϕ̄, α) = 2Bαϕ̄ + Cα2.

Therefore, we have

f (ϕ̄, α) =
α

2
f̃ (ϕ̄, α) ,
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where

f̃ (ϕ̄, α) = 2Bϕ̄ + Cα +
1
α
o(ϕ̄,α)


(|ϕ̄| + |α|)2


. (27)

Furthermore, ∂ f̃ (0,0)
∂ϕ̄

= 2B (resp. ∂ f̃ (0,0)
∂α

= C). So, for B ≠ 0 (resp. C ≠ 0), we can use the Implicit Function Theorem, which

gives us ϕ̄ = ξ(α) (resp. α = λ (ϕ̄)), such that for all α (resp. ϕ̄) near 0, f̃ (ξ(α), α) = 0 (resp. f̃ (ϕ̄, λ (ϕ̄)) = 0). Then,
if BC ≠ 0, we have α

ϕ̄
≃ −

C
2B . In conclusion, f (ϕ̄, α) = 0 implies α

ϕ̄
≃ −

C
2B . BC = 0 does not determine the dynamical

behavior; if BC = 0, it is necessary to compute the third order derivative of f . Finally, we conclude the following theorem.

Theorem 4. Consider the family of operators Ψ (ϕ, X), defined in (20). As the parameter ϕ is passing through the critical value
ϕ0, a nontrivial fixed point appears near the fixed point X0. The bifurcation is supercritical, if BC < 0, and it is subcritical, if
BC > 0.

When ϕ increases, then Rc decreases, so the supercritical bifurcation in the ϕ̄ − α plane means a backward bifurcation
in the model. On the other hand, the subcritical bifurcation corresponds to a transcritical bifurcation.

Corollary 1. The type of bifurcation in model (4) depends on the sign of BC: if BC < 0 then there is a backward bifurcation, if
BC > 0 then there is a forward bifurcation of endemic periodic solutions from the disease-free periodic solution at Rc = 1.

6. Backward bifurcation in an HIV model with pulse vaccination

Similar arguments can be applied to more complex and realistic models as well. Here we consider an HIV model
from [26], involving cohort and continuous vaccination strategieswith imperfect vaccine, wherewe replaced the continuous
vaccination by pulse vaccination:

X ′(t) = (1 − p)Λ− µX − λX + γ V ,
V ′(t) = pΛ− µV − qλV − γ V ,
Y ′(t) = λX − (µ+ σ)Y , if t ≠ nT ,
W ′(t) = qλV − (µ+ θσ )W ,
A′(t) = σY + θσW − (µ+ α)A,
X

nT+


= (1 − ξ)X


nT−


,

V

nT+


= V


nT−


+ ξX


nT−


,

Y

nT+


= Y


nT−


, if t = nT ,

W

nT+


= W


nT−


,

A

nT+


= A


nT−


.

(28)

Here, following the notation of [26], X(t), V (t), Y (t),W (t), A(t) denote the number of susceptible, vaccinated non-
infected, unvaccinated infected, vaccinated infected, and being in the AIDS stage individuals at time t , respectively. The
force of infection is λ =

βY+sβW
N , where N(t) = X(t)+V (t)+Y (t)+W (t). For the detailed explanation of themodel and its

parameterswe refer to [26], where an explicit criterionwas given in terms of themodel parameters for backward bifurcation
in the case of continuous vaccination. We illustrate that the phenomenon of backward bifurcation can be observed for pulse
vaccination as well. In Fig. 5(a), we used the same parameters as [26] (with the only modification which was necessary
to define pulse vaccination), in a situation when the corresponding reproduction number is less than 1. One can observe
the bistability of an endemic and a disease free state, thus backward bifurcation occurs similarly to [26]. In the case of
Fig. 5(a), the pulse vaccination can be considered as only a small perturbation of the continuous case, however we can
see that the phenomenon is more general: by a significant increase of the vaccination parameter ξ , one can still find the
backward bifurcation as depicted in Fig. 5(b), where the disease can die out or can become periodically endemic, depending
on the initial values. This suggests that backward bifurcation in pulse vaccinationmodels is just as common as in continuous
models, and our approach and analysis for system (4) can be extended to many more complex systems.

7. Discussion

We started with a simple SIVS model from [2] that exhibits backward bifurcation, and replaced the continuous vaccina-
tion by a pulse vaccination strategy. This way we obtained a system of impulsive differential equations, where the role of
equilibria in the original system is taken over by periodic solutions. We calculated the disease-free periodic solution, and
identified the control reproduction number Rc , which is, by Floquet-theory, shown to be a threshold quantity: if Rc < 1,
then the disease-free periodic solution is locally asymptotically stable, while it is unstable for Rc > 1. By finding suitable
comparison systems, we provided a global asymptotic stability result under an additional condition, while for Rc > 1 we
showed the strong uniform persistence of the infection. Ourmain result is the fully elaborated bifurcation analysis of system
(4) at Rc = 1, which is based on transforming the question into a fixed point problem of a nonlinear operator, and applying
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Fig. 2. Here (σ , γ , µ, θ, ϕ, T ) = (0.1, 0.89, 0.31, 0.01, 0.174, 1). In (a), β = 1.55 and Rc = 0.86: the disease-free periodic solution is globally stable. In
(b), β = 2.22 and Rc = 1.23; the disease-free periodic solution is unstable and there is a stable endemic periodic solution.

Lyapunov–Schmidt reduction. The system can exhibit either forward or backward bifurcation of endemic periodic solutions
branching from the disease-free periodic solution at Rc = 1, depending on the sign of an explicitly given expression, BC ,
what we can calculate for particular parameter settings to illustrate the theorem. For example, for σ = 0.1, γ = 0.89,
θ = 0.01, T = 1, ϕ = 0.174, µ = 0.31, β = 2.23 and the other parameters are the same, then BC = 2684.44 > 0, thus
there is a forward bifurcation at Rc = 1 (see Fig. 2). If µ = 0.01, β = 5.32, and the other parameters are the same as in the
previous case, then backward bifurcation occurs at Rc = 1 and the value of BC is −30.4828 (see Fig. 3). The bifurcation dia-
grams are depicted in Fig. 4. To identify a proper control strategy (that guarantees the eradication of the disease) by means
of pulse vaccination, it is crucial to know whether we face a forward or a backward bifurcation.

For a comparison of the continuous and the pulse strategies we have to relate a continuous strategy to a corresponding
impulsive strategy. We use a similar approach as in [11]. In the absence of the infection and neglecting demography, for the
case of continuous vaccination the number of susceptible and vaccinated individuals are governed by the system

S ′(t) = θV − pS,
V ′(t) = −θV + pS,

where p is the rate susceptibles get vaccinated. The solution with initial condition S(0) = 1, V (0) = 0 is S0(t) =
θ
θ+p +

p
p+θ e

−(p+θ)t , V0(t) =
p

p+θ −
p

p+θ e
−(p+θ)t . Thus the number of vaccinated individuals in [0, T ] is p

 T
0 S0(t)dt < 1. For the

corresponding pulse vaccination strategy, the fraction φ of the susceptible population is vaccinated on this interval. Thus,
for a given p (that specifies a continuous strategy), we associate a corresponding couple (φ, T ) (that specifies an impulsive
strategy), such that φ = p

 T
0 S0(t)dt holds, then we use approximately the same amount of vaccines in the absence of the

disease.
First, we numerically calculate and compare the reproduction numbers for such p and (ϕ, T ). We find that for the

parameter setting of Fig. 2(a), Rcc = 0.857 and Rcp = 0.859; for Fig. 2(b), Rcc = 1.227 and Rcp = 1.23; for Fig. 3(a),
Rcc = 0.648 and Rcp = 0.649; for Fig. 3(b), Rcc = 1.229 and Rcp = 1.23; where we employed the notation Rcc and Rcp
to distinguish the corresponding control reproduction numbers for the continuous and the pulse vaccination strategies.
We conclude that the differences are very minor, thus essentially a given amount of vaccine gives the same reproduction
number, regardless which vaccination strategy (continuous or impulsive) we apply.

Thus, in the case of forward bifurcation, both vaccination strategies require the same amount of vaccine to control the
disease (i.e. to bringRc belowone). The situation ismore delicate in the case of backward bifurcation, since then the threshold
for certain disease eradication is not Rc = 1. In the situation of Fig. 4, we found numerically that the turning points of the
bifurcation curves are basically the same (at Rcc = 0.616 vs. Rcp = 0.615). Hence, even in the case of backward bifurcation,
to reduce the reproduction number to safe values requires the same effort.

However, there is an other factor that may be significant. When the disease is not controlled thus becomes endemic,
which scheme does result in a smaller density of infected individuals? First consider the forward bifurcation case with
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Fig. 3. Here (σ , γ , µ, θ, ϕ, T ) = (0.1, 0.89, 0.01, 0.01, 0.174, 1). In (a), β = 3.15 and Rc = 0.65: the disease-free periodic solution and an endemic
periodic solution are both stable. In (b), β = 5.97 and Rc = 1.23; the disease-free periodic solution is unstable and there is a stable endemic periodic
solution.

Fig. 4. (a) Numerically calculated bifurcation diagrams for the impulsive system. For σ = 0.1, γ = 0.89, µ = 0.31, θ = 0.01, ϕ = 0.174, T = 1, we have
forward bifurcation. (b) For σ = 0.1, γ = 0.89, µ = 0.01, θ = 0.01, ϕ = 0.174, T = 1, we have backward bifurcation.

Fig. 5. (a) Simulations for system (28) from different initial values with parameter values taken from [26]: µ = 0.02, p = 0.999, s = 1.1, ξ = 0.09,
θ = 0.5, q = 0.99, γ = 0.09, σ = 0.36, β = 0.3, α = 0.2, T = 20, Λ = 0.02. (b) Here µ = 0.02, p = 0.999, s = 1.1, ξ = 0.4, θ = 0.5, q = 0.99,
γ = 0.09, σ = 0.36, β = 0.3, α = 0.2, T = 100, Λ = 0.02. The disease-free periodic solution and an endemic periodic solution are both stable in both
cases.

Rc = 1.23 (parameters are chosen as before). Then the time average of the fraction of infected individuals for the impulsive
system is 0.19, while the corresponding continuous strategy yields an endemic equilibrium 0.22. Thus here the pulse
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vaccination strategy is beneficial, as the average number of infected individuals is reduced by 3% of the total population.
On the other branches of the bifurcation curves, we find that for backward bifurcation at Rc = 1.23, the average of
infected individuals is the same, 0.8 for both schemes, while at Rc = 0.65 this value is 0.44 vs. 0.45 (the latter is the pulse
strategy). However, a numerical approximation of the bifurcation curve indicates that in the case of backward bifurcation,
the unstable branch in the continuous case is below the unstable branch of the impulsive case, thus the basin of attraction
of the eradication solution seems larger for the pulse vaccination strategy.

Overall, the qualitative behavior of the continuous and the impulsive SIVS systems are very similar. The numerical
investigations suggest that pulse vaccination strategy is better only when the system has forward bifurcation and Rc > 1,
because then it leads a lower endemic state, or when the system has backward bifurcation and Rc < 1 (because then it
produces a larger basin of attraction for eradication). While the SIVS system is rather simplified, this is the first system
for which backward bifurcation is proved under pulse vaccination strategy. Furthermore, our numerical investigations for
the HIV model demonstrates that this phenomenon is rather general, and our discussion indicates that such considerations
about the vaccination strategies can be important in realistic situations as well.
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