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We show that disease transmission models in a spatially heterogeneous environment can have a large number
of coexisting endemic equilibria. A general compartmental model is considered to describe the spread of an
infectious disease in a population distributed over several patches. For disconnected regions, many boundary
equilibria may exist with mixed disease free and endemic components, but these steady states usually
disappear in the presence of spatial dispersal. However, if backward bifurcations can occur in the regions,
some partially endemic equilibria of the disconnected system move into the interior of the nonnegative cone
and persist with the introduction of mobility between the patches. We provide a mathematical procedure that
precisely describes in terms of the local reproduction numbers and the connectivity network of the patches,
whether a steady state of the disconnected system is preserved or ceases to exist for low volumes of travel.
Our results are illustrated on a patchy HIV transmission model with subthreshold endemic equilibria and
backward bifurcation. We demonstrate the rich dynamical behavior (i.e., creation and destruction of steady

Compartmental patch model
Epidemic spread

states) and the presence of multiple stable endemic equilibria for various connection networks.
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1. Introduction

Compartmental epidemic models have been considered widely in
the mathematical literature since the pioneering works of Kermack,
McKendrick and many others. Investigating fundamental properties
of the models with analytical tools allows us to get insight into the
spread and control of the disease, by gaining information about the
solutions of the corresponding system of differential equations. De-
termining steady states of the system and knowing their stability is
of particular interest if one thinks of the long term behavior of the
solution as final epidemic outcome.

In most deterministic models for communicable diseases, there
are two types of steady states: one is disease free, meaning that the
disease is not present in the population, and the other one is en-
demic, when the infection persists with a positive state in some of
the infected compartments. In such situation, the basic reproduction
number (R) usually works as a threshold for the stability of fixed
points. Typically, the disease free equilibrium is locally asymptotically
stable whenever this quantity—defined as the number of secondary
cases generated by an index infected individual who was introduced
into a completely susceptible population—is less than unity, and for
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values of Ry greater than one, the endemic fixed point emerging
at Ro = 1 takes stability over by making the disease free state un-
stable. This phenomenon, known as forward bifurcation at Rg = 1,
is in contrary to some other cases when more than two equilibria
coexist in certain parameter regions. Backward bifurcation presents
such a scenario, when there is an interval for values of Rg to the left
of one where there is a stable and an unstable endemic fixed point
besides the unique disease free equilibrium. Such dynamical struc-
ture of fixed points has been observed in several biological models
considering multiple groups with asymmetry between groups and
multiple interaction mechanisms (for an overview see, for instance,
Gumel [8] and the references therein). However, examples can also
be found in the literature where the coexistence of multiple non-
trivial steady states is not due to backward transcritical bifurcation
of the disease free equilibrium: in the age-structured SIR model ana-
lyzed by Franceschetti et al. [6] endemic equilibria arise through two
saddle-node bifurcations of a positive fixed point, moreover Wang
[17] found backward bifurcation from an endemic equilibrium in a
simple SIR model with treatment.

In case of forward transcritical bifurcation, the classical disease
control policy can be formulated. The stability of the endemic state is
typically accompanied with the persistence of the disease in the pop-
ulation as long as the reproduction number is larger than one, and
controlling the epidemic in a way such that R decreases below one
successfully eliminates the infection, since every solution converges
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to the disease free equilibrium when Ry < 1. On the other hand,
the presence of backward bifurcation with a stable non-trivial fixed
point for Rg < 1 means that bringing the reproduction number below
one is only necessary but not sufficient for disease eradication. Nev-
ertheless, multiple endemic equilibria have further epidemiological
implications, namely that stability and global behavior of the models
that exhibit such structure are often not easy to analyze, henceforth
little can be known about the final outcome of the epidemic.

Multi-city epidemic models, where the population is distributed in
space over several discrete geographical regions with the possibility
of individuals’ mobility between them, provide another example for
rich dynamics. In the special case when the cities are disconnected,
the model possesses a large number of steady states (i.e., the product
of the numbers of equilibria in the one-patch models corresponding
to each city). However, the introduction of traveling has a signifi-
cant impact on steady states, as it often causes substantial technical
difficulties in the fixed point analysis and, more importantly, makes
certain equilibria disappear. Some works in the literature deal with
models where the system with traveling exhibits only two steady
states, one disease free with the infection not present in any of the
regions, and another one, which exists only for Rg > 1, correspond-
ing to the situation when the disease is endemic in each region (see,
for instance, Arino [1], Arino and van den Driessche [2]). Other stud-
ies which consider the spatial dispersal of infecteds between regions
(Gao and Ruan [7], Wang and Zhao [ 18] and the references therein) do
not derive the exact number for the steady states, but show the global
stability of a single disease free fixed point for R¢ < 1, and claim the
uniform persistence of the disease for Ry > 1 which implies the ex-
istence of at least one (componentwise) positive equilibrium.

The purpose of this study is to investigate the impact of individuals’
mobility on the number of equilibria in multiregional epidemic mod-
els. Ageneral deterministic model is formulated to describe the spread
of infectious diseases with horizontal transmission. The framework
enables us to consider models with multiple susceptible, infected and
removed compartments, and more significantly, with several steady
states. The model can be extended to an arbitrary number of regions
connected by instantaneous travel, and we investigate how mobility
creates or destroys equilibria in the system. First we determine the
exact number of steady states for the model in disconnected regions,
then give a precise condition, in terms of the reproduction numbers
of the regions and the connecting network, for the persistence of
equilibria in the system with traveling. The possibilities for a three-
patch scenario with backward bifurcations (i.e., when two endemic
states are present for local reproduction numbers less than one) are
sketched in Fig. 1 (cf. Corollary 10).

The paper is organized as follows. A general class of compart-
mental epidemic models is presented in Section 2, including multi-
group, multistrain and stage progression models. We consider r
regions which are connected by means of movement between the
subpopulations, and use our setting as a model building block in each
region. Section 3 concerns with the unique disease free equilibrium
of the multiregional system with small volumes of mobility, while
in Sections 4-6 we consider the endemic steady states of the discon-
nected system, and specify conditions on the connection network and
the model equations for the persistence of fixed points in the system
with traveling. We close Sections 4-6 with corollaries that summarize
the achievements. The results are applied to a model for HIV trans-
mission in three regions with various types of connecting networks
in Section 7, then this model is used for the numerical simulations of
Section 8 to give insight into the interesting dynamics with multiple
stable endemic equilibria, caused by the possibility of traveling.

2. Model formulation

We consider an arbitrary (r) number of regions, and use upper
index to denote regioni,i e {1,...1}. Let X ¢ R", y' ¢ R™ and z e R¥

X

X
1, b)etr =2, ea =1, e3 =1,

R <1, R2>1, R3>1.

(8)81:2,82:2,83:
R <1, R2<1, R®>1.
2 <® )
AX

(0)6121,62:1, 63:1,
R >1, R2>1, R3> 1.

Fig. 1. We illustrate the behavior of steady states in the system of three regions con-
nected to each other by a complete mobility network, for three different cases in the
values of local reproduction numbers. Dots on the schematic diagrams depict infected
components of equilibria of the disconnected system, and e; denotes the number of
positive fixed points in region i, i = 1, 2, 3. Mobility has no impact on the disease
free equilibrium (orange dot). Componentwise positive steady states (blue dots) are
preserved in the system with traveling, as they continuously depend on the mobility
parameter «. A boundary endemic equilibrium moves out from the nonnegative octant
with the introduction of traveling if the equilibrium has a component corresponding
to a region, which is disease free in the absence of traveling and has local reproduction
number (R) greater than one (red dot). Other boundary steady states move into the
interior of the nonnegative octant (green dots). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

represent the set of infected, susceptible and removed (by means of
immunity or recovery) compartments, respectively, for n,m, k € Z+.
The vectors x/, y' and z' are functions of time t. We assume that all
individuals are born susceptible, the continuous function gi(x!, y!, z')
models recruitment and also death of susceptible members. It is as-
sumed that g’ is r — 1 times continuously differentiable. The n x n
matrix —V! describes the transitions between infected classes as well
as removals from infected states through death and recovery. It is
reasonable to assume that all non-diagonal entries of V! are non-
positive, that is, Vi has the Z sign pattern [16]; moreover the sum of
the components of Viu should also be nonnegative for any u > 0. It is
shown in [16] that such a matrix is a non-singular M-matrix, more-
over (V)1 > 0. Furthermore, we let D! be a k x k diagonal matrix
whose diagonal entries denote the removal rate in the corresponding
removed class.

Disease transmission is described by the m x n matrix func-
tion Bi(x,y,z), assumed C—!' on RZ x (RT\{0})xRK, an
element B} (x'.y', 7)) represents transmission between the pth
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susceptible class and the qth infected compartment. The term
(diag(y")B'(x', y', z)x"), thus has the form (y'), Y0_; B) q()g, P €
{1,...m}. For each pair (p, q) € {1,...m} x {1,...n} we define a non-
negative n-vector )}, ; which distributes the term ('), ,(x)q into
the infected compartments; it necessarily holds that Z}Ll (n},,q)j =1.
Henceforth, individuals who enter the jth infected class when turn-
ing infected are represented by > 7' 1 >70_; (17} ¢); ))p B) g (X')g, Which
allows us to interpret the inflow of newly infected individuals into
xtas Fi(x', ', Z)x with (Fjq = 0L (1) ¢)i0)aBp g Ja € {1,...1n}.
Recovery of members of the gth disease compartment into the pth re-
moved class is denoted by the (p, g)th entry of the k x n nonnegative
matrix Z'.

In case of disconnected regions, we can formulate the equations
describing disease dynamics in regioni,i € {1,...r}, as

—x' = ]-"(x',y',z’)x' — Vixt

dt
c(ljtyi =g,y 7) - diag(y)B'(x, y', Z)x!,
%z" = —DiZ + Z'x\. (L)

Due to its general formulation, our system is applicable to describe
a broad variety of epidemiological models in the literature. This is
illustrated with some simple examples.

Example 1. Multigroup models

Epidemiological models where, based on individual behavior, mul-
tiple homogeneous subpopulations (groups) are distinguished in the
heterogeneous population, are often called multigroup models. The
different individual behavior is typically reflected in the incidence
function as, for instance, by sexually transmitted diseases the prob-
ability of becoming infected depends on the number of contacts the
individual makes, which is closely related to his/her sexual behav-
ior. In terms of our system (L;), such a model is realized if n =m =k
holds and the vector n;,q is defined as its pth component is one with
all other elements zero, meaning that individuals who are in the pth
susceptible group go into the pth infected class when contracting the
disease. A simple SIR-type model with constant recruitment A; into
the jth susceptible class, and u; and y; as natural mortality rate of the
jth subpopulation and recovery rate of individuals in I;, j € {1, ...n},
becomes a multigroup model if its ODE system reads

%sj(t) = Aj =) BiglaOS; O — 115;(®).
q=1

D50 = 2 Bala 050 - 1O - 10,
q=1

d
30O = ¥li© - R ©O.

See also the classical work of Hethcote and Ark [9] for epidemic spread
in heterogeneous populations.

Example 2. Stage progression models

These models are designed to describe the spread of infectious
diseases where all newly infected individuals arrive to the same
compartment and then progress through several infected stages un-
til they recover or die. If we let U};,q =(1,0,...0) for every (p,q) €
{1,...m} x {1,...n} then Eq. (L;) becomes a stage progression model.
The example

50 = A~ Y Bla©5O) - .50
q=1

SO = Y Bla©5O - il O - i O,
q=1

%12 (&) = yili (£) = Y22 (t) — pala (),

: :
aln(t) = )/n—lln—l(t) - ynln(t) - ll«nln(t),

%R(t) = Yaln(£) — /“LRR(t)

provides such a framework with one susceptible and one removed
class. The more general model presented by Hyman et al. [10] consid-
ers different infected compartments to represent the phenomenon of
changing transmission potential throughout the course of the infec-
tious period.

Example 3. Multistrain models

Considering more than one infected class in an epidemic model
might be necessary because of the coexistence of multiple disease
strains. Individuals infected by different subtypes of pathogen belong
to different disease compartments, and a new infection induced by
a strain always arises in the corresponding infected class. Using the
interpretation of (np,q) in Eq. (L;), this can be modeled with the choice
of (n;')vq)q =1,pef{l,...m}, ge{1,...n}. However, it is not hard to
see that the model described by the system

50 = A=Y Baly 050 - 1,50
q=1

Sh0 = BSOLO - hO - wh©. =1

SRO =Y yila®) — 1RO
q=1

also exhibits such a structure. van den Driessche and Watmough [16]
refer to several works for multistrain models in Section 4.4, and they
also provide a system with two strains and one susceptible class as
an example; though, we point out that their model incorporate the
possibility of “super-infection” which is not considered in our frame-
work.

After describing our general disease transmission model in r sep-
arated territories, we connect the regions by means of traveling with
the assumptions that travel occurs instantaneously. We denote the
matrices of movement rates from region j to region i, i,j € {1,...7},
i #J, of infected, susceptible and removed individuals by A, A}
and A7, respectively, which have the form A} = diag(a ;. ... oy ),

i _ diag(al i i _ diag(ol i _
Ay = dlag(ayvl,... yom) and Az = dlag(azvl,...azﬂk), where all en
tries are nonnegative. For connected regions, our model in region

ireads

—x = F Y 2 - VI =Y A YA,

de . -
j=1 j=1
J# J#
G =gy, 2) —diag()B' (', y', 2 DOAY Y AYY,
j=1 j=1
i i
d . o o LR L
az’ =-DZ+7Z - Y A7+ AlZ. (T;)
j=1 =1
i i

3. Disease free equilibrium and local reproduction numbers

In the absence of traveling, i.e., when a}{_, aj"{"_, ag, =0foralli,je
{1,...r}, the equations for a given region i are independent of the

equations of other regions. We assume that for each i, the equation

2'0.y5.0)=0
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has a unique solution y{) > 0; this yields that there exists a unique
disease free equilibrium (0 ¥o- 0)inregioni, since x;; = 0 and the third
equation of (L;) 1mp11es z;, = 0. We also suppose that all eigenvalues of
the derivative gy,. o, yo, 0) have negative real part, which establishes

the local asymptotic stability of (y},, 0) in the disease free system

d

dty =g'0.y". 7).
d i_ i
az_—Dz.

When system (L;) is close to the disease free equilibrium, the dynamics
in the infected classes can be approximated by the linear equation
%xi = (F' — V)X,

where we use the notation F' = 7(0, yi, 0). The transmission ma-
trix F represents the production of new infections while Vi describes
transition between and out of the infected classes. Clearly F! is non-
negative, which together with (V)~! > 0 implies the non-negativity
of Fi(Vi)~1. We recall that the spectral radius p(A) of a matrix A > 0
is the largest real eigenvalue of A (according to the Frobenius-Perron
theorem, such an eigenvalue always exists for non-negative matrices,
and it dominates the modulus of all other eigenvalues). We define the
local reproduction number in region i as

pE VY.
In region i, the stability of the disease free fixed point is determined by
the eigenvalues of the Jacobian of Eq. (L;) evaluated at the equilibrium.
It is not hard to derive that the dominant eigenvalue of F' — V' gives

the dominant eigenvalue of the Jacobian. Using the definition of R,
the next result can be deduced from [16].

Proposition 1. The point (0, yg, 0) is locally asymptotically stable in
Eq. (L) if R! < 1, and unstable if Rt > 1.

If the regions are disconnected, the basic (global) reproduction
number arises as the maximum of the local reproduction numbers,
hence we arrive to the following simple proposition.

Proposition 2. The system (Ly)- (L) has a unique disease free equilib-

rium E0 = (0, yO, ....0.yp. 0), which is locally asymptotically stable if
RE <1 and is unstable if RE > 1, where we define
RE = maxR'.

1<i<r

Let us suppose that all movement rates admit the form a,{ =

a-cl ,aj =a- cj o =, where the nonnegative constants

c;{ , y and ¢! represent connectivity potential, and we can think
of o >0 as the general mobility parameter. Using the notation
dlag(cw 1+---Civ.pn) makes Ay, = aCyl, w € {x,y. z}. With this for-
mulatlon, we can control all movement rates at once, through the
parameter . Moreover, it allows us to rewrite systems (T;) - (T;) in

the compact form

d
— X = X 1
X =T (1)
with X = (Xl,y1 . 21, XY Zr)T e Rr+m+k)  qpd T = (Tl.x’ T],y’

7-1.2’ LT T, 7—r.z)T ‘R x Rr(n+m+k) N Rr(n+m+k)‘ where 7—1’.x‘ 7—1‘,y
and 7% are defined as the right hand side of the first, second
and third equation, respectively, of system (T;), i€ {1,...r}. We
note that 7 is an r—1 times continuously differentiable func-
tionon (R x R% x (R \ {0}) x R’i x - x R x (RT\ {0}) x R’i), and
Eq. (1) gives system (L1)-(L;) for@ = 0
As pointed out in Proposition 2, the point Eof = (O,y}),O,

0,yp. 0) is the unique disease free equilibrium of (Ly)-(Ly). Since this

system coincides with (T;) - (T;) for @ = 0, it holds that 7 (0, E ) =
that is, ng is a disease free steady state of (T;) - (T;) when o = O

and it is unique. The following theorem establishes the existence of a
unique disease free equilibrium of this system for small positive «.

Theorem 3. Assume that the matrix ( ) 0,E f) is invertible. Then,
by means of the implicit function theorem there exists an g > 0, an
open set Uy containing Eof, and a unique r — 1 times continuously differ-
entiable function fo = (fa. fyr. fa. .- g Sy Sp)T 2 [0, a0) — Up such
that fp(0) = E(d)f and T («, fo()) = 0 for o € [0, otg). Moreover, «g can

be defined such that fy is the unique disease free equilibrium of system
(T1)-(Tr) on [0, o).

Proof. The existence of fp, the continuous function which satisfies
the fixed point equations of (1) for small «, is straightforward so it
remains to show that it defines a disease free steady state when « is
sufficiently close to zero.

We consider the following system for the susceptible classes of
the model with traveling

d ' . i o
) =800 -3 aGy + 3 aqly.

J#1 J#1
2)
d r : r .
G =€0.y.0-3 aGy + ) aCy.

j=1 j=1
j#r j#r

The Jacobian evaluated at the disease free equilibrium and o =0

reads diag(g;,i (0, yg. 0)), its non-singularity follows from the assump-

tion (made earlier in this section) that all eigenvalues ofg)"/i (0, yé, 0),

i e {1,...r}, have negative real part. We again apply the implicit func-
tion theorem and get that in the absence of the disease, the suscep-
tible subsystem obtains a unique equilibrium for small values of «.
More precisely, there is an r — 1 times continuously differentiable
function fg’ (o) e R™ which satisfies the steady-state equations of
(2) whenever « is in [0, &g) with & close to zero, and it also holds
that f;y(O) = (ya, . .y{))T. On the other hand, we note that the point
(o, (fg’)l, 0,...0, (f;y)r, 0)T is an equilibrium solution of system (T;)-
(Tr), and by uniqueness it follows that fy = (0, (fg’)l, 0,...0, (f;y)r, o),
and necessarily (fy(l), . 'fyf) )7 :fg’, for o < min{wg, &p}. By continuity
it is clear from fyg ©0) :yg >0,ie{1,...r}, that og can be defined

such that fy is nonnegative, and thus, it is a disease free fixed point of
(T1)~-(T;) which is biologically meaningful. O

If E0 is locally asymptotically stable in system (L;)-(L;) then

("T) (0 E ) has only eigenvalues with negative real part, and there-
fore is mvert1ble By continuity of the eigenvalues with respect to
parameters, all eigenvalues of ( ) (o, fo(@)) have negative real part

if « is sufficiently small. Similarly, if EO is unstable and ( ) o, E )
is non-singular then for « close enough to zero, fo(cr) has an eigen-
value with positive real part and thus, is unstable. We have learned
from Proposition 2 that Rg works as a threshold for the stability of
the disease free steady state for « = 0, and now we obtain that this
is not changed when traveling is introduced with small volumes into
the system.

Proposition 4. There exists an of >0 such that fy(«) is locally
asymptotically stable on [0, ) if RE <1, and in case RE > 1 and

det (‘”’) (0, E ) # 0, oy can be chosen such that it also holds that fo (o)
is unstable for o« < o).
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4. Endemic equilibria

Next we examine endemic equilibria (&', §', 2), & = 0, of system
(L;). We assume that the functions and matrices defined for the model
are such that either W' = 0 or W > 0 holds for w € {x,y, z}, that is,
in region i if any of the infected (susceptible) (removed) compart-
ments are at positive steady state then so are the other infected (sus-
ceptible) (removed) classes. Endemic fixed points thus admit & > 0,
which implies §# > 0and 2’ > 0. Indeed, the equilibrium condition for
system (L;)

—Dizt + Zix' = 0+

and Z' > 0, Z! £ 0 gives 2! £ 0 if & > 0, so our assumption above im-
plies that Z! is at positive steady state in endemic equilibria. On the
other hand, § = 0 would make F! = 0, so using the non-singularity
of Vi and the first equation of (L;), V&' = 0 contradicts & > 0. En-
demic equilibria of the regions can thus be referred to as positive
fixed points.

Without connections between the regions, let region i have e; > 1
positive fixed points (&%, 3%, 2))y, ... (&%, §, Z'),,. Then the disconnected
system (L1)-(L;) admits ([Ti_;(e; + 1)) — 1 endemic equilibria of the
form EE? = (EE1, ...EEp), EE; € {(0,y}.0). &, ¥, 2, ... ®. 9. 2)e,},
and EEY # (0, y0 . 0,y 0), the disease free steady state. In the
sequel we will use the general notation EE? = (&1, §1,21, .. 8", 9", 2"),
where % = 0 for an i means &', §',2)) = (O,yo, 0). The upper index
‘0’ in EEY stands for @ = 0. We note that 7/(0, EE?) = 0 holds with 7
defined for system (1).

The implicit function theorem is also applicable for any of the
endemic equilibria under the assumption that the Jacobian of system
(1) evaluated at the fixed point and o = 0 has nonzero determinant.
We remark that whenever EEY is asymptotically stable, that is, EE; is

asymptotically stable in Eq. (L;) foralli € {1, ...r}, then (3T> (0, EE®)
has no eigenvalues on the imaginary axis and thus, is nonsingular.

Theorem 5. Assume that the matrix (g—;) (0, EE®) is invertible. Then,

by means of the implicit function theorem there exists an o, an open
set Ug containing EE°, and a unique r — 1 times continuously differ-
entiable function f = (f,ﬂ,fy],le,...f,;r,fyr,fzr)T: [0, ) — Ug such
that f(0) = EE® and T («.f(«)) =0 for a € [0, ag). By continuity of
eigenvalues with respect to parameters, det( ) (0, EE®) = 0 implies

det( )(oz f(@)) #0 for a sufficiently small, thus on an interval

[0, t}) it holds that f(a) is a locally asymptotically stable (unstable)
steady state of (T;)-(T;) whenever EE? is locally asymptotically stable
(unstable) in (L1)-(Ly).

The last theorem means that, under certain assumptions on
our system, for every equilibrium EEC of the disconnected system
(L1)-(L) there is a fixed point f(x), f(0) = EE, of (T;)-(T;) close to
EE® when « is sufficiently small. If EE? has only positive components
then so does f(«), so we arrive to the following result.

Theorem 6. If EEC is a positive equilibrium of (L1)-(L;) then af in
Theorem 5 can be chosen such that f(c«) > 0 holds for o € [0, ag). This
means that the equilibrium EE9 of the disconnected system is preserved
for small volumes of movement by a unique function which depends
continuously on «.

On the other hand, EE® = f(0) will have some zero components
when there is a region i, i € {1,...r}, where & = 0 and 2/ = 0 hold,
that is, the fixed point is on the boundary of the nonnegative cone of
Rr(+m+k) Nevertheless, we recall that EE? is an endemic equilibrium
so there existsaj € {1,...1},j # i, such that ¥ > 0.In the sequel, such
fixed points will be referred to as boundary endemic equilibria. The
biological interpretation of such a situation is that, when the regions
are disconnected, the disease is endemic in some regions but is not
present in others. In this case f(«) may move out of the nonnegative

cone of R'®+Mm+k) 35 v increases, which means that,f(cr)—though is a
fixed point of system (T )-(Tr)—is not biologically meaningful. Hence-
forth, it is essential to describe under which conditions is f(«) > 0
fulfilled. This will be done in the following two lemmas. Before we
proceed, let us introduce a definition to facilitate notations and ter-
minology.

Definition 1. Consider an endemic equilibrium EE® of system

L)-(Ly).

« If there is a region i which is at a disease free steady state in EE?
then we say that region i is DFAT (disease free in the absence of
traveling) in the endemic equilibrium EE?, that is, & = 0.

o If there is a region j which is at an endemic (positive) steady state
in EEC then we say that region j is EAT (endemic in the absence of
traveling) in the endemic equilibrium EE?, that is, & > 0.

Lemma 7. Consider a boundary endemic equilibrium EE® of system
(L1)-(Ly). For the function f(c) defined in Theorem 5 to be nonnegative
for small «, it is necessary and sufficient to ensure that fe; (o) > 0 holds
for all i such that & = 0 in EEO, that is, i is DFAT.

Proof. We recall that in an endemic equilibrium, #% > 0 holds by as-
sumption for any j € {1,...r}, thus for an i with & = 0 the positivity
of fji (@) for small « follows from S 0) = y{) and the continuity of f.
From Eq. (T;) we derive the fixed point equation

Z' 0 ... 0 f)’gl (Ol) fgl((){)
0 z2 ... 0 fgz(Ol) fgz((){)
=M. | . |. 3)
0 O Zr f(r(a) fr(a)
where M, is defined as
Dy + Y adl! —aCl2 —aClr
J#1
e Dy + Y aC? —aCr
M, = j#2
—aCy! —aCr? Dy + Y ol
J#r

All non-diagonal elements of this rk x rk matrix are non-positive,
thus it has the Z sign pattern [16]. Moreover, we also note that in
each column the diagonal element dominates the absolute sum of
all non-diagonal entries since D; > 0,i € {1, ...r}. Then, we can apply
Theorem 5.1 in [5] where the equivalence of properties 3 and 11
claims that M; is invertible with the inverse nonnegative. Using the
non-negativity of Z;, i € {1, ...r}, and Eq. (3) we get that f;; (o) > 0 for
alli e {1,...r} whenever the vector (fy (@). ... f;r (@) is nonnegative.
If¥ > Oinaregionj, meaning that the region is endemic in the absence
of traveling, then for o close to zero it holds that f;; (o) > 0 since f is
continuous and f; (0) = #.1tis therefore enough (though, clearly, also
necessary as well) to guarantee the nonnegativity of f;; (o) for each
region i where & = 0, that is, the region is DFAT. 0O

Lemma 8. Consider a boundary endemic equilibrium EEC of system

Ly)-@Ly). If dx’ (0) > Ois satisfied for the function f defined in Theorem 5

whenever region i is DFAT in EEC, then fui (@) is positive for a sufficiently
small. On the other hand, if there is a region i which is DFAT and for

which X' £-(0) has a negative component, then there is no interval for «
to the rzghtofzero such that f () is nonnegative. Moreover, the derivative

% (0) satisfies the equation

(vi-F) % o) ch (4)

J%‘l
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Proof. From the preceding discussion, the first part of the lemma is
obvious. We only need to derive the formula (4). To this end, consider
a region i where & = 0, this is, i is a DFAT region in EE°. Using the
equilibrium condition 7+ (e, f () = 0, we obtain

d% (f '(far (), fyr (@), for (@)fes (@) = Vs (e0)

- 2“C¥f,}i (@) + 2 aClfy (01))

- d% (F (e (@), f (@), fo (@))fes )
+ F (fa (@), f (@), fs (@) - dfx,( )

v @)y d

J#

~Yed Py di@sYed T =0 )

i i i

where we remark that 7% is differentiable at fixed points since
fji@)>0and 7" e C"~T wheny' # 0. Evaluating Eq. (5) at @ = 0 gives

->
j=1
J#

where we used thatf,; (0) = #,f;;(0) = # and f; (0) = Z forj e {1,...1}
and & = 0. Note that (0, §', 2') is an equilibrium in Eq. (L;) and, since its
component for the infected classes is zero, it equals the unique disease
free equilibrium (0, y}. 0). This makes F/(0,y',2)) = F(0. y, 0), so
with the definition of Fi in Section 3, the above equations reformulate
as

j=1

(Vi ) dfy ©0) =

Before we investigate the solutions of Eq. (4), let us point out
a few things. When introducing traveling, a fixed point of (T;)-(T;)
moves along the continuous function f(c). In the case when there
are regions where the disease is not present without traveling and
the fixed point f has zeros for « = 0, it is possible that f(c) is non-
positive for small positive «. The epidemiological implication of such
a situation is that boundary equilibria of the disconnected system
might disappear when traveling is introduced.

For a boundary endemic equilibrium f(0) = EE?, Lemmas 7 and
8 describe when such a case is realized, and give condition for the
non-negativity of f(«) for small positive «. The Eq. (4) is derived for
ani e {1,...r} for which f,;(0) = & = 0 holds; the right hand side of
Eq. (4) is a nonnegative n-vector with the qth component having
the form (¥, CIg), = S qu(xf)q It is clear that (Z; 1 Cig)g is

(Fo5.2)-v) 5= 4 ) =

i cigl. O

J#i i
positive if and only if there exists a jg € {1,...1},Jq ;éz such that

()?f‘J)q > 0 and cijg > 0, or with words, there is a region j; where the
qth infected class is in a positive steady state in EE?, and there is a
connection from that class toward the qth infected class of region i
(we remark that (%), > 0 implies & > 0, yielding that the region jq
is EAT). We obtain the following theorem.

Theorem 9. Assume that there is a region i, i € {1, ...r}, which is DFAT
in the boundary endemic equilibrium EE? of system (L )-(L;). Then for the
% 0)> 0ifR <1,

and X’ - (0) has a non-positive component ifRl > 1 Furthermore if we
assume that 3, C”xJ > 0, then it holds that ff’ £0) >0 ifRI <1, and

J#
d
f' v (0) has a strictly negative component ifRI > 1.

1

Proof. From the properties of Vi described in Section 2 and the
non-negativity of F/, we get that (V' —Fi), 4 <0 holds for p # g,
hence (Vi — Fi) has the Z sign pattern. Theorem 5.1 in [5] says that
Vi — Flisinvertible and (V! — F')~! > 0if and only if all eigenvalues of
Vi — Fi have positive real part (properties 11 and 18 are equivalent);
or analogously, F' — V! is invertible and (V! — F))~1 > 0 if and only if
all eigenvalues of F! — Vi have negative real part. It is known [16] that
all eigenvalues of the matrix F' — Vi have negative real partif and only
if R < 1, the maximum real part of the eigenvalues is zero if and only
if R = 1, and there is an eigenvalue with strictly positive real part if
and only if R > 1.
We conclude that if R < 1 holds then the equality

df’“ 0= (v F")_1 e

i

derived from Eq. (4) shows that (0) is nonnegative. If the sum on
the right hand side is strictly posmve (which is possible since EE?
is an endemic equilibrium hence there is a region j e {1,...1},j #1,
where ¥ > 0; furthermore the matrix C is also nonnegative), then
det(Vi — Fi)~1 0 yields & (0) > 0

Next we consider the case when R > 1. Theorems 5.3 and 5.11
in [5] state that if A is a square matrix which satisfies (A)p 4 < 0 for
p # q and if there exists a vector x > 0 such that Ax > 0, then every
eigenvalue of A has nonnegative real part. We have seen that Vi —
Fi has an eigenvalue with negative real part if R > 1. Hence, using
the non-negativity of the right hand side of Eq. (4), we get for A =
Vi — Fi that there exists no positive vector x such that (Vi — Fi)x > 0.
Moreover, Theorem 5.1 in [5] yields that there is no x > 0 such that
(Vi — Fi)x > 0; it follows from the equivalence of properties 1 and
18 of Theorem 5.1 that for the existence of such x all eigenvalues of
Vi — Fi should have positive real part. If ¥_; CJ¥ > 0, then we get

i
that df’ 4 (0) should satisfy an inequality of the form Vi Fi)x >0,
Wl’llCl’l in the light of the argument above is only possible if X‘ £-(0) has

a negative component. [

Theorem 9 together with Lemmas 7 and 8 gives conditions for
the persistence of endemic equilibria in system (T;) - (T;) for small
volumes of travel. If the fixed point EEC is a boundary endemic equilib-
rium of system (L;)-(L;) with a DFAT region i (that is, & =f4i(0)=0)
but, once traveling is introduced, to every infected class in i there is
an inflow from another region which is EAT (i.e., if the right hand side
of Eq. (4) is positive), then f(0) = EE? leaves the nonnegative cone of

R+mHR) §f RIS 1, since i"s (0) has a negative component and hence,
so does f;i (o) for small «v. On the other hand, if for every DFAT region
i,ie{1,...r},it holds that the local reproduction number is less than
one, and to each infected class there is an inflow from an EAT region

by means of individuals’ movement, then %(0) > 0 for each such i
implies that the endemic equilibrium is preserved in system (T;) -
(Tr) when « is small.

We understand that there is a limitation in applying the results of
the above stated theorem: to decide whether an endemic steady state
of the disconnected system continues to exist in the system with trav-
eling, we need to know the structure of the connecting network and
require the pretty restrictive property that for eachi e {1, ...r} with

-0, foreachq € {1,...n}thereexistsajq € {1,...1},jq # i,suchthat

(xﬁl ) > 0and CX ¢ > 0.In the next section, we turn our attention to the
case when this property does not hold, that is, there is a region i which
is DFAT and the right hand side of Eq. (4) is not positive (nevertheless,
we emphasize that the sum—Dby its the biological interpretation—is
always nonnegative). We conclude this section with a corollary which
summarizes our findings. The result covers the special case when the
connecting network of all infected classes is a complete network.
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Corollary 10. Consider a boundary endemic equilibrium EE® of system
(L1)-(Ly). Assume that '_; C{& > Oissatisfied wheneveri,i e {1,...r},
J#

is a DFAT region in EEY; we note that this condition always holds if the
constant cﬂ;fq is positive for every j,l € {1,...r}and q € {1, ...n}, mean-
ing that all possible connections are established between the infected
compartments of the regions. Then, in case R! < 1 holds in all DFAT re-
gions i, we get that EE is preserved for small volumes of traveling by a
unique function which depends continuously on «. If there exists a region
i which is DFAT and where R! > 1, then EE® moves out of the feasible
phase space when traveling is introduced.

5. The role of irreducibility of Vi — F!

Knowing the steady states of the disconnected system (L1 )-(L;), we
are interested in the effect of incorporating the possibility of individu-
als’ movement on the equilibria. The differential system of connected
regions (T7)-(T) reduces to (L;)-(L;) when the general mobility pa-
rameter « equals zero, thus whenever the Jacobian of (T;)-(T;) evalu-
ated at an equilibrium of (L;)-(L;) and @ = 0, (g—;) (0, EEY), is nonsin-
gular, the existence of a fixed point f(«) in (T )-(T}) is guaranteed for
small o by the implicit function theorem. Theorem 6 implies that if
f(0) = EEY is a positive steady state of (L;)-(L;) then so is f(c) in (T; )-
(Ty). On the other hand, in case EEC is a boundary endemic equilibrium
and &' = f,;(0) = 0 holds for some i € {1...r}—meaning that region i
is at disease free state (DFAT) when the system is disconnected—then
the continuous dependence of f on « allows that the fixed point might
move out of the feasible phase space as & becomes positive.

In Section 4 we gave a full picture of the behavior of f () for small
« in the case when the condition Y C}& > 0 holds for each region

JA
i which is DFAT (for a summary, see Corollary 10). If this condition is

. . ol
not satisfied, then Theorem 9 yields that the derivative Jg (0) is non-
negative but may have some zero components if R < 1, and though
it cannot be positive if R' > 1, it might happen that it is still nonneg-

ative. Following this argument, it is clear that the problematic case

is when %(0) > 0 and either the derivative is identically zero, or it

has both positive and zero components. In both situations, Lemmas 7
and 8 through Eq. (4) do not provide enough information to decide
whether the boundary endemic equilibrium will be preserved once
traveling is incorporated.

In this section, we investigate the question of under what con-
ditions can the derivative be nonnegative but non-positive, and we
recall that this can only happen if the right hand side of Eq. (4) is not
positive.

5.1. The case when Vi — F! is irreducible

By making an additional assumption on the matrix Vi — Fi, we
prove that the result of Theorem 9 can be improved. More precisely,
if it holds that Vi — F! is irreducible then it is not possible that the
derivative in Eq. (4) has both positive and zero but no negative com-
ponents.

The proofs of the next theorem and proposition follow from ir-
reducible matrix theory (see Lemma A.3 in Appendix A). We remark
that parts of the results of the theorem are to be found in Theorem 5.9
[5], that is, if Vi — Fi is irreducible then Eq. (4) has a positive solution.

Theorem 11. Assume that there is a region i, i € {1,...r}, which is
DFAT in the endemic equilibrium EEY of system (L1)-(L;), and Vi — F! is
irreducible. If ¥;_, CI& # 0, then for the function f,; defined in Theorem
J#
. . i o df.; .
5 it is satisfied that (zfg(’ 0)>0ifR' <1,and #(0) F0ifR' > 1.

o

Proposition 12. Assume that there is a region i, i € {1,...r}, which is
DFAT in the endemic equilibrium EEC of system (L1)-(L;), and Vi — F

dfi

is irreducible. If Y, CJ%i = 0, then =

J#i
; . ; ol e
R!' < 1, and in the case when R' > 1 the derivative digl’ (0) is either zero
or has a negative component.

(0) = 0 is the only solution if

We summarize our findings as follows. We consider every region i,
ie{1,...r}, whichis DFAT in a boundary endemic equilibrium f (0) =
EEC of (Ly)-(Ly). If the derivative in Eq. (4) has some zero but no
negative components, then Lemmas 7 and 8 are insufficient to decide
whether the fixed point f(cx) will be biologically meaningful in the
system of connected regions. In the case when Y_; C{& # 0 (with

1

words, some infected classes of region i have inﬂ(J;N of individuals
from EAT regions), the statement of Theorem 9 can be sharpened if
the extra assumption of Vi — Fi being irreducible holds: as pointed
out in Theorem 11, the derivative in Eq. (4) is positive if R < 1, and
has a negative component if R! > 1. Applying the results of Lemmas 7
and 8, this means that if every DFAT region i has inflow from an EAT
region and Vi — F! is irreducible in all such regions i, then f(x) is a
positive steady state of (T;)-(T;) if R < 1 holds in all DFAT regions.
On the other hand, f(c) is not a biologically meaningful equilibrium
if there is a region where & = 0 and the local reproduction number is
greater than one. For conclusion, we state a corollary which is similar
to the one at the end of Section 4.

Corollary 13. Consider a boundary endemic equilibrium EE° of system
(L1)-(Ly). Assumethat Y,_, C{% + Oissatisfied wheneveri,i  {1,...r},
J

is a DFAT region in EE®; we remark that this situation is realized if each
DFAT region has at least one infected class with connection from an EAT
region. In addition, we also suppose that Vi — F! is irreducible for DFAT
regions. Then, in case R! < 1 holds in all DFAT regions, we get that EE°
is preserved for small volumes of traveling by a unique function which
depends continuously on «. If there exists a region i which is DFAT and
where R! > 1, then EE® moves out of the feasible phase space when
traveling is introduced.

5.2. What if Vi — Fi is reducible?

An n x n square matrix A is called reducible if the set {1,...n}
can be divided into two disjoint nonempty subsets {ji,...js} and
{is+1,...Jn} such that (A);, j, = 0 holds whenever p € {1....s} and
g € {s+1,...n}. An equivalent definition is that, with simultaneous
row and/or column permutations, the matrix can be placed into a
form to have an s x (n — s) zero block. When an infectious agent is in-
troduced into a fully susceptible population in some region i, then—as
pointed out in Section 3—the matrix F! — Vi describes disease prop-
agation in the early stage of the epidemic, as the change in the rest
of the population can be assumed negligible during the initial spread.
If FF — Vi = —(V! — F) is reducible, then without loss of generality we
can assume that it can be decomposed into

i i Rrxr Sr><s

F V N (Ser RSxS)’

where r =n —s, the dimensions of the sub-matrices are indicated
in lower indexes and Ss,; is the zero matrix. This means that there
are s infected classes in region i which have no inflow induced by
the other r =n —s infected classes of region i in the initial stage
of the epidemic (by the expression “inflow induced by an infected
class”, we mean either transition from the class described by matrix
Vi, or the arrival of new infections generated by the infected class
described by F').

In the sequel, we assume that such dynamical separation of the
infected classes is not realized in any of the regions; or with other
words, for each i the matrices F! and V' are defined in the model
such that F' — Vi is irreducible. The biological consequence of this as-
sumption is that whenever a single infected compartment of a DFAT
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region imports infection via a link from the corresponding infected
class of an EAT region, then the disease will spread in all infected
classes of the DFAT region, and not only in the one which has connec-
tion from the EAT region. Furthermore, we note that the irreducibility
of Fl — Vi also ensures by means of Lemma A.3 that the fixed point
equation (fi — Vi)x! = 0 of system (L;) has only componentwise posi-
tive solutions besides the disease free equilibrium. This remark is in
conjunction with the assumption made for the equilibria in Section 4.

The criterion that F' — Vi is irreducible, is satisfied in a wide range
of well-known epidemiological models. However, we remark that our
results obtained in Sections 3 and 4 also hold in the general case, i.e.,
when the matrix is reducible.

6. When the first derivative does not help—DFAT regions with no
connection from EAT regions

We consider an endemic equilibrium EE? of system (L1)-(L;), our
aim is to investigate the solution f(x) of the fixed point equations of
system (T1)-(T;), for which f(0) = EE®, when « is small but positive.
The case of positive fixed points has been treated in Theorem 6. If EEY
is boundary endemic equilibrium, then we assume that the matrix
Vi — Flis irreducible for every DFAT region i; if for each such i it holds
that >, CY% + 0, then Corollary 13 describes precisely under what

J#
conditions is f () a nonnegative steady state. It remains to handle the
scenario when there exists a regioni which is DFATbut 3}, Gi& =0,

1

that is, the region i is disease free in the disconnected sygem and so
are all the regions which have a direct connection to the infected
classes of i in (T7)-(T;). We emphasize that under “direct connection
fromaregion j toi” we do not necessarily mean that all infected classes
of i have an inbound link from j; in the sequel, we use this term to
describe the case when C,{ = diag(c Ceto - ..Cy ) # 0, that is, there is an
infected compartment of j which is connected to i. See Fig. 2 which
further illustrates the definition.

Henceforth, we proceed with the case when there is a region i
which is DFAT in EE® and has no direct connection from any EAT
regions. For such i, Proposition 12 yields that our approach of in-
vestigating the non-negativity of f(«) using Lemma 8 and the first
derivative from Eq. (4), fails. However, we assume that X' £0)=0
holds for all DFAT regions where &! =fu(0)=0and Y, C,b(xf #0,

j#l
since if the derivative has a negative component then—#as pointed
out in Corollary 13—f () moves out of the feasible phase space when
o increases, and there is no further examination necessary. First we
state a few results for later use.

Lemma 14. For any positive integer N, N < r — 1, it holds that

d fx’ (0) NZ Cl] d f;cl

i

V' —F) 0

whenever regioni,i € {1, ...r}, is DFAT in the boundary equilibrium EE°,

and dﬁ’ 7 (0)=0foreveryl <N.

Proof. Incase N = 1, the equation in the proposition reads as Eq. (4).
= 0.Wereturn to Eq.(5) to obtain
the Nth derivative of the equatlon of x'in Eq. (T;) as

davy
daN

- iaCff,?f (@) + Z aClfy (Ol))

J# J#

B Z( )a Gt F e @), fy(@). @)

(f H(far (@), fs (@), for @)y (@) = Vifii (@)

dfx’ ( )

Region 1 Region 2 Region 3

ozege

Fig. 2. We consider three regions with three infected classes (r =3, n = 3). Every
infected class of region 2 has an inbound link from region 3 (green arrows). This means
that region 2 has direct connection from 3, but 3 also has direct connection from 2
since ¢34, ¢34 > 0, that is, there are links from the second and third infected classes of
region 2 to the corresponding compartments of region 3 (blue arrows). Region 1 has
no direct connection from either 2 or 3, and there is direct connection from region 1
to 2 (red arrow) but not to 3. On the other hand, 3 is reachable from 1 because there
is a path from 1 to 3 via region 2. Region 1 is not reachable from any of the other two
regions. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

ldf;cx dN’ Cﬁ d’f;(i
-V daN() Z( )Z daNl) da’(a)

N i
N dN- aC]) d fx,
+Z(,) S =0 (6)
1=0 i1
J#
As fy,- (o) > 0, it is satisfied by assumption that 7! is r — 1 times con-
tinuously differentiable in the respective point. Clearly % =0
whenever N — [ > 2, moreover d("‘c ) C S0 lf X’ (0) = 0 holds for
alll < NthenEq.(6)ata =0 reads
Vi) 3T ) - NZC" " o), 7
J%l
since (f;i(0), f;i(0), £ (0)) = (0, ), 0) and F' = F(0,y;,0). O

Our interpretation of the term “direct connection from a region j to
the infected classes of i” can be extended to the expression “path from
a region j to the infected classes of i”, representing a chain of direct
connections via other regions, starting at j and ending in i. Fig. 2
provides an example for three regions, where there is a path from
region 1 to 3 via 2 (this is, ¢2};, ¢ > 0). We note, however, that the
path does not necessarily consist of the same type of infected classes
in the regions. Considering the above example, infection imported to
region 2 via the link from x} to x% spreads in other infected classes of
region 2 as well, by means of the irreducibility of V2 — F2 (represented
by dashed arrows in the figure). This also enables the disease toreach
region 3 via the links from x% to xg and from x3 to x3 We also remark
that the notation “path from a region j to the infected classes of i”
includes the special case when the path consists of i and j only, i.e.,
there is a direct connection from j to i. We now define the shortest
distance from EAT regions to a DFAT region.

Definition 2. Consider a region i which is DFAT in the boundary en-
demic equilibrium EE®. We define M; as the least nonnegative integer
such that in system (T;)-(T;) there is a path, starting with an EAT
region j, ending with region i, and containing M; regions in-between.
If there is no such path then let M; =r — 1.

If there is a direct connection from an EAT region j to the infected
classes of i then this definition implies M; = 0. We also note that
M; < r — 2 always holds whenever the path described above exists.
In the sequel, we omit the words “infected classes” from the expres-
sion “direct connection (path) from j to i” for convenience. Clearly,
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infection from endemic regions to disease free territories are never
imported via links between non-infected compartments of different
regions, so to decide whether the disease arrives to a region it is
enough to know the graph connecting infected compartments.

We say that “region i is reachable from region j” if there is a path
from (the infected classes of) j to (the infected classes of) i. Directly
connected regions are clearly reachable. Now we are in the position
to prove one of the main results of this section.

Theorem 15. Assume that in the boundary endemic equilibrium EEO,
there is a region i which is DFAT and for which R! > 1 holds, furthermore
iis reachable from an EAT region. Then there is an o* > 0 such that f ()
has a negative component for o € (0, «*), meaning that EE® moves out
of the feasible phase space when traveling is introduced.

Proof. The proof is by contradiction. We assume that EEC is such
that there are regions ip and i, where %0 =0, &+ > 0, R0 > 1 and
ig is reachable from i,, moreover there exists an o** > 0 such that
f(a) >0 for 0 <« < o**, this is, the equilibrium EE? = f(0) of the
disconnected system remains biologically meaningful in the system
with traveling This also means that for all j with & = 0 it necessarily

holds that (0) > 0.

Ifregions igandi,,asdescribed above, exist then there is a minimal
distance between such regions, i.e., there exists a least nonnegative
integer L < r — 2 such that there is a path (connecting infected com-
partments of regions) from an EAT region via L regions to a region
which is DFAT in (L1)-(L;). In the case when L = 0 Theorem 11 imme-
diately yields contradiction, so we can assume that L > 1. We label
the regions which are part of the minimal-length path by i, i, ... i},
it ;. where X = &1 = .. &% = 0,8+ > 0, moreover note that R! > 1
and RY <1 hold forj=1,...L. See the path depicted in Fig. 5.

The fact that 81 = f;;ii (0) = 0 gives

dfx"i _ - ifJg
da ©= XG50

it

(v - Fi)

by Lemma 14. The equation has a non-zero right hand side since

R =fi,,(0) > 0,50 Lemma A3 (see Appendix A)and R < 1imply
df
£ il (0) > 0. A similar equation
e Sy
(Vier — Fie) =22 0) = 3 G f 0)

j=1
i
JA 4

follows from &-1 = 0. We note that Mi =1, where M was defined
0 holds for every j such that C'i‘1 / #0.

XL 1 (0)

in Definition 2, hence f;;(0) =

The zero right hand side, LemmaA.3 and R’ <1 yield
so we can apply Lemma 14 to derive

fo]

©)=2 Z i 9 )

JFIL 1

(Vih — FiZ—l)

Ifthereis ajsuch that G-'?  0.and % (0) # 0, then fy;(0) = O would
mean that f; (o) has a negative component for small &, and f () is not
in the nonnegative cone, which violates our assumption that f(«) >
0 for « sufficiently small. Thus, each such derivative is necessarily

nonnegative, moreover we have showed that "L (0) > Ois satisfied,
which makes the right hand side of the last equation positive. This,

d2f 4 .
with the use Lemma A.3, implies dﬁfx’l (0) > 0since R'i-1 < 1.
Next we consider region i; _,, where M,~* = 2.For any region jfor

which €27 4 0, it holds that M; > 1, thus f,d ©0)=0and 99 (0) =

hold by Lemma A.4 (see Appendix A) and the assumption that f (&) > 0
for small «. Thus, the right hand side of equation

dfy, i
dxia(0)= ; G fw(0)

JAT 5

(V"Lz — Fizfz)

is zero, from R-2 < 1 and Lemma A.3 it follows that
and thus Lemma 14 yields

fo 2 (0) 2 Z CIL 24 dfo (0)

J#‘L 2

fo 2 (0) —

(V"Lz — F"ifz)

2
fXL 2

We get again that (0) = 0 since, as we have seen above, all

derivatives in the right hand side are zero and R'i-2 < 1 also holds, so
Lemma A.3 makes the second derivative of fgitfz zero. Finally, using

dlf
that "L 20)=0forl=0,1,2, we derive

fo 2 (0) 3 Z ClL 2 d fo (O)

J#’L 2

(Viffz — F’Aifz)

2f -
where CL 2 #0 and XL L(0) > 0. If there is a j, G270, for

Wthh (O) has a negative component then so does f;; (o) and f (o)

for small o since —% (O) 0 and f;;(0) = 0, which is a contradiction.
Otherwise, the right hand side of the last equatlon is positive (it holds

d%f a3f
that XL L (0) > 0), thus the positivity of "L 2(0) follows from
Ri-2 < 1 and Lemma A.3.

d‘“f

gt (0) > Ofor

Following these arguments, one can prove that aal +1

[=0,1,.

..L —1(weremarkthatfor! =L — 1 this reads ” 0) > 0),

k

d*f
and that for any fixed | and k < I, it holds that XL L(0)=0. We
note that M; = L, which according to Lemma A.4 also means that

df”’ +(0) =0 for [ < M; =L, since f () > 0 holds for small @ by as-
sumptlon Henceforth, we can apply Lemma 14 and derive

d-fy ~ ij dYfy
V- Sk O=1 ' Gho)

dat

J#

dlf.-
“H0=0

— 1. The assumption f(a) > 0 for small

M; = Limplies M; > L — 1forany j for which C,'-gj # 0, hence
is satisfied for [=0,1,...L

a yields f () > 0 for any region j with Cij £0, so d(x’- 7 (0) #0is

dLf
impossible; this together with dof'[ (0) > Oresults in the positivity of
the right hand side of the above equation. As R > 1 holds, it follows

from Lemma A3 that 2 (0) has a negative component, but we

d L+1

=0when0 < I <L, so for small « it follows that
fi@) #0,a contradiction. The proof is complete. O

Theorem 15 ensures that for a boundary endemic equilibrium
f(0) = EE of (Ly)-(L;), the point f(«) defined by Theorem 5 will not
be a biologically meaningful fixed point of system (T )-(T;) if there is
a DFAT region i in EEC where R! > 1 and which is reachable from an
EAT region in EE°. The question, whether the condition R! > 1 is cru-
cial, comes naturally. We need the following result which is proved
in Appendix A.

Lemma 16. Assume thatin the boundary endemic equilibrium EE, there
is no DFAT region j for which R/ > 1 and M; < r — 1. Then for a region i

which is DFAT, it holds that df’ +(0) =0 forl < M;




210 D.H. Knipl, G. Rést/ Mathematical Biosciences 258 (2014) 201-222

The next theorem is the key to answer the question stated earlier,
that is, an endemic equilibrium f(0) = EE° of (L1)-(L,) will persist in
the system of connected regions via the uniquely defined function
f(a) for small volumes of traveling if R! < 1 holds in all DFAT regions
of EEY9 which are reachable from an EAT region. In what follows, we
prove that f;; has a positive derivative whenever region i is DFAT with
local reproduction number less than one, and reachable from a region
Jjwhich is EAT. Then, with the help of Lemma 16, the statement yields
that f (o) is positive for small «, and thus f(«) is also positive by
Lemma 7.

Theorem 17. Assume that in the boundary endemic equilibrium EE°,
there is no DFAT region j for which R) > 1 and M; <1 — 1. Then for a

DFAT region i where R < 1, it holds that M+1 L0)>0ifM; <r—1.

Proof. The proof is by induction. For any ig such that 8o = 0, Rlo < 1

and M;, =0, Theorem 11 ylelds 10 (0) > 0. Whenever M;, =1 is

satisﬁed in a region i; where &1 = 0 and Ri1 <1, Lemma 16 implies
df, ,1

(0) = 0, so using Lemma 14 we derive

) o d2fy " i dfy
(Vv —Fn )—d({l"z 0)=2 Z C’I‘Mdiaj (0).
i

For every j with C,iJ J # 0 it holds that M; > 0 (we remark that M is
well-defined for such regions because M;, # 0 implies that each such

Jj is a DFAT region). If either M; = r — 1 (this always holds if Ri>1)

df.;
or 1 <M; <r—1, then Lemma 16 gives %(0):

M; = 0 then necessarily R ifg (0) > 0 holds by induction.
Nevertheless, the positivity of the right hand side of the last equa-

tion is guaranteed because we know from M; =1 that there must

0, and whenever

. d2
exist a j with M; = 0 and R/ < 1, hence the inequality dé; 0)>0
follows by using Lemma A.3.
We assume that the statement of the theorem holds for an L,

dL+
0 <L<r—2thatis, — ——ik L(0)> 0ifM; =L, &L = 0and Rit < 1. We

take a region i;.q, M; . =L+ 1, &+1 =0 and Ri+1 < 1, and obtain
the equation

41

Sarro-een Y avgho

J#‘Lﬂ

(ViLﬂ FiL+1 )

by using Lemmas 16 and 14. M;

41

# 0, and by examining the derivatives on the right hand
. dL+1f.
side of this equation, we get from Lemma 16 that dauf’i} (0) = 0 for

eachj, C1Y 2 0, whenever M; > L+ 1. The case when M = L is only

=L+ 1 makes M; > L for each j

where G/ iL41J

possible if ®R/ < 1, and for each such j the mequallty M 4.(0)> 0
holds by induction. Hence, the right hand side of the last equation is

positive because all the derivatives in it are nonnegative, and M;,

L+ 1 implies that there is aj with M; = L. We apply Lemma A.3 to get
L+2

d o .
that % (0) > 0, which completes the proof. O

Let us now summarize what we have learned about steady states
of system (T7)-(T,) for small volumes of traveling (represented by
the parameter «) between the regions. With some conditions on the
model equations described in Theorems 3 and 5, for every equilibrium
of the disconnected system there exists a unique continuous function
of @ on an interval to the right of zero, which satisfies the fixed point
equations of (T;)-(T;). As discussed in Theorems 3 and 6, fp corre-
sponding to the unique disease free equilibrium of (L1)-(L;) defines
a disease free fixed point for « € [0, «p), moreover if f(0) is positive
then f(«) > 0 holds for « sufficiently close to zero. With other words,

the connected system (T;)-(T;) admits a single infection free equilib-
rium and also several positive fixed points for small «, regardless of
the connections between the regions.

On the other hand, the structure of the connection network plays
an important role when we consider boundary endemic equilibria,
i.e.,, when some regions are disease free for o = 0. If there are regions
i and j such that i is reachable from j then by increasing «, the fixed
point f(c) moves out of the nonnegative cone whenever f(0) = EE°
is such that & =0, R > 1, and & > 0, that is, j is an EAT region and
i is a DFAT region with local reproduction number greater than one.
However, a boundary equilibrium of the disconnected system will
persist through f for small volumes of traveling in (T;)-(T;) if the local
reproduction number is less than one in all DFAT regions which are
reachable from EAT regions. These last conclusions are stated below
in the form of a corollary.

Corollary 18. Consider a boundary endemic equilibrium EE® of system
(L1)-(Ly). Assume that there is a DFAT region i in EE® with R! > 1, and
i is reachable from a region which is EAT. Then EE® moves out of the
feasible phase space when traveling is introduced. On the other hand, if
there is no such region i in the system, then EE? is preserved for small
volumes of traveling, and the equilibrium is given by a unique function
which depends continuously on «.

7. Application to an HIV model on three patches

Human immunodeficiency virus infection/acquired immunode-
ficiency syndrome (HIV/AIDS) is one of the greatest public health
concerns of the last decades worldwide. UNAIDS, the Joint United
Nations Programme on HIV/AIDS reports an estimated 35.3 (32.2-
38.8) million people living with HIV in 2012 [11]. Though the data
of 2.3 (1.9-2.7) million infections acquired in 2012 show a decline in
the number of new cases compared to 2001, enormous effort is de-
voted to halt and begin to reverse the epidemic. Developing vaccine
which provides partial or complete protection against HIV infection
remains a striking challenge of modern times. IAVI—The International
AIDS Vaccine Initiative [15] believes that the earlier results on com-
bining the two major approaches of stimulating antibody production
and HIV infection clearance in the human body provides grounds for
optimism and confidence in designing HIV vaccines.

There are several compartmental models (see, for instance,
[3,4,12,13]) which deal with the mathematical modeling of HIV infec-
tion dynamics. The following model for the transmission of HIV with
differential infectivity was given by Sharomi et al. [14]

dts — (1 —p)A — uS—AS+ ySy.

d
d
asv = pA — uSy — qASy — ySv,
d
a}ﬁ = p1AS — (u + o1)Y1,
d
ayz = P2AS — (U + 02)Y2,
d
EW1 = m1qASy — (1 + O101)Wh,
d
awz = m2qASy — (i + 6202)Ws,
d
aA = 01Y1 + 02Y2 + 6101 Wi + 0200 W5 — (§ + A, (H)

where the population is divided into the disjoint classes of unvac-
cinated (S) and vaccinated (Sy) susceptibles, unvaccinated infected
individuals with high (Y;) and low (Y, ) viral load, vaccinated infected
individuals with high (W) and low (W,) viral load, and individuals
in AIDS stage of infection (A). Note that instead of the notation X and
V of the unvaccinated and vaccinated susceptible classes applied in
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[14], we use S and Sy to avoid confusion with the matrix V! and vector
X used in Section 3. The total population of individuals not in the
AIDS stage is denoted by N, N = S + Sy + Y1 + Yo + W; + W,. Disease
transmission is modeled by standard incidence, with transmission
coefficients 81 and B, in the infected classes with high and low vi-
ral load. The force of infection A arises as A = ij=1 (ﬂj% + ﬁjsj%)
Relative infectiousness of members of the Wy and W, compartments
is represented by s; and s,. Parameter A is the constant recruitment
rate into the population, while p stands for natural mortality. Sus-
ceptible individuals are immunized by vaccination with probability p,
and y is the rate of waning immunity. In the classes of infected indi-
viduals with high and low viral load the progression of the disease is
modeled by o7 and o,. Modification parameters 6; and 6, are used to
account for the reduction of the progression rates in W; and W5. The
disease-induced mortality rate § is introduced into the equation of A,
the individuals in the AIDS stage. All model parameters are assumed
positive.

It holds that the system (H) has a unique disease free equi-

librium Eff = (So, (Sv)o, X0, Ag) with Sp = LELDIIA 0, (5)p =
pA

iy > 0 and Ag =0, Ag = 0, which is globally asymptotically sta-
ble in the disease free subspace. Moreover, by Lemma 3 [14] ES’f
is a locally asymptotically stable (unstable) steady state of Eq. (H)
if Ry <1 (Ry > 1), where the reproduction number Ry is defined

by

1 ( B1Xo

ByVp
RH = —
i )

o +02) O+ 607

with Ng =So + (Sv)o and By = Br02(iu 4+ 01) + B1p1(1L +02), B2 =
q(mas282 (1 + 0101) + w151 B1 (U + 0207)). It easily follows from the
model equations that in an equilibrium, an infected compartment is
at a positive steady state if and only if all components of the fixed
point are positive. According to Theorem 4 [14], system (H) has a
unique endemic equilibrium if Ry > 1, nevertheless positive fixed
points can exist for Ry < 1 as well. Under certain conditions on the
parameters, the model exhibits backward bifurcation at Ry = 1, that
is, a critical value R¢ < 1 can be defined such that there are two dis-
tinct positive equilibria for values of Ry in (R, 1) (see Sharomi et al.
[14] for details).

We consider r patches and investigate the dynamics of HIV in-
fection by incorporating the possibility of traveling into model (H).
In each region, the same model compartments can be defined as
in the one-patch model. Upper index ‘7’ is used to label the classes
of region i, i e {1,...r}. In terms of our notations in system (T;),
n=4m=2, k=1 and we let x' = (Yi, Vi, Wi, W), yi = (S|, S} )T,
Zi=Al. The equalities D'=—(§'+u)z, Zi = (o}, 0}, 0l0},0i0))

and
g"(xi,yi,zi)=((] _,pi?Ai)+<_Mi ” _>y",
pA 0 —yi-u
w+oi 0 0 0
| 0 e 0 o |
0 0 wi+bici 0
0 0 0 w +6io}
o1 (P B SBL SiB
B:M@m wgwwgmwg'
n,. = (p}. 05.0.0). 15, = (0.0, 7}, 7})" (8)

put the multiregional HIV model (H1)-(H;) into the form of system
(L1)-(Ly), moreover F' arises as

F =
BipiSy  Bieish  siBieiSh  siBiniSh
No No No No
BipiSy  BiplSy  SiBieiSh  SBLALS,
No No No No
Amd(Sh)e Fmid(Sv)y AT SV)o 2P0 (Sh)o
No No No No
Pmd Sy Bimad(Sv)y 1AM (SV)o 2P (Sy)o
No No No No

By introducing parameter cy, to represent the connectivity potential
from classwi tow!, w € {S, Sy, Y1, Yo, Wy, Wy, A}andi,j e {1,...r},i #
Jj, @ as general mobility parameter, system (H;)-(H;) can be extended
to (T1)-(Tr) in the same way as described in Section 2 to get an epi-
demic model with HIV dynamics in r regions connected by traveling.

7.1. Disease free equilibrium for arbitrary volumes of travel

We recall that system (H) has a single disease free fixed point
(0, yo, 0) with yo = (So, (SV)O)T, which is locally asymptotically stable
if Ry < 1 and unstable if Ry > 1. This also means that the system of
the regions connected with traveling (T; )-(T;) admits a single disease
free steady state when the general mobility parameter « equals zero.
We now show that for the HIV model, the connected system has a
disease free equilibrium for every & > 0 as well.

Theorem 19. The connected system of r regions with HIV dynamics
admits a unique disease free equilibrium for any o > 0. It also holds that
the classes of individuals in the AIDS stage are at zero steady state.

Proof. When the infected classes are at zero steady state in the HIV
model, we obtain the fixed point equations

p'A S @)
: = Mg, : ,
prAT §vr(a)
S'@)  (a-pHa! $'@)
diag(y?) - + : =Ms| - |. 9)
SV (@) (1—-pHAT S(@)
Al@)
0=M|
Ar(@)
with
r j1 1 1 1
Tjjad +i 4y
Msv = ,
—acy! Yl 4 yT
J#r
Sl ach + ! —aclr
J#1
Ms = : : ;
—aC§1 Z;;l acér_’_ur
J#T
Y o+l + 81 —ac)
A1
My =

—acy! Y ady 4+ 8"
J#r
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Similarly as discussed in Section 4 for the matrix M, Theorem 5.1 [5]
implies that the inverses of Ms,,, Ms and My exist and are nonnegative.

It immediately follows that Ai(@) = 0, Sy’ (@) > 0 and Si(@) > 0, i €
{1, ...r}, for the unique solution of Eq. (9). O

7.2. Endemic equilibria

In Section 4 we required X > 0 (that is, & > 0 with both zero and
positive components not possible) for endemic steady states. We re-
call that this is fulfilled in the HIV model since the model parameters
are assumed positive. At positive fixed points, g' and B defined in
Eq. (8) are infinitely many times continuously differentiable, hence
it is possible to derive Eqs. (4) and (7). The analysis in Section 6 has
been carried out with the extra condition that the matrix Vi — Ff is
irreducible, which is indeed the case for the HIV model.

Theorem 5 contains condition on the non-singularity of the Jaco-
bian of the system evaluated at an endemic fixed point and « = 0. The
matrix (g—;) (0, -) has block diagonal form, with the block (%) ©,)
corresponding to region i, where we denote X' = (x', ', zZ)T and 7' =
(7ix, 74 72T This gives det (g—;) ©,) =TT, det (g;) (0, "), so
we conclude that the Jacobian of the system of r regions is non-
singular at a fixed point if and only if det (g;) (0,-) # 0 holds in
each region i. It is not hard to see that the matrix (%) (0, -) gives
the Jacobian of (H;) without traveling, that is, it suffices to consider
the steady state components in each region separately. The Jacobian
evaluated at a stable equilibrium has only eigenvalues with negative
real part, which guarantees the non-singularity of the matrix. On the
other hand, in the case when the fixed point is unstable, we only know
that the determinant has an eigenvalue with positive real part, which
does not exclude singularity of the Jacobian.

Itis conjectured from an example of [14] thatif Ry > 1 in the one-
patch HIV model then the positive fixed point is locally asymptotically
stable and the disease free equilibrium is unstable, furthermore in
case the model exhibits backward bifurcation, one of the endemic
steady states is locally asymptotically stable while the other one is
unstable for RL < Ri, < 1. As noted above, the matrix (%) , ) is
always invertible at stable equilibria, and we use the same set of
parameter values as the example in [14] to illustrate a case when the
determinant of (%) (0, -) is non-zero at unstable fixed points. The
continuous dependence of the determinant on parameters implies
that the situation when the Jacobian is singular is realized only in
isolated points of the parameter space. In fact, for ,o§ =03, ,o; =0.7,
0] =045,05 =17, = 085,85 =0.1,5) = 1,s) = 1,7{ = 0.9,7} =
0.1,0; =0.5,0; =0.5,¢' =0.5, u' = 0.05, y' =0.05, A’ =1and p' =
0.999, the condition for backward bifurcation holds and RL < R, < 1
[14], moreover the positive equilibria (X, Vi, &1, Ai); , with (A); =
0.0195 and (5\1')2 = 0.1492 are unstable and stable, respectively, and
the Jacobian evaluated at (8, Sy', A1, A’); is non-singular. For Bl =
1 we have R}{ =1.12 > 1, and the disease free steady state Ez;i =
(Sk. (S}))o. 0. 0) is unstable with non-singular Jacobian.

In the sequel, we assume that the model parameters are set such
that (g—;) (0,-) # 0 at the fixed points and thus the conditions of

Theorem 5 hold. Then, as discussed above, all the assumptions made
throughout Sections 2-6 are satisfied, and we conclude that the re-
sults obtained in these sections for the general model are applicable
for the multiregional HIV model with traveling. We use this model to
demonstrate our findings in the case when r = 3. We assume that the
necessary conditions for backward bifurcation are satisfied in all three
regions. Then each region i can have one (the case when R}{ <RL),
three (the case when RL < Ri, < 1) or two (the case when Ri; > 1)
equilibria, including the disease free steady state. Thus, without trav-

do do do

(a) Reducible network. (b) Irreducible network.  (¢) Complete network.

Fig. 3. Example of reducible, irreducible and complete travel networks for three re-
gions. Though both 1 and 2 are reachable from region 3, by (a) there is no connection
to 3 from the other two regions. Adding a link from 1 to 3 on (b) makes the network
irreducible, though not complete. In the example depicted in (c) the regions are directly
connected to each other, which means that the network is complete and also clearly
irreducible.

eling the united system of three regions with HIV dynamics has a
disease free equilibrium and 1% - 3¥ . 2¢ — 1 endemic steady states,
where for the integers ¢, ¥ and w it holds that 0 < ¢, ¥, w < 3 and
¢ + ¥ + w = 3.1tis easy to check that the possibilities for the number
of equilibria are 1, 2, 3,4, 6, 8,9, 12, 18 and 27.

Theorem 19 guarantees the existence and uniqueness of the dis-
ease free fixed point when traveling is incorporated into the system.
Theorem 6 and Corollary 18 give a full picture about the (non-) persis-
tence of endemic steady states: a boundary endemic equilibrium of
the disconnected system, where there is a DFAT region i with R;{ > 1
which is reachable from an EAT region, will not be preserved in the
connected system for any small volumes of traveling, however all
other endemic fixed points of the disconnected system will exist if the
mobility parameter « is small enough. It is obvious that the mobility
network connecting the regions plays an important role in deriving
the exact number of steady states of the system with traveling. In
what follows, we give a complete description of the possible cases.

7.3. Irreducible connection network

First we consider the case when each region is reachable from any
other region, that is, the graph consisting of nodes as regions and di-
rected edges as direct connections from (the infected classes of) one
region to (the infected classes of) another region, is irreducible. Such
network is realized if we think of the nodes as distant territories and
the edges as one-way air travel routes. Note that the irreducibility
of the network does not mean that each region is directly accessible
from any other one; as experienced by the global airline network of
the world, some territories are linked to each other via the corre-
spondence in a third region. Fig. 3 give examples of irreducible an
reducible connection networks.

Theorem 20. Ifthe network connecting three regions with HIV dynamics
is irreducible then the number of fixed points of the disconnected system,
which persists in (T )-(T3) for small volumes of traveling, can be 1, 2, 3, 4,
9, 10 or 27, depending on the local reproduction numbers in the regions.
As pointed out in Theorem 19, the unique disease free equilibrium always
exists in (T1)-(T3).

Proof. We distinguish four cases on the number of regions with local
reproduction number greater than one.

Case 1. No regions with RL, > 1.

This case is easy to treat: if in all three regions the local reproduc-
tion number is less than one, then Theorem 17 implies that all fixed
points of the disconnected system of three regions are preserved for
some small positive . If R}; < 1 fori =1, 2, 3, the system (L;)-(L3)
may have 1 (if R, < RL for i=1,2,3), 3 (if R < R{, R2 < RZ
and RZ < RB <1, {i1. iy, i3} = {1,2,3}), 9 (if R" <R and RZ <
R2 <1,RE < RB < 1,{iy.ip. 13} = {1,2,3})or 27 (if RL < R! < 1 for
i=1,2,3)equilibria.

Case 2. Exactly one region with Rl, > 1.
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Let this region be labeled by i, system (H;, ) has a disease free and
a positive fixed point. By Theorem 15 and the assumption that iy is
reachable from both other regions, we get that no endemic equilib-
rium of (Ly)-(L3), where iy is DFAT, persists with traveling. It follows
that besides the disease free equilibrium (when none of the regions is
endemic), only fixed points with i1 = f4i; (0) > 0 will exist for small
volumes of traveling, which makes the total number of equilibria 2
(1 disease free + 1 endemic if R2 < R’CZ, R < 72'3) 4 (1 disease free
+ 3 endemic if either R%2 < R2 and R3 <R3 <1, 0r R3 < R2 and
RC <R2 < 1) or 10 (1 disease free + 9 endemic if R'CZ R2 <1,
RE <R3 < 1).

Case 3. Exactly two regions with Ri, > 1.

We let the reader convince him- or herself that if R/l > 1 and
Ri2 > 1 (iy,i € {1,2,3}) hold then a total number of 2 or 4 fixed
points of the disconnected regions may persist in system (T; )-(T3) for
small «.. The proof can be led in a similar way as by Case 2, consid-
ering the two possibilities R < R and R <R3 < 1 for the local
reproduction number of the third region. One again gets that the equi-
librium where all the regions are disease free will exists, moreover
it is worth recalling that no region with R'H > 1 can be DFAT while
another region is EAT.

Case 4. All three regions with R}, > 1.

We apply Theorems 15 and 17 to get that if any of the regions
is DFAT then so should be the other two for an equilibrium to per-
sist in (Tq)-(T3) for small «. This implies that only 2 fixed points of
(H1)-(H3), the disease free and the endemic with all three regions
at positive steady state, will be preserved once traveling is incorpo-
rated. O

To summarize our findings, we note that the introduction of trav-
eling via an irreducible network into (H;)-(H3) never gives rise to sit-
uations when precisely 6, 8, 12 and 18 fixed points of the disconnected
system continues to exist with traveling. Nevertheless, evidence has
been showed that new dynamical behavior (namely, the case when 10
equilibria coexist) can occur when connecting the regions by means
of small volume traveling. We conjecture that lifting the irreducibility
restriction on the network results in even more new scenarios. This
is proved in the next subsection.

7.4. General connection network

It is clear that with the help of Theorems 15 and 17, the number of
fixed points in the disconnected system which persist with traveling
can be easily determined for any given (not necessarily irreducible)
connecting network. The next theorem discusses all the possibilities
on the number of equilibria. Examples are also provided to illustrate
the cases.

Theorem 21. Depending on the local reproduction numbers and the
connections between the regions, the system of three regions for HIV
dynamics with traveling (T1)-(T3) preserves 1-7, 9, 10, 12, 18 or 27
fixed points of the disconnected system for small volumes of traveling. As
pointed out in Theorem 19, the unique disease free equilibrium always
exists in (T1)-(T3).

Proof. The existence of the unique disease free steady state is guar-
anteed by Theorem 19. The proof will be done in the following
steps:

Step 1. We show that there is no travel network such that 13-17 or
19-26 equilibria persist.

Step 2. We prove that the system of three regions with traveling can-
not have 8 or 11 fixed points.

Step 3. We demonstrate through examples that all other numbers of
equilibria up to 27 can be realized.

Step 1.

We note thatif either R}', < RLholds in any of the regions, or there
are two or more regions where Ri > 1, then the number of fixed
points does not exceed 12. Thus, to have at least 13 equilibria there
must be two regions iy, i, with RY < R}_} <1and R? < RZ <1.1If

the third region also has three fixed points—that is, R < R < 1—
then there is no region with local reproduction number greater than
one, and thus Theorem 17 yields the existence of 27 steady states.
Otherwise R}?, is greater than one and region i3 has two equilibria,
one disease free and one endemic. In this case, by Theorem 5 there are
9 fixed points where &;, > 0, all of which preserved for small volumes
of traveling. The possible number of equilibria with &;, = 0, which
exist with traveling, is one (if i3 is reachable from both regions), 3 (if
i3 is reachable from only one of them) and 9 (if i3 is unreachable).
We conclude that there are only two values greater than 12 for the
possible number of fixed points in the travel system, which are 18
and 27.

Step 2.

We distinguish five cases to consider:

(i) RL <RH<1f0r1_1 2,3;

(i) RY <RI < 1,R2 < RZ < 1,RE > 1, {iy, ip, i3} = {1,2,3);
(i) Ry <RI < 1,R2 > 1,RE > 1, {iy, iy, i3} = {1,2,3);

(iv) RH>1for1—1 2,3;

(v) thereis an ij such thatR < Ri‘,h e{1,2,3}.

In case (i) each region has three equilibria, hence the connected sys-
tem obtains 27 fixed points for small «. We have seen in Step 1 that
there are 10, 12 or 18 equilibria in a network with the regions such
that case (ii) holds.

Let us assume that case (iii) is realized, and henceforth the system
has maximum 12 fixed points. If neither i, nor i3 is reachable from
i1, then the persistence of an equilibrium for small « is independent
of the steady state value %; , thus the number of possible fixed points
is a multiple of three, which does not hold for 8 or 11. On the other
hand, if there is a connection from i; to any of i and i3, then some
equilibria may vanish once traveling is incorporated. More precisely,
let iy be reachable from i;. By Theorem 15, steady states where region
i is DFAT and i; is EAT do not exist in the connected system, which
means that the connection from i; to iy destroys 2-1-2 = 4 fixed
points out of the maximum 12 (note that in region i; there are two
positive equilibria, and the steady state value of i3 does not change
the non-persistence of fixed points of the type &;, = 0, &, > 0). This
immediately makes 11 equilibria impossible. By means of the above
arguments, either &;, =&;, =0 or &, > 0 must be satisfied for each
fixed point which persists, and their number can be maximum 8. In
particular the equilibria, E; where &, =&;, =0, %;, > 0and E; where
%, > 0,8, > 0,&;, = 0,are such fixed points. E; persists with traveling
only if the network is such that i, is unreachable from i3, so in this
case there must be a path from i; to i3 due to the connectedness of the
network (recall that we assumed that i, is reachable from iy, so any
link from i3 would make i, reachable from i3 ). However, this structure
makes the persistence of E; for small  impossible, and we get that
there cannot be 8 steady states in the case when RZ R'ﬁ, > 1 and
RA < R}_} <1

The maximum number of equilibria in cases (iv) and (v) are 8 and
9, respectively, which observation finishes the investigation of the
persistence of 11 steady states in the system with traveling. In case
(iv), some of the 8 fixed points obtained in the disconnected system
clearly would not persist in the connected system: if, for instance,
there is a link from i to i, then the equilibrium where &;, > 0 and
&;, = 0, would not be preserved for positive a. If case (v) is realized
and there is aregion with local reproduction number greater than one,
then the system cannot have more than 6 steady states. Otherwise
R;_I <1 holds for all i € {1, 2, 3} in case (v), and Theorem 17 yields
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Fig. 4. Examples of the travel network for three regions with R! <R}, <1 and
R, R} > 1
o H :

that all fixed points of the disconnected system continue to exist
once traveling is incorporated. It is not hard to check that the number
of equilibria is never 8.

Step 3.

Any network where R}, < RL is satisfied for all i, exhibits only
the disease free equilibrium. It is straightforward to see that the
complete network of three regions has 2 fixed points when R'H > 1
for i e {1,2,3}, and if there is one, two or three region(s) where
RL < Ri; <1 while R}, < R. holds in the remaining region(s), then
independently of the connections, the connected system preserves 3,
9 or 27 equilibria, respectively, of the disconnected system from small
volume traveling. . ‘ . ' '

Any network where R¢ < R} < 1, RZ <R <1,Rj > landis
is reachable from both other regions, works as a suitable example for
the case of 10 fixed points, since this way the disease free equilibrium
coexists with 9 steady states where &;, > 0. Away to obtain 12 and 18
fixed points has been described in Step 1, and we use the case when
R <R}, <1and R, R} > 1 to construct examples for 4, 5, 6 and
7 steady states. Fig. 4 depicts one possibility for the network of each
case, though it is clear that there might be several ways to get the
same number of equilibria.

If both regions 2 and 3 are reachable from 1, then fixed points
where &;, > 0 are preserved with traveling only if&;, > 0 and %;, > 0
also hold. On the top of these two positive equilibria, there surely ex-
ists the disease free steady state plus 1, 2 or 3 non-zero fixed point(s)
with %;, = 0, depending on whether region 2 is reachable from 3 and
vice versa, as illustrated in Fig. 4(a)-(c). If region 3 is reachable from
both 1 and 2, then &;; = 0 is only possible in the disease free equi-
librium; although all 6 fixed points where region 3 is at the endemic

R <1, DFAT

Fig. 5. A path of regions if ,, i}, ... i3, i} and i, having the property that regions i and
if, i, ... if are DFAT, R' > 1and R/ < 1 forj e {if, i5....i;}, furthermore region i}, is
EAT.

steady state, persist for small volumes of traveling if there is no con-
nection from 1 to 2 (Fig. 4(d) shows such a situation). O

The dynamics of the HIV model in connected regions is worth
investigating in more depth, although this is beyond the scope of
this study. However, the numerical simulations presented in the next
section reveal some interesting behavior of the model.

8. Rich dynamical behavior

This section is devoted to illustrate the rich dynamical behavior in
the model. The epidemiological consequence of the existence of mul-
tiple positive equilibria in one-patch models is that the epidemic can
have various outcomes, because solutions with different initial val-
ues might converge to different steady states. Stable fixed points are
of particular interest as they usually attract solutions starting in the
neighborhood of other (unstable) steady states. For instance, in case
of backward bifurcation the presence of a stable positive equilibrium
for R < 1 makes it possible that the disease sustains itself even if the
number of secondary cases generated by a single infected individual
is less than one. However, considering multiple patches with connec-
tions from one to another deeply influences local disease dynamics,
since the travel of infected agents induces outbreaks in disease free
regions. The inflow of infected individuals might change the limiting
behavior when pushing a certain solution into the attracting region
of a different steady state, and it also may modify the value of fixed
points.

Henceforth, knowing the stability of equilibria in the connected
system of regions is of key importance. For small volumes of travel-
ing, not only the number of fixed points but also their stability can
be determined. Whenever a steady state of the disconnected regions
continues to exists in the system with traveling by means of the im-
plicit function theorem, its stability is not changed on a small interval
of the mobility parameter «. This means that equilibria of (T7)-(T;)
which have all r components stable in the disconnected system, are
stable. On the other hand, every steady state which contains an un-
stable fixed point as a component, is unstable when « = 0 and thus
also for small positive «. In this paper, the conditions for the persis-
tence of steady states with the introduction of small volume traveling
has been described: by a continuous function of «, all fixed points of
(L1)-(Ly) will exist in the connected system, except those for which
there is a DFAT region with R > 1 and to which the connecting net-
work establishes a connection from an EAT territory. However, in
one-patch models infection free steady states are typically unstable
for R > 1,thusthe above argument yields thatincorporating traveling
with low volumes preserves all stable fixed points of the disconnected
system, since the equilibria which disappear when « exceeds zero are
unstable.

The dependence of the dynamics on movement is illustrated for
the HIV model. To focus our attention to how « influences the fixed
points, their stability and the long time behavior of solutions, we let
all model parameters but the local reproduction numbers in the three
regions to be equal. In Figs. 6-10, the evolution of four solutions with
different initial conditions were investigated as « increases from zero
through small volumes to larger values.

If all three regions exhibit backward bifurcation, and the local
reproduction numbers are set such that besides the disease free
fixed point, there are two positive equilibria (X, Vi, i, Ai); 5, A1 < A2,
then—as described in Section 7—27 steady states exist for small «.
Assuming that the conjectures of Section 7 about the stability of the
disease free equilibrium and the steady state with %2, and the insta-
bility of the positive fixed point with 7 hold in each region, we get
that system (T;)-(T;) with HIV dynamics exhibits 8 stable and 19 un-
stable steady states on an interval for «. This is confirmed by Figs. 6
and 7, where two cases of irreducible and reducible travel networks
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Fig. 6. Solutions of system (T;)-(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value, we applied the
parameter set given in Section 7 so that R < R, < 1is satisfied for i = 1, 2, 3. We use the irreducible connection network depicted in Fig. 3(b), where the connectivity potential
parameters c'2, ¢!, ¢23, ¢3! are equal to one in all model classes. Solid and dashed gray lines correspond to steady state solutions in the regions in the absence of traveling. Initial
values were chosen as §'(0) = 10, 5,(0) = 5, Y3 (0) = 0, W (0) = O fori = 1,2,3,and Y{ (0) = 1, W} (0) = 1, Y?(0) = 0.1, W?(0) = 0.5, Y} (0) = 0.1, W} (0) = 1 (blue curve), Y] (0) = 0.1,
W] (0)=1,Y2(0) = 1,W?(0) = 1, Y3 (0) = 0.1, W3 (0) = 0.1 (red curve), Y; (0) = 0.1, W} (0) = 0.1, Y?(0) = 1, W?(0) = 0, Y} (0) = 1, W3 (0) = O (black curve), Y} (0) = 0.1, W} (0) = 0.1,
le 0)=1, W]2 0)=0, Yf 0)=10.4, W13 (0) = 0.3 (green curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

were considered (see the captions of Figs. 6 and 7 for more detailed
description of the networks), and R}, = R% = R3, holds. Introduc-
ing low volume traveling (e.g., setting o« = 10~ in our examples)
effects neither the stability of steady states nor the limiting behavior
of solutions. However, the difference in the type of the connecting
network manifests for larger movement rates, as the conditions for

disease eradication clearly change along with the equilibrium values
(see Figs. 6 and 7(c) and (d) where o were chosen as 10~3 and 10~1,
respectively).

When there are regions with local reproduction numbers larger
than one in the network, certain fixed points of the disconnected sys-
tem disappear with the introduction of traveling; this phenomenon
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Fig. 7. Solutions of system (T;)-(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value, we applied the
parameter set given in Section 7 so that RL < R, < 1 is satisfied for i = 1, 2, 3. We use the reducible connection network depicted in Fig. 3(a), where the connectivity potential
parameters c'2, ¢!, ¢ are equal to one in all model classes. Solid and dashed gray lines correspond to steady state solutions in the regions in the absence of traveling. Initial
values were chosen as 5'(0) = 10, 5,(0) = 5, Y3 (0) = 0, W} (0) = O fori = 1,2,3,and Y] (0) = 1, W} (0) = 1, Y?(0) = 0.1, W?(0) = 0.5, Y} (0) = 0.1, W} (0) = 1 (blue curve), Y] (0) = 0.1,
W (0)=1,Y2(0) = 1, W?(0) = 1,Y; (0) = 0.1, W3 (0) = 0.1 (red curve), Y] (0) = 0.1, W} (0) = 0.1, Y?(0) = 1, W?(0) = 0, Y} (0) = 1, W3 (0) = 0 (black curve), Y} (0) = 0.1, W} (0) = 0.1,
le 0)=1, Wf 0)=0, Yl3 (0)=0.4, W]3 (0) = 0.3 (green curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

is reasonably expected to have an impact on the final outcome
of the epidemic. For all three networks used for the simulations
in Figs. 8-10, the number of infected individuals takes off in re-
gions with R}_, > 1 for small «, regardless of the initial conditions
(see figures (b) where o = 10> and, in particular, the cases when
A2(0) = A3(0) = 0). The results for larger travel volumes (in the sim-

ulations the two settings of @ = 10~3 and 10~! were considered)
further support the conjecture that solutions converge to positive
steady states in regions with reproduction number greater than
one. However, the case when regions 2 and 3 (R%,Rf, > 1) are
not reachable from each other and a single endemic equilibrium
seems to attract all solutions (illustrated in Fig. 8) is in contrary to
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Fig. 8. Solutions of system (T;)-(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value but the local
reproduction numbers, we applied the parameter set given in Section 7 with B = 0.85and g} = g} = 1sothat R} < R}, < 1and R%, R}, > 1 are satisfied. We use the connection
network depicted in Fig. 4(c), where the connectivity potential parameters c?! = ¢3! are equal to one in all model classes. Solid and dashed gray lines correspond to steady state
solutions in the regions in the absence of traveling. Initial values were chosen as §'(0) = 10, S (0) = 5, Y3 (0) = 0, W5 (0) = 0 for i = 1, 2,3, and Y} (0) = 0.1, W} (0) = 0.5, Y2(0) = 0,
W2(0) =0, Y} (0) = 0, W} (0) = 0 (blue curve), Y] (0) =1, W} (0) =1, Y?(0) = 0, W?(0) = 0, Y}(0) = 0.2, W3 (0) = O (red curve), Y} (0) = 0.4, W} (0) = 0.3, Y?(0) = 0, W?(0) = 0,
Y3(0) = 0, W3 (0) = 0 (black curve), Y{ (0) = 1, W} (0) = 0, Y?(0) = 5, W#(0) = 5, Y3 (0) = 0, W3 (0) = O (green curve). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)



218

0.30 ¢
0.25 }
= 0.20¢

D.H. Knipl, G. Rést/ Mathematical Biosciences 258 (2014) 201-222

= 0.15
0.10
0.05

0.000

0.30 ¢
025
020}

500 1000 1500 2000 2500
t

;1 0.15
0.10
0.05

0.00 !
0

0.30 ¢
0.25 |
020}

500 1000 1500 2000 2500
t

;1 0.15

0.10
0.05

0.00
0

0.30 ¢
025
_ 020}

500 1000 1500 2000 2500
t

;4 0.15
0.10
0.05

0.00
0
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Fig. 10. Solutions of system (T )-(T3) with HIV dynamics for different travel volumes. The three regions are considered to be symmetric in every parameter value but the local
reproduction numbers, we applied the parameter set given in Section 7 with i = 0.85 and B} = B = 1so that R} < R}, < 1and R}, R}, > 1 are satisfied. We use the complete
connection network depicted in Fig. 3(c), where the connectivity potential parameters ¢, i,j € {1,2, 3}, i #j, are equal to one in all model classes. Solid and dashed gray lines
correspond to steady state solutions in the regions in the absence of traveling. Initial values were chosen as S'(0) = 10, S;,(0) = 5, Y§ 0)=0, W; (0)=0fori=1,2,3,and Yl1 0)=0.1,
W} (0)=0.5, Y?(0) =0, W2(0) = 0, Y; (0) = 0, W}(0) = O (blue curve), Y] (0) = 1, W} (0) = 1, Y?(0) = 0, W?(0) = 0, Y} (0) = 0.2, W3 (0) = 0 (red curve), Y} (0) = 0.4, W] (0) = 0.3,
Y2(0) = 0, W#(0) = 0, Y3(0) = 0, W3 (0) = 0 (black curve), Y] (0) = 1, W] (0) = 0, Y?(0) = 5, W7 (0) = 5, Y3 (0) = 0, W3 (0) = O (green curve). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the situation experienced in Fig. 9, since we see that establishing
a path from region 2 to 3 via region 1 results in the emergence of
another positive (possibly locally stable) steady state in region 3.
Nevertheless, comparing Figs. 8 and 9 with reducible networks to
Fig. 10 where a complete connecting network was considered, high-
lights the role of the irreducibility of the network on the dynamics.
Whereas in case of reducible networks, the final epidemic outcome
in a region with Ry strongly depends on initial conditions and con-
nections to other regions, making each region reachable from another
sustains the epidemic in region 1 (where R} < 72}_, < 1) by giving rise
to a single positive steady state of the system. This has an implica-
tion on the long term behavior of solutions in regions with Ry > 1
as well, since direct connections seem to stabilize only one endemic
equilibrium in regions 2 and 3, and exclude the existence of other
steady states.

In summary, the theoretical analysis performed throughout the
paper is in accordance with the numerical simulations for small val-
ues of the general mobility parameter «. More importantly, it also
provides full information about the fixed points of (L;)-(L;), namely
it determines their (non-)persistence and stability in the system with
traveling. On the other hand, little is known about the solutions of
the model when the travel volume is larger, as the structure of the
connecting network and initial values deeply influence the dynamics.

9. Conclusion

In this paper, a general class of differential epidemic models with
multiple susceptible, infected and removed compartments was con-
sidered. We provided examples of multigroup, multistrain and stage
progression models toillustrate the broad range of applicability of our
framework to describe the spread of infectious diseases in a popula-
tion of individuals. The model setup allows us to investigate disease
dynamics models with multiple endemic steady states. Such models
have been considered in various works in the literature, including
studies which deal with the phenomenon of backward bifurcation.
We extended our framework to an arbitrary number of regions and
incorporated the possibility of mobility of individuals (e.g., traveling)
between the regions into the model. Motivated by well known mul-
tiregional models, where the exact number of steady states have not
been explored, our aim in this work was to reveal the implication
of mobility between the regions on the structure of equilibria in the
system.

We introduced a parameter « to express the general mobility in-
tensity, while differences in the connectedness of the regions were
modeled by constants, each describing the relative connectivity of
one territory to another. Considering the model equations of the con-
nected system as a function of the model variables and ¢, the implicit
function theorem enabled us to represent steady states as continuous
functions of the mobility parameter. We showed that the unique dis-
ease free equilibrium, and all componentwise positive fixed points of
the disconnected system, continue to exist in the system with trav-
eling for small &, with their stability unchanged. On the other hand,
boundary equilibria of the system with no traveling (this is, steady
states with some regions without infection and others endemic for
o = 0) may disappear when « becomes positive. More precisely, such
steady states might move out of the nonnegative cone along the con-
tinuous function established by means of the implicit function theo-
rem, and thus, become no longer biologically meaningful.

In the analysis performed in the paper, we gave necessary and suf-
ficient condition for the persistence of such equilibria in the system
with traveling, for various types of the connecting network. It turned
out that the local reproduction numbers and the structure of the
graph—describing connections between the infected compartments
of the regions—play an important role. If each infected compartment
is connected to every other infected class of the same type of other
regions—implying that the connecting network includes every pos-

sible link—then a boundary equilibrium of the disconnected system
would not persist with traveling if and only if there is a component of
the fixed point which corresponds to a disease free region with local
reproduction number greater than one. Assuming an extra condition
on the infected subsystem in each region, we showed that the same
statement holds in the case when the connection network of infected
classes is not complete but is still irreducible (meaning that each re-
gion is reachable from any other one via a series of links between
any of the infected classes, see Fig. 2 which illustrates such a situ-
ation). The result also extends to the most general case of arbitrary
connection network of the infected classes. It was proved that steady
states of the disconnected system which have a disease free region
with R > 1, disappear from the system if there is a connection to this
region—maybe via several other regions—from a territory where the
disease is endemic. Nevertheless, all other equilibria of the system
without traveling continue to exist for small values of the mobility
parameter «. The epidemiological implication of this behavior is that,
even for small volumes of traveling, all regions with local reproduc-
tion number greater than one will be invaded by the disease unless
they are unreachable from endemic territories. Direct or indirect con-
nections from regions with positive disease state make the inflow of
infecteds possible, and then the imported cases spread the disease in
the originally disease free region due to R > 1.

In the most common situation of forward transcritical bifurcation
of the disease free equilibrium at R = 1—when the disease cannot
be sustained for values of R less than one—our results yield that only
connections from regions with R > 1 have impact on the equilibria of
the disconnected system. If a region with R > 1 is susceptible in the
absence of traveling then isolating it from endemic territories keeps
the region free of infection, so denying all connections from regions
with R > 1 is a successful intervention strategy. However, the dy-
namics becomes more complicated when small volume traveling is
incorporated into a system of multiple regions with some exhibit-
ing the phenomenon of backward bifurcation. In case when endemic
equilibria exist for R < 1 as well, protecting a region with R > 1 from
the disease by denying the entrance of individuals from areas where
the reproduction number is greater than one, is no longer sufficient—
though, still necessary—to prevent the outbreak. Such situation was
illustrated by an HIV transmission model for three regions, where
under certain conditions, the dynamics undergoes backward bifur-
cation in each region. We calculated the possible number of steady
states of the disconnected system which persist with the introduction
of traveling with small volumes into the system. It was also illustrated
by several examples on the network structure and model parameter
setting that mobility of individuals between the regions gives rise
to various scenarios for the limiting behavior of solutions, and thus
makes the outcome of the epidemic difficult to predict.
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Appendix A

The next three results are used in the proofs of Theorem 11 and
Proposition 12 in Section 5.
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Proposition A.1. If v is a nonnegative solution of (Vi — F\)v = u with

u>0,thenvg =0impliesug =0,q€e{1,...n}.

Proof. The statement immediately follows from the Z sign property
of Vi—Fi. O

Lemma A.2. Ifvis asolution of (Vi — F')v = u with u > 0 such that v is
nonnegative and has both zero and positive components, then the matrix
V! — F'is reducible.

Proof. Ifvconsists of zero and positive components then without loss
of generality, we can assume that there arer, s > 0,7 + s = n such that

vcanberepresentedasv = (Vi,...Vr, Vriq, ... Vris) withvy, .. v, > 0
and Vryq, ... Vrys = 0. We decompose V' — F' as
Vi _ Fi — Rr><r ers

SSXF RSXS
with the rxrrxs,sxr and sxs dimensional matrices
Rrscrs Srxs» Ssxr and Rsxs, and derive the equation

T T T

Ssxr(W1s - Vi)' 4 Roxs(Vigts - Vigs)' = (Urg, - Urgs)
from (Vi — F')v = u. According to Proposition A.1, from vy, ... Vrys =

0 it follows that ty, 1, ... Urys

Ssxr(V1, .. ‘Vr)T =

which, considering that S, < 0and (vq, ... yr)T > 0,immediately im-
plies Ss. = 0 and thus the reducibility of V! — F'. O

= 0, thus the last equation reduces to

Lemma A.3. Assume that Vi — Fi is irreducible. If u > 0, u # 0 then
(Vi — Fi)v = u has a unique positive solution if R < 1, and it holds that
v # 0 if R' > 1. In the case when u=0, v =0 is the only solution if
R! <1, and for R > 1 it holds that either v =0 or v has a negative
component.

Proof. In the proof of Theorem 9 we have seen that (Vi — F))~1 >0
if R! < 1, which implies the uniqueness of v > 0 in (Vi — F))v = u. If
u = 0 then trivially v =0, and we use Lemma A.2 to get that v > 0
when u # 0. Similar arguments as in the proof of Theorem 9 yield
that v has a non-positive component if R! > 1, but Lemma A.2 again
makes only v =0 and v # 0 possible. However, v = 0 is a solution of
(Vi — F)yy = u if and only if u = 0, otherwise v must have a negative
component. O

The following technical lemma is needed for the proof of
Theorem 15.

Lemma A.4. Assume that fy (o) > 0 is satisfied on an interval [0, o*)
whenever a region j, j € {1,...r}, is DFAT in the boundary endemic
equilibrium EE®. Then for any DFAT region i, i € {1,...r}, it holds that

df"’ +(0) =0 forl < M;.

Proof. The inequality M;, > 0 s satisfied in every region iy with Rio =
0.The case when M;, = Ois trivial, so we consider aregion i; for which
M;, = 1, and by using &1 = 0 we derive

dfx’l

(Vil _ Fil) (O) Xr: C;l(l ’jf;?f (0)7

}%i]

whichis similar to Eq. (4). For everyj such that C” J # 0, it follows from

M, # 0 that fx, (0) = 0, thus the right hand side is zero. Lemma A.3

yields that “ (0) is either zero (in case Ri1 < 1 this is the only
possibility), or has a negative component (this can be realized only if
RI > 1). Nevertheless, the derivative having a negative component
together with &1 = 0 contradicts the assumption that feiy (@) = 0 for

df; .
small «, and this observation makes f}al (0) = 0 the only possible
case.

Next consider a region i, where %2 =0 and M;, > 2. We have

df; . . .
%(O) = Osince M, > 2 > 1, so Lemma 14 yields the equation

(Vi —F)— 5 < f“ 0)=2 Z c de’ = (0).

We note that each region j for which Cizj;éo is DFAT since

M;, = 1. Thus, for M; it follows that M; > 1, henceforth "’(O) 0
holds by induction, and the right hand 51de of the last equatlon is zero.

. . S d’f;
Using Lemma A.3 there are again two possibilities for —2 (0), namely
that it is either zero or has a negative component; but f, (0) =0

dafi, &’ . .
() =0 and T (0) # 0 would imply the existence of an o**

such that f;, (o) # 0 for & < o** which is impossible. We conclude
fl2

X2
(0) = 0 holds for all regions where M;, > 2.
dif

;?l

that

The continuation of this procedure yields that (0) = 0 for any
region iy where M; > [ holds. This proves the lemma O

l,—

Next, we present the proof of Lemma 16 in Section 6. For readers’
convenience, we repeat the statement of the lemma here.

Lemma 16. Assume that in the boundary endemic equilibrium EE°,
there is no DFAT regionjfor which Rj > 1and Mj < r—1. Then for a

=0forl <M,

Proof of Lemma 16. Ifiis diseasg free for @ = 0 and the region is not
reachable from any region jwith® > 0(thatis,M; = r — 1), thenidoes
not import any infection by means of traveling and hence we have

fii(@) =0 forall « > 0. This also means that "‘ +(0) = 0 holds for all
0 <!l <r—1.The case when M; = 0 is trivial, and for1 <M; <r—-1
we use the method of induction.

We claimthatforany 1 <[ < r — 2,itholds that 1’ (0) = 0when-

ever a region i is such that & = 0, R < 1 and M;, > l If so, the state-
ment of the lemma follows for region i with the choice of i := i for
I=1,2,... M. For aregion iy where 1 =0, M;, > 1and R <1, we
df;
£1.(0) =0 from

df i

get

Vi - F) S5 0) = 2 CiHify 0)

1#11
and Lemma A.3, since the right hand side is zero because of M;, > 1.
Assume that there exists an L < r — 2 such thqt the statement holds
for all I < L. We consider a region i;,; where &'.+1 = 0, R'+1 < 1 and

df ; o
Mj,, > L+1. Clearly Mj,,, >1,2,...L, so %(O) gaL;l ©)=
= f"* 1 (0) = 0 holds and thus Lemma 14 yields
. 1] d
Vit — F’L“) o {+L1+1 0)=(L+1) Z CIM] dotf)i 0).

J#’Lﬂ
For any j with C,i}“ g # 0, it holds that the region is DFAT and M; >

Lf .
Mj,,, — 1 =1L, thus ﬂ(o) =0 makes the right hand side zero, and

L
using Lemma A.3 we get that i (0)=0since Ri+1 < 1. O

daLH
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