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Abstract For a Nicholson’s blowflies system with patch structure and multiple discrete
delays, we analyze several features of the global asymptotic behavior of its solutions. It is
shown that if the spectral bound of the community matrix is non-positive, then the population
becomes extinct on each patch, whereas the total population uniformly persists if the spectral
bound is positive. Explicit uniform lower and upper bounds for the asymptotic behavior of
solutions are also given. When the population uniformly persists, the existence of a unique
positive equilibrium is established, as well as a sharp criterion for its absolute global asymp-
totic stability, improving results in the recent literature. While our system is not cooperative,
several sharp threshold-type results about its dynamics are proven, even when the community
matrix is reducible, a case usually not treated in the literature.
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1 Introduction

In recent years, population dynamics models with patch structure and delays have attracted
the attention of an increasing number of mathematicians and biologists. The heterogeneity
of the environment is inherently captured by patchy models, in which the spatial distribution
of the population is governed by both the migration between patches and the growth of the
local populations, which depends on the resources of each particular patch. Patch-structured
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systems of differential equations are also used as disease models with transitions between
stages of normal and infected cells. Delay differential equations (DDEs) frequently provide
quite realistic models in population dynamics, epidemiology and mathematical biology in
general, since the incorporation of delays appears naturally to express the maturation period
of biological species, the maturation time of blood cells, the incubation period in disease
models, and several other features. Understanding the interplay of spatial dispersal and time
delays is therefore a key point for many models.

In the present paper, we study some aspects of the asymptotic behavior of solutions for the
following Nicholson’s blowflies system with patch structure and multiple discrete delays:

x ′
i (t) = −di xi (t)+

n∑

j=1

ai j x j (t)+
m∑

k=1

βik xi (t − τik)e
−xi (t−τik ), i = 1, . . . , n, (1.1)

where di > 0, ai j ≥ 0, τik > 0, βik ≥ 0 and

βi :=
m∑

k=1

βik > 0 (1.2)

for i, j = 1, . . . , n, k = 1, . . . ,m. By condition (1.2), there is at least one delayed nonlinear-
ity on each patch i . To simplify the notation and without loss of generality, in what follows
we shall always assume that aii = 0 for all 1 ≤ i ≤ n.

Among other applications, system (1.1) fits as a population model for the growth of
single or multiple biological species divided into n patches or classes, with migration of the
populations among them. On each patch i , xi (t) denotes the density of the population, di is
its decreasing rate, the birth function is of Nicholson-type

∑m
k=1 βik xi (t − τik)e−xi (t−τik ),

and the coefficients ai j are the migration rates of populations moving from patch j to patch
i . In view of this biological meaning, it is natural to take

di = mi +
n∑

j=1

a ji , mi > 0, (1.3)

where mi is the mortality rate on patch i . Therefore, together with conditions aii = 0 and
(1.2), unless otherwise stated, in what follows we assume (1.3).

Model (1.1) was motivated by the celebrated scalar Nicholson’s blowflies equation

x ′(t) = −dx(t)+ βx(t − τ)e−ax(t−τ),

where d, β, a, τ > 0, introduced by Gurney et al. [6] in 1980 as a model for the Australian
sheep-blowfly population, as it agreed with the Nicholson’s experimental data published in
[13]. Since then, Nicholson’s equation has been generalized, modified, and extensively stud-
ied by many mathematicians, in what concerns stability, persistence, existence and attractiv-
ity of periodic or almost periodic solutions, occurrence of bifurcations, and other dynamical
aspects. In contrast, the literature on Nicholson’s systems is quite recent and scarce. We refer
to the works of Liu [10,11], Berezansky et al. [1], Faria [3], Liu and Meng [12], and Wang
[18].

Throughout the paper, we designate A, B, D as the matrices

A = [ai j ], D = diag(d1, . . . , dn), B = diag(β1, . . . , βn), (1.4)

and refer to
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M := A + B − D

as the community matrix. The algebraic properties of the community matrix will play an
important role in the study of either the persistence or the extinction of the species in all
patches, as well as in the existence of a positive equilibrium—whereas the stability of the
positive equilibrium depends heavily on the shape of the non-linear terms in (1.1). While most
papers dealing with multiple dimensional DDEs used in population dynamics only consider
the situation of an irreducible community matrix, in the present paper we also treat the case
a reducible matrix.

The present paper is as an extension of the research in [3], where sufficient conditions
for the global attractivity of both the trivial equilibrium and the positive equilibrium, when
it exists, were established. Here, we pursue a deeper analysis of system (1.1), improving the
criteria established in [3] and addressing new aspects of its dynamics. The paper provides
answers for current important open problems. Namely, it gives a threshold condition for
the extinction of the populations in all patches versus the uniform persistence of the total
population—which applies even for the particular case of a reducible community matrix—,
shows the existence of a positive equilibrium under very general assumptions, and establishes
a (sharp) criterion for its absolute global asymptotic stability. Some of our results naturally
hold for delayed systems with a more general class of nonlinearities, however the criteria for
the global asymptotic stability of the positive equilibrium, as well as some explicit upper and
lower bounds for the asymptotic behavior of solutions are very specific to the Ricker-type
nonlinearity in (1.1).

Some of main techniques used here rely on M-matrix theory and on properties of coop-
erative systems of DDEs. We refer the reader to the monograph of Fiedler [5] for properties
of M-matrices, the monograph of Smith on monotone systems [15] for cooperative behavior
of DDEs, and the recent book of Smith and Thieme [16] for terminology and results on
population persistence. Also, the method developed by Faria and Oliveira [4] to study the
stability of linear n-dimensional DDEs was used to address the local asymptotic stability of
the equilibria of system (1.1), an aspect previously exploited in [3]. Another major source
of inspiration for our work was the paper of Hofbauer [8], where the concept of saturated
equilibrium for autonomous systems of ordinary differential equations (ODEs) which are
positively invariant in the positive cone IRn+ was introduced, and powerful results on the exis-
tence of a saturated equilibrium for dissipative systems were established. Hofbauer’s results
were a key point in our research, to provide a very general criterion for the existence of a
unique positive fixed point of (1.1).

We now introduce some notation and set some terminology. For the DDE (1.1), we choose
the usual phase space C := C([−τ, 0]; IRn) of continuous functions from [−τ, 0] to IRn with
the supremum norm ‖ϕ‖ = maxθ∈[−τ,0] |ϕ(θ)|, where τ = max1≤i≤n,1≤k≤m τik > 0 and
| · | is any chosen norm in IRn . In Sect. 2, when dealing with the concept of ρ-uniform
persistence, for practical reasons it will be convenient to choose the norm |x | = ∑n

i=1 |xi |,
for the calculations in the persistence proof. For similar reasons, in Sect. 5 we choose the
maximum norm in IRn , to address the global asymptotic stability of the positive equilibrium.
Due to the biological interpretation of model (1.1), we shall restrict our attention to non-
negative solutions, and consider as set of admissible initial conditions either the positive
cone C+ = {ϕ ∈ C : ϕi (θ) ≥ 0 for all θ ∈ [−τ, 0], i = 1, . . . , n} or the subset C+

0 of C+ of
functions which are strictly positive at zero, C+

0 = {ϕ ∈ C+ : ϕi (0) > 0, i = 1, . . . , n}. One
can use the method of steps to verify that both sets C+ and C+

0 are positively invariant under
(1.1). Moreover, for each ϕ ∈ C+ system (1.1) has a unique solution x(t) = x(t;ϕ) defined
on [0,∞), with xi (t) positive on [0,∞) provided that xi (0) = ϕi (0) > 0. As usual, segments
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of solutions in the phase space C are denoted by xt , xt (θ) = x(t + θ), θ ∈ [−τ, 0], with
components xt,i . When analyzing (1.1), our concept of stability always refers to the setting of
admissible solutions, i.e., solutions x(t;ϕ) with ϕ in the set of admissible initial conditions.
In particular, the trivial equilibrium of (1.1) is globally asymptotically stable (GAS) if it is
stable and attracts all solutions x(t) = x(t;ϕ) of (1.1) with initial conditions ϕ ∈ C+, i.e.,
limt→∞ x(t) = 0; if x∗ > 0 is an equilibrium of (1.1), x∗ is said to be GAS if it is stable
and attracts all solutions x(t) = x(t;ϕ) of (1.1) with initial conditions ϕ ∈ C+

0 .
For a vector c ∈ IRn , we also use c to denote the constant functionϕ(θ) = c for θ ∈ [−τ, 0]

in C . A vector c is said to be positive, or non-negative, if all its components are positive, or
non-negative, respectively. We define in a similar way positive and non-negative functions in
C , and positive and non-negative matrices.

We recall below some concepts from matrix theory, included here for convenience of the
reader, since they will be often referred to in the next sections.

Definition 1.1 Let N = [ni j ] be an n × n matrix. We say that N is cooperative if its off-
diagonal entries are non-negative: ni j ≥ 0 for j 
= i . The matrix N is a reducible matrix if
there is a simultaneous permutation of rows and columns that brings N to the form

[
N11 0
N21 N22

]

with N11 and N22 square matrices; N is an irreducible matrix if it is not reducible. The
spectrum of N is denoted by σ(N ). The spectral bound of N is defined as

s(N ) = max{Re λ : λ ∈ σ(N )}.
The matrix N is said to be an M-matrix if ai j ≤ 0 for i 
= j and all its eigenvalues have non-
negative real parts. If N is an M-matrix and det N 
= 0, then we say that N is a non-singular
M-matrix.

It is well-known that there are several equivalent ways of defining M-matrices and non-
singular M-matrices, see e.g. [5,17] for further properties of these matrices. However we
emphasize that many authors use the term M-matrix with the above meaning of the term non-
singular M-matrix. We also recall that if a square matrix N is cooperative and irreducible, then
its spectral bound s(N ) is always a simple, dominant eigenvalue, with a positive associated
eigenvector [17].

The remainder of the paper consists of four sections. The persistence and permanence of
the Nicholson-type system (1.1), two crucial aspects in population dynamics (see e.g. [16]),
are studied in Sect. 2. When s(M) > 0, a further analysis is carried out to obtain strong
uniform persistence of the population at least on one patch, and for all the patches in the
case of an irreducible community matrix. Explicit lower and upper uniform bounds for the
positive solutions of (1.1) given in terms of the coefficients in (1.1) are also included. In
Sect. 3, we prove the global attractivity of the equilibrium 0 when s(M) ≤ 0, which means
the extinction of the populations in all patches. Therefore, a threshold criterion for extinction
versus persistence is provided; moreover, this persistence is uniform in the special case of
an irreducible community matrix. Clearly, from the point of view of applications, it is most
relevant to study the existence, stability and attractivity of a positive equilibrium. The last
sections are dedicated to these aspects. In Sect. 4, we study the undelayed ODE version of
(1.1), obtained by taking all the delays equal to zero, and prove the existence of a unique
positive equilibrium for (1.1) if Mc > 0 for some positive vector c. Finally, in Sect. 5 we
give a sharp criterion for the absolute global asymptotic stability of such equilibrium, which
significantly improves recent results in the literature, see e.g. [1,3,10,11].
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2 Boundedness of Solutions, Persistence, Permanence

In this section, we analyze the permanence and persistence of (1.1).
We first observe that condition (1.3) implies that the matrix D−AT is diagonally dominant,

therefore from Theorems 5.14 and 5.1 in [5] it follows that D − AT is always a non-singular
M-matrix, and thus D − A as well. As an immediate consequence of D − A being a non-
singular M-matrix, we get the boundedness of all admissible solutions of (1.1).

Theorem 2.1 System (1.1) is dissipative on C+, i.e., the components of all solutions of (1.1)
with initial conditions in C+ are uniformly bounded. To be more precise, all the solutions
x(t) = x(t, ϕ) of (1.1) with initial conditions x0 = ϕ ∈ C+ satisfy

di ui −
n∑

j=1

ai j u j ≤ βi e
−1, i = 1, . . . , n, (2.1)

or, in other words,
⎡

⎢⎣
u1
...

un

⎤

⎥⎦ ≤ (D − A)−1

⎡

⎢⎣
β1
...

βn

⎤

⎥⎦ e−1, (2.2)

where ui = lim supt→∞ xi (t), i = 1, . . . , n.

Proof Fix s > 0. For any ϕ ∈ C+, consider the solution x(t) = x(t, ϕ) of (1.1), and define
ūi = supt∈[0,s] xi (t), i = 1, . . . , n. Since h(x) := xe−x ≤ e−1, x ≥ 0, then x ′

i (t) ≤
−di xi (t)+∑n

j=1 ai j ū j +βi e−1, implying that edi t xi (t) ≤ x0i + (edi t − 1)η̄i/di , 0 ≤ t ≤ s,

where ϕ(0) = (x01, . . . , x0n) ∈ IRn+, and η̄i = ∑n
j=1 ai j ū j + βi e−1. Hence we obtain

xi (t) ≤ x0i e
−di t + d−1

i η̄i (1 − e−di t ), i = 1, . . . , n, (2.3)

from which we deduce di ūi ≤ di x0i + βi e−1 + ∑n
j=1 ai j ū j , i = 1, . . . , n; in other words,

for ū = (ū1, . . . , ūn), we have

(D − A)ū ≤ c, with c =
⎡

⎢⎣
d1x01
...

dn x0n

⎤

⎥⎦ +
⎡

⎢⎣
β1
...

βn

⎤

⎥⎦ e−1. (2.4)

Since D− A is a non-singular M-matrix, then its inverse is a non-negative matrix [5, Theorem
5.1], and from (2.4) we get ū ≤ (D − A)−1c. This estimate does not depend on s > 0, thus
we derive

u ≤ (D − A)−1c, (2.5)

for u = (u1, . . . , un) and ui = lim supt→∞ xi (t), i = 1, . . . , n, implying that all positive
solutions are bounded. Next, we prove that the uniform estimate (2.2) holds.

Let ε > 0. For t > 0 large, we have xi (t) ≤ ui + ε, thus the estimate (2.3) is obtained
with η̄i replaced by ηi = ∑n

j=1 ai j (u j + ε)+ βi e−1, for i = 1, . . . , n. By letting ε → 0+

and t → ∞, it follows that di ui ≤ βi e−1 + ∑n
j=1 ai j u j , for all i , which proves (2.1), and

therefore (D − A)u ≤ [β1 · · · βn]T e−1. ��
For the definitions of persistence and permanence given below, see e.g. [9].
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Definition 2.1 System (1.1) is said to be persistent (in C+
0 ) if any solution x(t;ϕ) with

initial condition ϕ ∈ C+
0 is bounded away from zero, i.e., lim inf t→∞ xi (t;ϕ) > 0, 1 ≤

i ≤ n, for any any ϕ ∈ C+
0 ; and uniformly persistent (in C+

0 ) if there is η > 0 such
that lim inf t→∞ xi (t;ϕ) ≥ η, 1 ≤ i ≤ n, for any any ϕ ∈ C+

0 . System (1.1) is said to be
permanent (in C+

0 ) if there are positive constants m0,M0, with m0 < M0, such that, given
any ϕ ∈ C+

0 , there exists t0 = t0(ϕ) such that m0 ≤ xi (t, ϕ) ≤ M0 for 1 ≤ i ≤ n and t ≥ t0.

The notion of persistence in Definition 2.1 means that the population persists on each
patch. In the following, we shall discuss population persistence on a particular patch, on a
given subset of patches, or the persistence of the total population. In order to perform such
analysis, we also use the more general terminology of ρ-persistence as it has been presented
in the monograph of Smith and Thieme [16].

Definition 2.2 Let X be a nonempty set of a Banach space and ρ : X → IR+. A semiflow
� : IR+ × X → X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such
that

lim sup
t→∞

ρ(�(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

� is called uniformly (strongly) ρ-persistent if there exists some ε > 0 such that

lim inf
t→∞ ρ(�(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

System (1.1) generates a semiflow on C+. To discuss the persistence on a given patch j ,
we may choose ρ j (φ) := φ j (0). Then the uniform ρ j -persistence of (1.1) for all j coincides
with the concept of uniform persistence of (1.1) in the sense of Definition 2.1. Choosing
ρ(φ) := |φ(0)| = ∑n

i=1 φi (0), we can talk about the persistence of the total population of
(1.1).

Next, we prove the persistence of system (1.1).

Theorem 2.2 Consider (1.1) and assume that there is a vector c = (c1, . . . , cn) > 0 such
that

βi ci > di ci −
n∑

j=1

ai j c j , i = 1, . . . , n. (2.6)

Then, lim inf t→∞ xi (t;ϕ) > 0, 1 ≤ i ≤ n, for any solution x(t;ϕ) with initial condition
ϕ ∈ C+

0 .

Proof The statement was proved in [3, Lemma 2.5], with (2.6) replaced by the condition
βi > di −∑n

j=1 ai j for all i . The proof of this theorem is similar after the changes of variables

xi �→ c−1
i xi , 1 ≤ i ≤ n, so it is omitted. ��

Clearly the matrix M is cooperative. Note that condition (2.6) is equivalent to saying
that Mc > 0, for some positive vector c. If the matrix A is irreducible, the matrix M is
irreducible as well, thus the spectral bound of M , s(M) = max{Re λ : λ ∈ σ(M)}, is an
eigenvalue of M with a positive associated eigenvector, and (2.6) holds if s(M) > 0. Actually,
for irreducible matrices one can use algebraic arguments—or, in alternative, the results in
Sect. 3 (cf. Theorem 3.3)—to show that the converse is also true. Hence, for irreducible
matrices, s(M) > 0 is a criterion for the persistence of (1.1) in C+

0 , which will be shown
to be sharp. For the reducible case, however, s(M) > 0 is not a sufficient condition for
persistence, as shown by the following counter-example.
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Example 2.1 Consider the 2-patch system

x ′
1(t) = −d1x1(t)+ β1e−x1(t−τ1)x1(t − τ1)

x ′
2(t) = −d2x2(t)+ β2e−x1(t−τ2)x2(t − τ2)+ a21x1(t)

(2.7)

with β1, β2, d1, d2, a21 > 0, τ1, τ2 ≥ 0, and β1 < d1, β2 > d2. Then we have

A =
[

0 0
a21 0

]
, M =

[
β1 − d1 0

a21 β2 − d2

]
,

so s(M) = β2 − d2 > 0. On the other hand the first equation of (2.7) decouples, and since
β1 < d1, we can apply Proposition 3.1 of [14] to the scalar equation of x1(t) to see that
x1(t) → 0 as t → ∞ for all values of the delay τ1, so (2.7) is not persistent.

To study the permanence of (1.1), we start with an auxiliary lemma.

Lemma 2.1 Consider the system

x ′
i (t) = −di xi (t)+

n∑

j=1

ai j x j (t)+
m∑

k=1

βik xi (t − τik)e
−ci xi (t−τik ), i = 1, . . . , n, (2.8)

where c1, . . . , cn > 0, all the other coefficients are as in (1.1), and conditions (1.2) and (1.3)
hold. Assume in addition that

(A1) γi := βi

di − ∑n
j=1 ai j

> 1, i = 1, . . . , n. (2.9)

Let t∗ ≥ 0, L > 1, and x(t) be a positive solution of (2.8) satisfying xi (t) ≤ L for t ≥ t∗
and i = 1, . . . , n. Choose m > 0 such that

ci m < 1, hi (m) ≤ hi (L) and eci m ≤ γi , i = 1, . . . , n, (2.10)

where hi (x) = xe−ci x , x ≥ 0, for 1 ≤ i ≤ n. Then lim inf t→∞ xi (t) ≥ m for all 1 ≤ i ≤ n.

Proof The proof was inspired by an idea in [2]. Let x(t) be a solution of (2.8), and fix m
satisfying (2.10). Note that each function hi is strictly increasing on [0, c−1

i ] and strictly
decreasing on [c−1

i ,∞). First, we prove:

Claim 1 If min1≤ j≤n,t∈[T,T +τ ] x j (t) ≥ m for some T ≥ t∗, then x j (t) ≥ m for all t ≥ T
and j = 1, . . . , n.

Without loss of generality take t∗ = T = 0, and assume that x j (t) ≥ m for t ∈ [0, τ ] and
j = 1, . . . , n. Let t0 ∈ [τ, 2τ ] and i ∈ {1, . . . , n} such that xi (t0) = min1≤ j≤n,t∈[τ,2τ ] x j (t).

If xi (t0) < m, we have

0 ≥ x ′
i (t0) = −di xi (t0)+

n∑

j=1

ai j x j (t0)+
m∑

k=1

βikhi (xi (t0 − τik)). (2.11)

Note that xi (t0−τik) ∈ [m, L] if t0−τik ∈ [0, τ ], and xi (t0−τik) ≥ xi (t0) if t0−τik ∈ [τ, t0],
hence hi (xi (t0 −τik)) ≥ min{hi (xi (t0)), hi (m)} = hi (xi (t0)), and from eci m ≤ γi we obtain

0 ≥
⎛

⎝−di +
n∑

j=1

ai j + βi e
−ci xi (t0)

⎞

⎠ xi (t0) >

⎛

⎝−di +
n∑

j=1

ai j + βi e
−ci m

⎞

⎠ xi (t0) ≥ 0,
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and a contradiction. Thus, xi (t0) ≥ m. By the method of steps, this proves Claim 1.
Next, denote s0 := min j mint∈[0,τ ] x j (t) > 0.
If s0 ≥ m, the result follows from Claim 1.
If s0 < m, define

s1 := min
{

m,min
j

(
γ j h j (s0)

)}
.

Note that h j (s0)γ j ≥ ec j (m−s0)s0 > s0 for all j , thus s1 > s0. In this setting, we prove:

Claim 2 min j mint∈[τ,2τ ] x j (t) ≥ s1.

Otherwise, there are t1 ∈ [τ, 2τ ] and i ∈ {1, . . . , n} such that xi (t1) < s1 and x j (t) ≥
xi (t1) for all t ∈ [τ, t1] and j ∈ {1, . . . , n}, so (2.11) holds with t0 replaced by t1. Since
xi (t1 − τik) ≥ min{s0, xi (t1)}, we have hi (xi (t1 − τik)) ≥ min{hi (xi (t1)), hi (s0)}. We now
consider two cases separately.

If hi (s0) ≥ hi (xi (t1)), then s0 ≥ xi (t1) and we get

0 ≥
⎛

⎝−di +
n∑

j=1

ai j

⎞

⎠ xi (t1)+ βi hi (xi (t1)) =
⎛

⎝−di +
n∑

j=1

ai j + βi e
−ci xi (t1)

⎞

⎠ xi (t1)

>

⎛

⎝−di +
n∑

j=1

ai j + βi e
−ci m

⎞

⎠ xi (t1) ≥ 0,

with is not possible.
If hi (s0) < hi (xi (t1)), then s0 < xi (t1). Since xi (t1) < s1 ≤ γi hi (s0), we derive

0 ≥ ( − di +
n∑

j=1

ai j
)
xi (t1)+ βi hi (s0) >

( − di +
n∑

j=1

ai j
)
γi hi (s0)+ βi hi (s0) > 0,

which is again a contradiction, ending the proof of Claim 2.
Next, we define by recurrence the sequence

sk+1 = min
{

m,min
j

(
γ j h j (sk)

)}
.

If sk = m for some k ≥ 0, then γ j h j (sk) = γ j e−c j mm ≥ m, hence sp = m for all p > k.
In this case, the result follows from Claim 1. Otherwise,

sk+1 = min
j

(
γ j h j (sk)

)
≥ min

j
ec j (m−sk )sk > sk, (2.12)

and (sk) is strictly increasing. For s∗ = lim sk , from (2.12) we have

0 < s∗ ≤ m and s∗ ≥ min
j

ec j (m−s∗)s∗ ≥ s∗,

and therefore s∗ = m. On the other hand, Claim 2 and an inductive argument imply that
min j mint∈[kτ,(k+1)τ ] x j (t) ≥ sk, k ≥ 0, and we get lim inf t→∞ x j (t) ≥ s∗ = m for 1 ≤
j ≤ n. ��

The permanence of (1.1) is now an immediate consequence of the lemma above.

Theorem 2.3 If (A1’) ∃ c = (c1, . . . , cn) > 0 : βi ci

di ci − ∑n
j=1 ai j c j

> 1, i = 1, . . . , n,

holds, then system (1.1) is uniformly persistent, and thus permanent.
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Proof The changes of variables xi �→ c−1
i xi = x̄i , 1 ≤ i ≤ n, transform (1.1) into

x̄ ′
i (t) = −di x̄i (t)+

n∑

j=1

āi j x̄ j (t)+
m∑

k=1

βik x̄i (t − τik)e
−ci x̄i (t−τik ), i = 1, . . . , n,

where āi j = c j
ci

ai j . After dropping the bars, we may consider system (2.8), for which condi-
tion (A1) is satisfied.

Condition (A1) is equivalent to βi > di − ∑n
j=1 ai j > 0 for i = 1, . . . , n. Choose

L > maxi (c
−1
i ) with L ≥ (maxi γi )e−1 and m ∈ (0, c−1

i ) with m ≤ mini (c
−1
i log γi ).

For ε > 0 fixed, let Lε = L + ε and mε ∈ (0,m) such that hi (mε) ≤ hi (Lε). For any
positive solution x(t) of (2.8), let ui = lim supt→∞ xi (t) and vi = lim inf t→∞ xi (t). Note
that maxx≥0 hi (x) = e−1 for 1 ≤ i ≤ n. As in the proof of Theorem 2.1, from (2.1) we
deduce that maxi ui ≤ γi e−1 < Lε. From Lemma 2.1, we now have mini vi > mε . By
letting ε → 0+, we obtain

m ≤ lim inf
t→∞ xi (t;ϕ) ≤ lim sup

t→∞
xi (t;ϕ) ≤ L , 1 ≤ i ≤ n,

for all solutions x(t;ϕ) of (2.8) with initial condition ϕ ∈ C+
0 . For positive solutions of (1.1),

we therefore obtain

ci m ≤ lim inf
t→∞ xi (t;ϕ) ≤ lim sup

t→∞
xi (t;ϕ) ≤ ci L , 1 ≤ i ≤ n. (2.13)

��
Remark 2.1 Consider a general system (1.1) with coefficients di positive, but not given by
(1.3). Clearly, Theorem 2.1 remains true under the additional condition of D − A being a
non-singular M-matrix; and Theorem 2.3 is valid without further assumptions, since (A1’)
implies in particular that D − A is a non-singular M-matrix, because (D − A)c > 0 for some
vector c > 0 [5].

Rather than the estimates (2.13), one can actually give explicit uniform lower and upper
bounds for solutions of (1.1), if lower and upper bounds for the coefficients γi as defined in
(2.9) are known.

Theorem 2.4 Assume eα ≤ γi ≤ eβ, i = 1, . . . , n, with 0 < α < β, β > 1. Then any
positive solution x(t) = (x1(t), . . . , xn(t)) of (1.1) satisfies

min{α, exp
(
α + β − 1 − eβ−1)} ≤ lim inf

t→∞ xi (t) ≤ lim sup
t→∞

xi (t) ≤ eβ−1, i = 1, . . . , n.

Proof As before, we define h(x) = xe−x for x ≥ 0. If max j u j = ui for some i , from
Theorem 2.1 we obtain (di − ∑n

j=1 ai j )ui ≤ di ui − ∑n
j=1 ai j u j ≤ βi e−1, which yields

ui ≤ γi e−1 ≤ eβ−1. Since eβ−1 > 1, from Lemma 2.1 with c1 = · · · = cn = 1, we have
vi ≥ m, 1 ≤ i ≤ n, where m ∈ (0, 1) and is such that m ≤ α and h(m) ≤ h(eβ−1).

We now argue as in the proof of Theorem 2.1. Fix a small ε > 0, and T ≥ 0 such
that m − ε ≤ vi − ε ≤ xi (t) ≤ eβ−1 + ε for t ≥ T and 1 ≤ i ≤ n. Without loss of
generality, take T = 0. For an arbitrary t > 0, x ′

i (t) ≥ −di xi (t) + ∑n
j=1 ai j (v j − ε) +

βi min{h(m − ε), h(eβ−1 + ε)}, implying that edi t xi (t) ≥ xi (0)+ (edi t − 1)ηi (ε)/di , t ≥ 0,
where ηi (ε) = ∑n

j=1 ai j (v j − ε)+ βi min{h(m − ε), h(eβ−1 + ε)}. Hence we obtain

xi (t) ≥ xi (0)e
−di t + d−1

i ηi (ε)(1 − e−di t ), i = 1, . . . , n.
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Fig. 1 In a, Example 2.2 is depicted with τ1 = 5 and τ2 = 10. (A1) is not satisfied, but (A1’) is, and also
s(M) > 0, hence the population persists on both patches. Furthermore, one can check that the conditions of
Theorem 5.2 hold and the positive equilibrium is globally asymptotically stable. In b, we set a12 = 0, other
parameters are the same. Then s(M) = 1 > 0, but we are in the reducible case of Example 2.1, and the
population becomes extinct on the first patch

By letting ε → 0+ and t → ∞, this leads to vi ≥ d−1
i

(∑n
j=1 ai jv j + βi h(m)

)
, for

i = 1, . . . , n. For vk = mini vi , this inequality yields

vk ≥ γkh(m) ≥ eαh(m) = eα min{h(α), h(eβ−1)} = min{α, exp
(
α + β − 1 − eβ−1)}.

��

In spite of the explicit estimates provided by Theorem 2.4, clearly the criterion for the
uniform persistence in Theorem 2.3 is more general.

Example 2.2 In (1.1), let n = 2,m = 1, β1 = 1, β2 = 3, a12 = a21 = 1, d1 = 3, d2 = 2.

Then M =
(−2 1

1 1

)
and γ1 < 1, hence (A1) is not satisfied, so Theorem 2.4 does not apply

directly. However, it is easy to check that hypothesis (A1’) is satisfied with any c1, c2 > 0 such
that 2c1 < c2 < 3c1, and therefore we are able to conclude that system (1.1) is permanent
(Fig. 1).

Next result establishes that s(M) > 0 is a criterion for the uniform persistence of the
total population, i.e., the uniform ρ-persistence of (1.1) in the sense of Smith and Thieme’s
nomenclature [16] withρ(φ) = ∑n

i=1 φi (0); moreover, in the case of an irreducible matrix A,
the persistence is uniform in all patches. It will be shown in the next section that this criterion
is sharp. In the theorem below, we use the norm |x | = ∑n

i=1 |xi | in IRn , so ρ(φ) = |φ(0)|
for all φ ∈ C+

0 .

Theorem 2.5 Assume s(M) > 0. Then for system (1.1) the total population strongly uni-
formly persists. If M is irreducible, then the population strongly uniformly persist on each
patch. If M is reducible, there exists at least one patch, where the population strongly uni-
formly persists.

Proof The proof is organized in three steps.

(i) Finding an irreducible block with positive spectral bound
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If M is reducible, then (after a permutation of the variables), it can be written in the diagonal
form

M =
⎛

⎜⎝
M11 . . . M1�

. . .

0 . . . M��

⎞

⎟⎠ ,

where Mlm are nl × nm matrices, with Mll irreducible nl × nl blocks,
∑�

l=1 nl = n. Then
s(M) = max{s(M��) : i = 1, . . . , �}, and there exists an index κ ≤ � such that s(Mκκ ) > 0.
Let κ := ∑κ−1

l=1 nl + 1 and κ := ∑κ
l=1 nl . Define the index set � := {i ∈ IN : κ ≤ i ≤ κ},

then |�| = nκ > 0. Now consider the following subsystem of (1.1), which corresponds to
the κth block:

x ′
i (t) = −di xi (t)+

∑

j∈�
ai j x j (t)+

∑

j /∈�
ai j x j (t)+

m∑

k=1

βik xi (t − τik)e
−xi (t−τik ), i ∈ �.

(2.14)

In the sequel we let pi (t) := ∑
j /∈� ai j x j (t) ≥ 0 for all i ∈ �, and letρκ(φ) := ∑

j∈� φ j (0).
We use the notation Mκκ = Aκκ + Bκκ − Dκκ , where Aκκ , Bκκ , Dκκ are nκ × nκ matrices,
corresponding to the κth block in A, B, D. If M is irreducible, we have only one block
M11 = M , and in this case |�| = n and pi (t) = 0 for all i = 1, . . . , n.

(i i) Uniform weak persistence of the total population of an irreducible block with positive
spectral bound

Consider (2.14). For any 0 < ε < 1, we define the auxiliary system

w′
i = −diwi (t)+

m∑

k=1

βik(1 − ε)wi (t − τik)+
∑

j∈�
ai jw j (t), i ∈ �, (2.15)

and the auxiliary matrix Mκκ (ε) = Aκκ + Bκκ (ε)− Dκκ , where

Bκκ (ε) = diag(βκ(1 − ε), βκ+1(1 − ε), ..., βκ−1(1 − ε), βκ(1 − ε)).

If s(Mκκ ) > 0, then also s(Mκκ (ε)) > 0 for sufficiently small ε. Fix such an ε. Since Mκκ (ε)

(and thus also Mκκ (ε)
T ) is a cooperative irreducible matrix, s(Mκκ (ε)) is a simple dominant

eigenvalue with a positive eigenvector. Let q be the positive vector that corresponds to the
transpose of Mκκ (ε), i.e. Mκκ (ε)

T q = s(Mκκ (ε))q.
Define for any positive solution segment wt of system (2.15) the vector y(t) by

yi (t) =
⎛

⎝wi (t)+
m∑

k=1

βik (1 − ε)

t∫

t−τik

wi (u)du

⎞

⎠ .

We construct the Lyapunov functional V := 〈y(t), q〉 (here 〈·, ·〉 denotes the Euclidean scalar
product). Then it is easily seen that y(t) satisfies the relation

y′(t) = Mκκ (ε)w(t)

and we have

dV (t)

dt
= 〈y′(t), q〉 = 〈Mκκ (ε)w(t), q〉 = 〈w(t),Mκκ (ε)

T q〉 = 〈w(t), s(Mκκ (ε))q〉 > 0,

(2.16)
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because in the last scalar product all terms are positive. Hence V is increasing and V > 0
except at zero, so either limt→∞ V (t) = ∞ or limt→∞ V (t) = V∗ < ∞ with V∗ > 0.
We claim that the latter case is not possible. Suppose the contrary: then by the fluctuation
lemma there is a sequence tl → ∞ as l → ∞ such that V (tl) → V∗ and V ′(tl) → 0.
Then from (2.16) it follows that w(tl) → 0. Given that w′

i (t) ≥ −diwi (t), we have that
wi (s) ≤ edi τwi (t) for any s ∈ [t − τ, t], consequently yi (t) ≤ wi (t)(1 + βi (1 − ε)τedi τ ).

As w(tl) → 0, necessarily y(tl) → 0 and thus V (tl) → 0 which is a contradiction. Thus,
only limt→∞ V (t) = ∞ is possible.

Now consider a positive solution x(t) of (1.1), and let x̃(t) = (xκ (t), . . . , xκ (t))T . There
is a δ0 = δ0(ε) > 0 such that e−ξ > (1 − ε) for ξ ∈ [0, δ0]. Then βikξe−ξ ≥ βikξ (1 − ε)

for all i = 1, ...n, k = 1, . . . ,m and ξ ∈ [0, δ0]. Define the set Uε by

Uε = {ψ ∈ C+([τ, 0], IR|�|) : ||ψi || ≤ δ0 for all i ∈ �}.
Suppose that there is a t0 such that x̃t ∈ Uε for all t ≥ t0. Then we can consider a solution
w(t) of (2.15) for t ≥ t0 with wt0 = x̃t0 , and by a standard comparison principle (using
pi (t) ≥ 0 and βikξe−ξ ≥ βikξ (1 − ε)) we obtain x̃(t) ≥ w(t) for all t ≥ t0, and x̃t ∈ Uε
implies wt ∈ Uε for all t ≥ t0, which contradicts V (t) → ∞.

Therefore, there is a sequence tl → ∞ as l → ∞ such that x̃tl /∈ Uε. Then for each tl there
is a j (l) ∈ � such that ||(x̃tl ) j (l)|| > δ0, thus there is a t∗l ∈ [tl −τ, tl ] such that x̃ j (l)(t∗l ) > δ0.

By x̃ ′
j (l)(t) ≥ −d j (l) x̃ j (l)(t) we have x̃ j (l)(tl) ≥ x̃ j (l)(t∗l )e

−d j (l)(tl−t∗l)) ≥ e−d j (l)τ δ0 , thus

|x̃(tl)| ≥ δ := min
i=1,...,n

{e−τdi δ0},

and we obtain that lim supt→∞ |x̃(t)| ≥ δ, hence we obtain the uniform weak persistence of
the total population on the patches of the κth block.

We conclude that system (1.1) is uniformly weakly ρκ -persistent with ρκ(φ) =∑
i∈� φi (0), which represents the persistence of the total population of the patches of the

κth block.

(i i i) Uniform strong persistence on each patch of an irreducible block with positive spectral
bound

To show the uniform strongρκ -persistence (i.e. there is a θ > 0 such that lim inf t→∞ ρκ(xt ) >

θ),we can apply Theorem 4.5 of [16, Chapter 4.1]. By the dissipativity (Theorem 2.1), there
exists a compact global attractor of system (1.1) (by [7], Theorem 3.4.8), and the conditions
of Theorem 4.5 of [16] hold, which guarantees the uniform strong ρκ -persistence. Next we
show the persistence of the population in each patch of the κth block. We shall use the persis-
tence functions ρi (xt ) = xi (t),which express the actual population on patch i . Let ε ∈ (0, θ),
where θ corresponds to ρκ -persistence, i.e. lim inf t→∞ ρκ(xt ) > θ . Then for any solution
xt there is a sequence tl → ∞ as l → ∞ such that

∑
i∈� xi (tl) > θ − ε for all l. Then there

must be an index j ∈ � such that x j (tl) >
θ−ε

n holds for infinitely many tl . We may assume
j = κ . Thus, lim supt→∞ xκ (t) ≥ θ−ε

n , and the system is uniformly weakly ρκ -persistent.
We can apply again Theorem 4.5 of [16] to conclude the uniform strong ρκ -persistence, thus
there is an ηκ > 0 such that lim inf t→∞ xκ (t) > ηκ and the population persists on patch κ .
By the irreducibility of Mκκ , there is an index j ∈ �, such that a jκ > 0. We may assume
j = κ + 1, then x ′

κ+1(t) ≥ −dκ+1xκ+1(t)+ aκ+1,1xκ (t), thus lim inf t→∞ xκ+1(t) > ηκ+1,
where we can choose ηκ+1 = ηκaκ+1,κ/dκ+1. By the irreducibility of this block, we can
reach all patches inductively and by choosing η = mini∈�{ηi } we have proved the statement
of the theorem, and the population strongly uniformly persists on each single patch i ∈ �.
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Fig. 2 Illustration of a system with three patches. In a, parameters are set to n = 3, m = 1, β1 = 5,β2 = 10,
β3 = 3, d1 = 2, d2 = 1, d3 = 3, a12 = a31 = a32 = 0, a13 = a21 = a23 = 1, τ1 = 3, τ2 = 8, τ3 = 6. Then
M is reducible but s(M) = 9 > 0. We can observe different behavior on the patches: oscillation, convergence
to a positive value, extinction. In b, parameters are the same, except that a12 = a31 = a32 = 0.1, thus M is
irreducible and the system is persistent

In the irreducible case, � contains all indices i = 1, . . . , n and the population strongly
uniformly persists on each patch (Fig. 2). ��

3 Extinction

In this section, a sharp criterion for the global asymptotic stability of the trivial equilibrium
of (1.1) is established. In biological terms, this means the extinction of the population in all
patches.

Theorem 3.1 Suppose that s(M) ≤ 0. Then the equilibrium 0 of (1.1) is GAS (in C+).

Proof If s(M) < 0, or if s(M) = 0 and A = [ai j ] is an irreducible matrix, the global
asymptotic stability of x = 0 follows from Theorems 2.1 and 3.1 in [3], respectively; for the
latter case, the framework in [19] was used.

Now, suppose that A is reducible and s(M) = 0. After a permutation of the variables in
(1.1), we may suppose that A has the form

A =
⎛

⎜⎝
A11 . . . A1�

. . .

0 . . . A��

⎞

⎟⎠ ,

where Akm are nk ×nm matrices, with Akk irreducible nk ×nk blocks,
∑�

k=1 nk = n. (Accord-
ing to our definition, here a square matrix of size one is always irreducible; cf. e.g. Appendix
A of [17].)

We prove the result for � = 2; the general case follows by induction. Suppose that
n1 + n2 = n and ai j = 0 for n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ n1, so that

A =
(

A11 A12

0 A22

)
, M =

(
M11 M12

0 M22

)
, (3.1)

where Ai j ,Mi j are ni ×n j blocks and Mii are irreducible matrices. Since σ(M) = σ(M11)∪
σ(M22), we have s(Mii ) ≤ 0, i = 1, 2.
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Write a solution x(t) = x(t;ϕ) (for ϕ ∈ C+) of (1.1) as x(t) = (y(t), z(t)) ∈ IRn1 × IRn2

according to the decomposition of M in (3.1). The result for the irreducible case implies that
0 is the unique equilibrium of (1.1), and that z(t) → 0 as t → ∞. If suffices to show that
y(t) → 0 as t → ∞.

Since s(M11) ≤ 0, then −M11 is an M-matrix; moreover, −M11 is an irreducible matrix,
therefore that there exists a positive vector c = (c1, . . . , cn1) such that M11c ≤ 0 [5], i.e.,

βi − di +
n1∑

j=1

c j

ci
ai j ≤ 0, i = 1, . . . , n1. (3.2)

Rewrite system (1.1) with the change of variables ȳi = c−1
i yi , i = 1, . . . , n1. Dropping the

bars for the sake of simplification, we get

y′
i (t) = di yi (t)+

n1∑

j=1

c j

ci
ai j y j (t)+

m∑

k=1

βik yi (t − τik)e
−ci yi (t−τik ) + gi (t), i = 1, . . . , n1

z′
p(t) = −dpz p(t)+

n∑

j=n1+1

apj z p(t)+
m∑

k=1

βpk z p(t − τpk)e
−z p(t−τpk ), p=1, . . . , n2, (3.3)

where gi (t) := ∑n2
k=1 ai(n1+k)zk(t) → 0 as t → ∞. Next, define

u j = lim sup
t→∞

y j (t), (3.4)

where y j , z p satisfy (3.3). We need to prove that u := max1≤ j≤n1 u j = 0.
Suppose that u > 0. For each i ∈ {1, . . . , n1} such that ui = u, by the fluctuation lemma

there is a sequence (tk), with tk → ∞, yi (tk) → ui , y′
i (tk) → 0. Choose ε ∈ (0, ui ). For t

and k large, we have yi (tk) ≥ ui − ε, y j (t) ≤ u j + ε, j = 1, . . . , n1, and 0 ≤ gi (t) ≤ ε,
leading to

y′
i (tk) ≤ −di (ui − ε)+

n1∑

j=1

c j

ci
ai j (u j + ε)+ βi (ui + ε)+ ε.

By letting ε → 0+ and k → ∞, from (3.2) we get

0 ≤ (βi − di )ui +
n1∑

j=1

c j

ci
ai j u j ≤

(
βi − di +

n1∑

j=1

c j

ci
ai j

)
ui ≤ 0.

This leads to

βi − di +
n1∑

j=1

c j

ci
ai j = 0,

n1∑

j=1

c j

ci
ai j (u j − ui ) = 0, if ui = u. (3.5)

On the other hand, reasoning as in the proof of Theorem 2.1, and since limt→∞ z p(t) = 0
for 1 ≤ p ≤ n2, (3.2) and (3.5) yield the estimate

βi u = di u −
n1∑

j=1

c j

ci
ai j u ≤ βi (ci e)

−1,

implying that u ≤ (ci e)−1. In particular, for any ε > 0 and i such that ui = u, the bounds
0 ≤ yi (t) < (u + ε) < 1/ci hold for t > 0 large.
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Next, for i such that ui = u consider again a sequence (tk) as above. For ε > 0 small and
k large,

y′
i (tk) ≤ −di (u − ε)+

n1∑

j=1

c j

ci
ai j (u + ε)+

m∑

q=1

βiq hi (yi (tk − τiq))+ ε,

where hi (x) = xe−ci x . The functions hi are strictly increasing for 0 ≤ x ≤ 1/ci , hence
hi (yi (tk − τiq)) ≤ hi (u + ε) for k large. From (3.5), and letting ε → 0+ and k → ∞, we
thus obtain

0 ≤ βi u (e
−ci u − 1) < 0,

which is not possible. This shows that u = 0, and the proof is complete. ��
In view of Theorems 2.2, 2.5 and 3.1, we therefore have a sharp threshold criterion for

extinction versus uniform persistence of the total population in the general case; and in the
case of an irreducible matrix A, we have a sharp threshold criterion for extinction versus
uniform persistence of the population in all patches. Such consequences are formulated in
the following two theorems.

Theorem 3.2 If s(M) ≤ 0, the equilibrium 0 of (1.1) is GAS; while if s(M) > 0, the total
population is uniformly persistent.

Theorem 3.3 Suppose that the matrix A is irreducible. Then: (i) if s(M) ≤ 0, the equilibrium
0 of (1.1) is GAS; (ii) if s(M) > 0, system (1.1) is uniformly persistent, i.e., the population
uniformly persists on each patch. Moreover, s(M) > 0 if and only if there is a positive vector
c ∈ IRn such that Mc > 0.

As observed, s(M) > 0 is a sharp condition for the uniform persistence of (1.1) in the
irreducible case, whereas this criterion fails in the case of reducible community matrices.
In the latter case, while the total population uniformly persists if s(M) > 0, the population
can become extinct on some of the patches (see Example 2.1). However, by Theorem 2.3 the
uniform persistence follows under the stronger hypothesis (A1’).

Two final notes in this section open the present framework to possible generalizations.

Remark 3.1 Theorem 3.1 is also valid for a system (1.1) without condition (1.3). In fact, since
s(M) ≤ 0 is equivalent to saying that −M = D − A − B is an M-matrix, and β = mini βi

is strictly positive, then s(M) ≤ 0 implies that D − A ≥ M +β I is a non-singular M-matrix
[5, Theorem 5.3]. In view of this, by Theorem 2.1 and Remark 2.1, all solutions of (1.1) with
initial conditions in C+ are bounded, and in this way the limits in (3.4) are well-defined.

Remark 3.2 Some results in Sects. 2 and 3 can be extended in a natural way to a more general
class of delayed systems with patch structure of the form x ′

i (t) = −di xi (t)+∑n
j=1 ai j x j (t)+

bi (xt,i ), 1 ≤ i ≤ n, where the birth functions bi : C([−τ, 0]; IR) → IR+ are C1-smooth,
bounded, with bi (0) = 0, Dbi (0)(1) = βi , and satisfy some additional conditions. Never-
theless, we emphasize that the uniform estimates provided by Theorems 2.3 and 2.4 are valid
for the specific Ricker-type non-linearity only. Also, the main result on the global asymptotic
stability of the positive equilibrium, which will be presented in Sect. 5, depends heavily on
the shape of the non-linearity h(x) = xe−x , and cannot be extrapolated for a more general
class of population models.
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4 Existence of a Positive Equilibrium

Together with (1.1), we consider the ODE model in the positive cone IRn+:

x ′
i = −di xi +

n∑

j=1

ai j x j + βi xi e
−xi =: fi (x), i = 1, . . . , n. (4.1)

For all i ∈ {1, . . . , n} and x ∈ IRn+ with xi = 0, we have fi (x) ≥ 0, thus the positive cone
IRn+ is positively invariant for (4.1).

The ODE (4.1) may be seen as the particular case of (1.1) with τ = 0. Clearly, systems
(1.1) and (4.1) share the same equilibria. In this section, we look for equilibria of (4.1).

In the following, we adopt some definitions and notation of Hofbauer [8], namely the
definition of a saturated equilibrium (or saturated fixed point). For an ODE system x ′ = f (x)
for which IRn+ is positively invariant, if an equilibrium point x∗ lies on the frontier of IRn+, say
x∗ = (0, . . . , 0, x∗

p+1, . . . , x∗
n ), then necessarily the Jacobian matrix D f (x∗) has the form

(cf. [8])

D f (x∗) =
[

C 0
D E

]
,

where C is a p × p matrix, called the external part of D f (x∗).

Definition 4.1 For an ODE system x ′ = f (x), positively invariant in IRn+, an equilib-
rium x∗ ≥ 0 is said to be a saturated equilibrium if x∗ is an equilibrium and: (i)
either x∗ ∈ int(IRn+) and D f (x∗) is stable, i.e., s

(
D f (x∗)

) ≤ 0; (ii) or x∗ ∈ f r(IRn+),

x∗ = (0, . . . , 0, x∗
p+1, . . . , x∗

n ), and D f (x∗) =
[

C 0
D E

]
, where the p × p matrix C is stable,

i.e., s(C) ≤ 0.

An equilibrium x∗ ≥ 0 of (4.1) is said to be regular if det D f (x∗) 
= 0; in this case, the
index of x∗ is defined as the sign of det(−D f (x∗)).

With these definitions, note that an asymptotically stable equilibrium has index +1, in
any dimension n.

The following theorem plays an important role in this section.

Theorem 4.1 [8] Any system x ′ = f (x) for x ∈ IRn+, where f is a C1 vector field, which is
dissipative and forward invariant on IRn+ has at least one saturated equilibrium; moreover,
if all saturated equilibria are regular, the sum of their indices equals +1.

For system (4.1), the ODE version of Theorem 2.1 shows that (4.1) dissipative. Conse-
quently, from Hofbauer’s theorem we deduce that there is at least a saturated fixed point of
(4.1) in the cone IRn+.

Next, we give sufficient conditions for the existence and stability of a positive equilibrium
of (4.1), both for the irreducible and reducible case. A sharp criterion is obtained when A is
irreducible.

Theorem 4.2 Assume A is irreducible. If s(M) > 0, there is a unique positive equilibrium
x∗ of (4.1), which is GAS in IRn+ \ {0}; if s(M) ≤ 0, zero is a global attractor in IRn+.

Proof The last assertion follows from Theorem 3.1. Now, suppose that s(M) > 0. From
Theorem 4.1, there is a saturated equilibrium of (4.1). Since A is irreducible, the Jacobian
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matrix at an equilibrium u∗, D f (u∗) = A−D+diag
(
βi e−u∗

i (1−u∗
i )

)n

i=1
, is also irreducible,

thus the only possible saturated equilibrium on the boundary of IRn+ is zero, for which the
external part of D f (0) coincides with the full matrix. However, condition s(M) > 0 implies
that the linearized equation at 0, ẋ = Mx , has an eigenvalue with positive real part, hence
zero is an unstable fixed point of (4.1). Consequently, there is a positive saturated equilibrium
x∗. But any other possible positive equilibrium of (4.1) is saturated. In fact, if u∗ > 0 is an
equilibrium of (4.1), we have

−D f (u∗)u∗ = col
(
βi e

−u∗
i (u∗

i )
2
)n

i=1
> 0.

This implies that −D f (u∗) is a non-singular M-matrix (see [5]), which is equivalent to
saying that s(D f (u∗)) < 0. Therefore u∗ is regular with index +1. Again by Theorem 4.1
we conclude that the positive equilibrium x∗ of (4.1) is unique, and locally asymptotically
stable. Since (4.1) is an irreducible and cooperative system, by Theorem 6 of [8] (see also
the proof of Lemma 4.2 below) x∗ is a global attractor of all positive solutions x(t). On the
other hand, any solution x(t) = x(t; x0) of (4.1) with initial condition in x0 ∈ IRn+ \ {0} is
strictly positive for t > 0 (cf. e.g. [15]). ��

Theorem 4.3 Assume (2.6) for some c = (c1, . . . , cn) > 0. Then, there is a unique positive
equilibrium x∗ of (4.1), which is GAS in int(IRn+).

Proof If A is irreducible, (2.6) is equivalent to s(M) > 0 (cf. Theorem 3.3). If A is a reducible
matrix, the existence of a globally asymptotically stable positive equilibrium of (4.1) is an
immediate consequence of the next two lemmas. ��

Lemma 4.1 If (2.6) holds, then there is a unique positive equilibrium of (4.1).

Proof As before, write the ODE (4.1) as x ′ = f (x), for f = ( f1, . . . , fn) and fi (x) =
(βi e−xi −di )xi +∑

ai j x j , and designate by x(t, x0) the solution of (4.1) with initial condition
x(0) = x0 ∈ IRn+. For a vector c as in (2.6) , we have fi (εc) = ε[−(ci di − ∑

c j ai j ) +
ciβi e−εci ], hence fi (εc) > 0 for ε > 0 small and 1 ≤ i ≤ n. Since (4.1) is cooperative and
dissipative, from Corollary 5.2.2 of [15, p. 82], x(t, εc) → x∗ as t → ∞ for some x∗ > 0.
Clearly x∗ is an equilibrium of (4.1). It suffices to show that x∗ is the unique positive fixed
point.

The case of A irreducible has already been addressed. Now, suppose that A is reducible,
with

A =
(

A11 A12

0 A22

)
,

where the ni × ni matrices Aii are irreducible , i = 1, 2, n1 + n2 = n. (Recall that this
includes the case of some of the Aii equal to zero if ni = 1.) The general case where A can
be written in a triangular form with � irreducible diagonal blocks Aii follows by induction.
We write accordingly

M =
(

M11 M12

0 M22

)
, c =

(
c(1)

c(2)

)
,

with ni × ni matrices Mii and c(i) ∈ IRni , i = 1, 2. Since Mc > 0, then M22c(2) > 0, and
Theorem 3.2 yields s(M22) > 0.
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For x(t) = (y(t), z(t)) ∈ IRn1 × IRn2 , system (4.1) becomes

y′
i = (βi e

−yi − di )yi +
n1∑

j=1

ai j y j +
n2∑

k=1

ai(n1+k)zk, i = 1, . . . , n1 (4.2a)

z′
p = (βpe−z p − dp)z p +

n2∑

k=1

ap(n1+k)zk, p = 1, . . . , n2. (4.2b)

Write x∗ = (y∗, z∗) ∈ IRn1 × IRn2 . From the irreducible case, z∗ is the unique positive
equilibrium of (4.2b), which is GAS. If A12 = 0, then clearly y∗ is the unique positive
equilibrium of (4.2a). Otherwise, define l := A12z∗ and note that l = (l1, . . . , ln1) ≥ 0, l 
=
0. Consider the system

y′
i = (βi e

−yi − di )yi +
n1∑

j=1

ai j y j + li =: gi (y), i = 1, . . . , n1. (4.3)

Obviously 0 is not a fixed point of (4.3). The positive cone IRn1+ is positively invariant for (4.3).

For u∗ = (u∗
1, . . . , u∗

n1
) an equilibrium of (4.3), Dg(u∗) = diag

(
βi h′(u∗

i ) − di

)
+ A11 is

irreducible, thus there are no saturated equilibria on the boundary of IRn1+ . Also, Dg(u∗)u∗ =
−col

(
(u∗

i )
2e−u∗

i + li
)n1

i=1
< 0, and therefore we conclude that −Dg(u∗) is a non-singular

M-matrix, which implies that u∗ is regular with index +1. From Theorem 4.1, we deduce that
(4.3) has a unique saturated equilibrium, which is y∗. This ends the proof. ��

Lemma 4.2 If there exists a unique positive equilibrium x∗ of (4.1), then x∗ is GAS in
int(IRn+).

Proof Let x0 ∈ int(IRn+). Choose l, L , 0 < l < 1 < L , such that lx∗ ≤ x0 ≤ Lx∗. With
the same notations as above, we have that fi (lx∗) > l fi (x∗) = 0 and fi (Lx∗) < L fi (x∗) =
0. This implies that the components xi (t, lx∗) are non-decreasing and xi (t, Lx∗) are non-
increasing, for t ≥ 0 [15, Corollary 5.2.2], . Reasoning as above, let K1, K2 be such that
x(t, lx∗) → K1 and x(t, Lx∗) → K2 as t → ∞. Clearly K1, K2 are positive equilibria,
hence K1 = K2 = x∗. Since (4.1) is cooperative, x(t, lx∗) ≤ x(t, x0) ≤ x(t, Lx∗), hence
x(t, x0) → x∗ as t → ∞. ��

The results in Sects. 2, 3 and 4 yield some interesting algebraic consequences, which may
be useful in applications.

Theorem 4.4 (i) For a cooperative matrix M, if Mc > 0 for some positive vector c, then
s(M) > 0; the converse is true if M is irreducible. (ii) If M = B − D + A for A, B, D as
in (1.4), with either (1.3) or D − A a non-singular M-matrix, then (A1’) holds if and only if
Mc > 0 for some positive vector c.

Proof (i) From Theorems 2.2 and 3.1, condition (2.6) implies s(M) > 0. (ii) Obviously,
(A1’) implies (2.6). If Mc > 0 for some positive vector c, from Theorem 4.3 there is a unique
positive equilibrium x∗ > 0 of (4.1) (and (1.1)) (note that the dissipativity of (4.1) follows
from D − A being a non-singular M-matrix, in case (1.3) is not satisfied). Consequently,
Bx∗ > diag(βi x∗

i e−x∗
i ) = (D − A)x∗ > 0, thus (A1’) is satisfied with c = x∗. ��
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5 Global Asymptotic Stability of the Positive Equilibrium

In this section, we give a criterion for the (absolute) global attractivity of the positive equi-
librium. We shall use an auxiliary result established in [3].

Lemma 5.1 [3] The function h(x) = xe−x satisfies

|h(y)− h(x)| < e−x |y − x | for all x ∈ (0, 2] and y > 0, y 
= x .

We now prove the main result of this section.

Theorem 5.1 Assume (A2) 1 < γi ≤ e2, i = 1, . . . , n, where γi := βi

di − ∑n
j=1 ai j

. Then

the positive equilibrium x∗ for (1.1) is GAS (in C+
0 ).

Proof Theorems 2.1 and 4.3 guarantee that all positive solutions of (1.1) are bounded and
that there is a unique positive equilibrium x∗ = (x∗

1 , . . . , x∗
n ) of (1.1). For x∗

i = max j x∗
j ,

we obtain

ex∗
i ≤ γi ≤ e2,

hence 0 < x∗
j ≤ x∗

i ≤ 2, 1 ≤ j ≤ n. Thus, x∗ is locally asymptotically stable (cf. Theorem
2.2 and [3, Remark 2.1]).

As before, let h(x) = xe−x for x ≥ 0, and effect the changes

zi (t) = xi (t)

x∗
i

− 1, 1 ≤ i ≤ n. (5.1)

System (1.1) becomes

z′
i (t)=

1

x∗
i

⎡

⎣−di x∗
i zi (t)+

n∑

j=1

ai j x∗
j z j (t)+

m∑

k=1

βik

(
h(x∗

i +x∗
i zi (t−τik))−h(x∗

i )
)
⎤

⎦ , i =1, . . . , n.

(5.2)

Consider any solution z(t) = z(t;φ) of (5.2) with initial condition φ ∈ S, where S :=
{φ = (φ1, . . . , φn) ∈ C([−τ, 0]; IRn) : φi (θ) ≥ −1 for −τ ≤ θ < 0 and φi (0) > −1, i =
1, . . . , n}. Then, there are constants m,M , 0 < m < M , with m − 1 < zi (t) < M for all i
and t > 0 sufficiently large. To prove that z(t) → 0 as t → ∞, we now follow closely some
arguments in [3].

Fix the maximum norm in IRn , |x | = max1≤i≤n |xi | for x = (x1, . . . , xn). If φ = 0, then
z(t) ≡ 0. For φ 
= 0, we claim that

|z(t)| < ‖φ‖ for t ≥ τ. (5.3)

For the sake of contradiction, suppose that (5.3) fails. Then, there exists T ≥ τ such that
|z(T )| ≥ ‖φ‖ > 0 and |z(T )| ≥ |z(t)| for −τ ≤ t ≤ T .

Let i ∈ {1, . . . , n} be such that |z(T )| = |zi (T )|, and consider the case zi (T ) > 0 (the
case zi (T ) < 0 is similar). From the definition of T , we have z′

i (T ) ≥ 0. On the other hand,
we obtain

z′
i (T )=

1

x∗
i

⎡

⎣−di x∗
i zi (T )+

n∑

j=1

ai j x∗
j z j (T )+

m∑

k=1

βik

(
h(x∗

i +x∗
i zi (T −τik))−h(x∗

i )
)
⎤

⎦ .

(5.4)
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Note T −τik ≥ 0, hence x∗
i +x∗

i zi (T −τik) is strictly positive. By Lemma 5.1, if zi (T −τik) 
=
0, then

|h(x∗
i + x∗

i zi (T − τik))− h(x∗
i )| < e−x∗

i x∗
i |zi (T − τik)| ≤ e−x∗

i x∗
i zi (T );

and h(x∗
i + x∗

i zi (T − τik)) − h(x∗
i ) = 0 if zi (T − τik) = 0. Since βi = ∑

k βik > 0, then

βik > 0 for some k, and clearly we obtain
∑m

k=1 βik

(
h(x∗

i + x∗
i zi (T − τik)) − h(x∗

i )
)
<

βi e−x∗
i x∗

i zi (T ). Also, |z j (T )| ≤ zi (T ) for all j , and consequently (5.4) yields

z′
i (T ) <

1

x∗
i

⎡

⎣

⎛

⎝−di x∗
i +

n∑

j=1

ai j x∗
j

⎞

⎠ + βi e
−x∗

i x∗
i

⎤

⎦ zi (T ) = 0,

which contradicts the fact z′
i (T ) ≥ 0. This proves (5.3).

Define �φ(t) := ‖zt (φ)‖. Since (5.2) is an autonomous system, then �φ(t2) =
�zt1 (φ)

(t2 − t1) for t2 > t1 > 0, and the above estimate proves that �φ(t2) < �φ(t1) if
t2 > t1 + τ . The same arguments yield that t �→ ‖zt (φ)‖ is non-increasing for t ≥ 0, so
�φ(t) ↘ α as t → ∞, for some α ≥ 0.

Next, consider the ω-limit set ω(φ), which is non-empty. The invariance of ω(φ) under
(5.2) implies that ω(φ) ⊂ {ψ ∈ S̄ : ‖ψ‖ = α}, where S̄ denotes the closure of S in C . But
the components zi (t) are bounded away from −1 (cf. Theorem 2.2), and thereforeω(φ) ⊂ S.

If α > 0, letψ ∈ ω(φ). We haveψ ∈ S and ‖ψ‖ = α. However this is not possible, since
zt (ψ) ∈ ω(φ) and from (5.3) we get ‖zt (ψ)‖ < ‖ψ‖ = α for t ≥ τ. This shows that α = 0,
and the theorem is proved. ��

Remark 5.1 In [3], the global asymptotic stability (with respect to C+
0 ) of x∗ was proved

under the stronger hypothesis 1 < γi ≤ min{e2, ex∗
i }, i = 1, . . . , n, which turned out to be

very restrictive, since for i such that x∗
i = max1≤ j≤n x∗

j we necessarily have γi ≥ ex∗
i , and

where the equality holds if and only if either ai j = 0 or x∗
j = x∗

i for all j 
= i . Furthermore,
criteria for the existence of such a positive equilibrium were not established in [3].

In the above proof, observe that hypothesis (A2) was not directly applied to system (5.2),
obtained as a consequence of the change of variables (5.1). Actually, (A2) was used only
to guarantee the existence of a positive equilibrium with all its components in the interval
(0, 2], which is crucial for two reasons: on one hand, its local stability is deduced regardless
of the size of the positive delays, and, on the other hand, Lemma 5.1 can be applied. Note
that the estimate in Lemma 5.1 is no longer valid for x > 2. This observation permits to state
the global attractivity of the positive equilibrium under weaker assumptions, as follows.

Theorem 5.2 Assume (2.6) for some positive vector c = (c1, . . . , cn). Then, the unique
positive equilibrium x∗ = (x∗

1 , . . . , x∗
n ) (whose existence is given by Theorem 4.2) is GAS if

x∗
i ≤ 2 for i = 1, . . . , 2.

Remark 5.2 For the scalar Nicholson’s blowflies equation, it is well-known that if γ1 =
β1/d1 > e2, large delays can lead to the existence of periodic solutions appearing from a
Hopf bifurcation. Also for n > 1, we can show that hypothesis (A2) is a sharp condition for
the absolute global asymptotic stability (i.e., for the global asymptotic stability independently
of the size of positive delays τik) of x∗; if γi > e2 for some i , in general large delays bring
instability, as illustrated in the example below.
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Fig. 3 Illustration of Example 5.1. Parameters are a12 = a21 = 1, d1 = d2 = 2, β1 = 3, β2 = 15, τ1 = 1.
Then γ1 = β1 < e2 and γ2 = β2 > e2. In a, we set τ2 = 2, and we observe the convergence of solutions to
an equilibrium. Increasing the delay to τ2 = 3.5, the equilibrium becomes unstable and we can see a periodic
oscillation in b

Example 5.1 Consider (1.1) with n = 2, m = 1:

x ′
1(t) = −d1x1(t)+ a12x2(t)+ β1x1(t − τ1)e

−x1(t−τ1)

x ′
2(t) = −d2x2(t)+ a21x1(t)+ β2x2(t − τ2)e

−x2(t−τ2)
(5.5)

and a12 ≥ 0, a21, di , βi , τi > 0, i = 1, 2, with 1 < γ1 = β1/(d1 − a12) ≤ e2 and
γ2 = β2/(d2−a21) > e2, so that (A2) fails. Under some further conditions on the coefficients
in (5.5), we show that the positive equilibrium x∗ = (x∗

1 , x∗
2 ) is not asymptotically stable if

the size of the delay τ2 is large.

Let a21 > 0 be sufficiently small so thatβ2/d2 > e2. The linearization about x∗ = (x∗
1 , x∗

2 )

is given by

yi (t) = −[di yi (t)+ Li1(yt )+ Li2(yt )], i = 1, 2,

where the linear operators Li j are defined by

L11(ϕ) = −β1h′(x∗
1 )ϕ1(−τ1), L12(ϕ) = 0

L21(ϕ) = −a21ϕ1(0), L22(ϕ) = −β2h′(x∗
2 )ϕ2(−τ2), ϕ = (ϕ1, ϕ2) ∈ C.

Define now

N̂ = D −
[
‖Li j‖

]
=

(
d1 − β1|h′(x∗

1 )| 0
−a21 d2 − β2|h′(x∗

2 )|
)
,

with eigenvalues λ1 = d1 −β1|h′(x∗
1 )| and λ2 = d2 −β2|h′(x∗

2 )|. We claim that it is possible
to have λ2 < 0. If this is the case, from Theorem 2.3 in [4] we conclude that there is τ2 > 0
for which the equilibrium x∗ = (x∗

1 , x∗
2 ) of (5.5) is unstable (Fig. 3).

For α := a21x∗
1 , we have ex∗

2 = βx∗
2

d2x∗
2 −α → β2/d2 > e2 as α → 0+. This implies

x∗
2 = x∗

2 (α) > 2, for either a21 or x∗
1 small (for instance, with a12 = 0, we have that

x∗
1 = log(β1/d1) → 0+ if β1/d1 → 1+). Thus, λ2 = d2 + β2(1 − x∗

2 )e
−x∗

2 and for
x∗

2 (0) := log(β2/d2) we obtain

λ2 = λ2(α) = 1

x∗
2
[−d2(x

∗
2 )

2 + (2d2 + α)x∗
2 − α] → d2(2 − x∗

2 (0)) < 0 as α → 0+.
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