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Given the danger of an unprecedented spread of the highly pathogenic avian influenza strain H5N1 in

humans, and great challenges to the development of an effective influenza vaccine, antiviral drugs will

probably play a pivotal role in combating a novel pandemic strain. A critical limitation to the use of these

drugs is the evolution of highly transmissible drug-resistant viral mutants. Here, we develop a

mathematical model to evaluate the potential impact of an antiviral treatment strategy on the emergence

of drug resistance and containment of a pandemic. The results show that elimination of the wild-type strain

depends crucially on both the early onset of treatment in indexed cases and population-level treatment.

Given the probable delay of 0.5–1 day in seeking healthcare and therefore initiating therapy, the findings

indicate that a single strategy of antiviral treatment will be unsuccessful at controlling the spread of disease

if the reproduction number of the wild-type strain ðRs
0Þ exceeds 1.4. We demonstrate the possible

occurrence of a self-sustaining epidemic of resistant strain, in terms of its transmission fitness relative to the

wild-type, and the reproduction number Rs
0. Considering reproduction numbers estimated for the past

three pandemics, the findings suggest that an uncontrollable pandemic is likely to occur if resistant viruses

with relative transmission fitness above 0.4 emerge. While an antiviral strategy is crucial for containing a

pandemic, its effectiveness depends critically on timely and strategic use of drugs.
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1. INTRODUCTION

The threat of an impending influenza pandemic, possibly

through mutation of the present deadly avian strain

H5N1, has galvanized global efforts to understand the

potential benefits and limitations of mitigation strategies.

Previous modelling studies have considered pharma-

ceutical and non-pharmaceutical interventions (Ferguson

et al. 2003, 2005, 2006; Longini et al. 2004, 2005; Gani

et al. 2005; Germann et al. 2006) and rationalized the use

of antiviral drugs as the first-line defence against a new

pandemic strain. The effects of these drugs are twofold:

(i) they reduce the infectivity and duration of infectious-

ness by inhibiting virus replication and (ii) reduce

susceptibility; these will in turn decelerate the spread of
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infection in the population to afford time for development

of new vaccine candidates.

There are two groups of antiviral drugs available for

treatment and prophylaxis of influenza: M2 inhibitors

(amantadine and rimantadine) and neuraminidase

inhibitors (oseltamivir and zanamivir). Despite the effec-

tiveness of these drugs in reducing influenza-related

morbidity and mortality, the emergence of drug resistance

poses a critical limitation on their application. Incidence of

viral resistance to M2 inhibitors has been associated with an

increasing rate in seasonal influenza, possibly through

widespread or indiscriminate use of the drugs (Bright et al.

2005). Neuraminidase inhibitors are less prone to selecting

for resistantmutations (Moscona2005;Regoes&Bonhoeffer

2006), and therefore offer a better option for pandemic

preparedness. However, recent emergence of oseltamivir

resistance has raised concerns about our strengths in facing

an influenza pandemic (Kiso et al. 2004; de Jong et al. 2005;

Moscona 2005; Regoes & Bonhoeffer 2006).

The strategy of antiviral therapy raises a number of

public health concerns regarding the optimal use of drugs
This journal is q 2007 The Royal Society
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Figure 1. Dynamics of influenza A virus infection, corre-
sponding to the results obtained from model fitting to data of
viral titre in experimentally infected immunocompetent
adults with H1N1 influenza A (Baccam et al. 2006).
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for treatment, prophylaxis, or combination thereof, in

order to not only minimize the short-term impact of the

virus on the population, but also account for the longer-

term consequences of the evolutionary responses of the

virus. This is particularly important for preventing

pandemic waves of infection caused by the emergence of

resistant viral mutants. These concerns can be addressed

when appropriate models of evolutionary epidemiological

aspects of the disease are employed. Despite several recent

modelling efforts (Ferguson et al. 2003, 2005, 2006;

Longini et al. 2004, 2005; Gani et al. 2005; Germann et al.

2006; Wu et al. 2006; Colizza et al. 2007), the interplay

between these aspects and its consequences for contain-

ment of a pandemic are poorly exploited.

This study undertakes to evaluate the merit of the

application of antiviral drugs from a different angle, through

a modelling approach that provides a link between viral

dynamics at the individual level and disease spread in the

population. Central to our model is the inclusion of

infectious compartments according to the stage progression

of the disease. This allows us to monitor the density of

infected individuals in terms of the time elapsed since the

onset of clinical disease, explicitly as an independent

structure variable. To capture the dynamics of the

emergence of drug resistance within the limited window of

opportunity for commencing antiviral therapy, we consider

an evolutionary rate of emergence of resistant mutants that

increases linearly with the outgrowth of viral replication. Our

approach introduces a systematic way to account for the

effect of delay in initiating treatment of indexed cases on the

emergence of drug resistance and spread of the disease. We

derive a criterion for the control of influenza infection and

demonstrate the possible scenarios of disease outbreak,

including the possibility of a self-sustaining epidemic of

resistant viruses. Although this study does not address the

influence of immunological/epidemiological characteristics

of the individuals/population, these signatures remain

crucial for gaining insights into understanding the complex-

ityof transmission routesand identifyingmeans bywhich the

invasion of a pathogen in the population can be effectively

contained. In the following, we detail the model structure,

discuss our results and their epidemiological implications,

and place them in the context of public health.
2. MODEL STRUCTURE
The development of the model, based on clinical aspects

of influenza infection, involves the processes of disease

progression at both the individual and population levels.

At the population level, we consider classes of susceptible,

exposed (infected but not infectious), and both asympto-

matic and symptomatic infected individuals. It is assumed

that the transmission of infection occurs through contacts

between susceptibles and infected individuals, where for

simplicity, mass action incidence is used (Arino et al.

2006; Gardam et al. 2007). Denoting the class of

susceptibles by S, and classes of exposed individuals

with the wild-type and resistant viruses by E and Er,

respectively, we have

S 0ðtÞZKbQðtÞSðtÞ;

E 0ðtÞZ bQsðtÞSðtÞKmEEðtÞ;

E 0
rðtÞZbQrðtÞSðtÞKmEErðtÞ;

ð2:1Þ
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where b is the baseline transmission rate of the wild-type

strain; 1/mE represents the mean latent period (assumed to

be the same for E and Er classes); and bQ(t)Zb(QsCQr) is

the force of infection, yet to be formulated, in which Qs

and Qr comprise the infectious compartments of the wild-

type and resistant strains, respectively. Exposed individ-

uals in the E and Er classes cannot transmit the disease in

the latent period, during which viral titres increase to

detectable and transmissible levels (Baccam et al. 2006).

Also, the inclusion of these classes more realistically

represents the epidemiology of disease, due to the fact that

treatment of infected individuals is not feasible until after

the latent period has elapsed.

After the latent period, exposed individuals either

develop clinical disease or undergo an asymptomatic

phase without showing symptoms for the entire course

of infection. Let A and Ar denote the classes of

asymptomatic individuals corresponding to the wild-type

and resistant strains, who can shed the virus during their

infectious period 1/mA, respectively. Assuming a prob-

ability p2(0, 1) for an exposed individual to develop

clinical disease, we obtain

A0ðtÞZ ð1KpÞmEEðtÞKmAAðtÞ;

A0
rðtÞZ ð1KpÞmEErðtÞKmAArðtÞ:

ð2:2Þ

To formulate the equations for symptomatic infectious

classes, we need to consider the progression of disease at the

individual level (figure 1). The clinical course of infection

may be divided into three stages: (i) pre-symptomatic

infection, during which transmission can occur before

symptoms appear, (ii) primary stage of symptomatic

infection after the onset of symptoms, which also represents

the window of opportunity for initiating an effective course

of antiviral therapy, and (iii) secondary stage of symptomatic

infection following the window of opportunity. Further-

more, we assume that clinical cases who have not started

antiviral therapy within this window will progress to the

secondary stage without receiving any treatment.

Although antiviral drugs have been shown to reduce

both the infectivity and the period of infectiousness

(Nelson et al. 2004), their overall effectiveness may be

limited by the emergence and spread of drug-resistant viral

mutants (Moscona 2005; Regoes & Bonhoeffer 2006;

Lipsitch et al. 2007). The likelihood of an emergent

resistant mutant out-competing a wild-type virus and
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Figure 2. Model structure for development of drug resistance
during a course of therapy.
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dominating the viral population depends greatly on its

replicative fitness relative to that of the wild-type strain. In

the absence of treatment, such dominance is improbable,

due to a sufficient difference in the intrinsic fitness

between resistant mutants and wild-types. However,

treatment can result in a significant reduction in fitness

of the wild-type, which may in turn lead to the resistant

viral mutants prevailing (Handel et al. 2006). Without

pre-existing resistant mutants, the inhibition of viral

replication by the use of antiviral drugs will minimize the

likelihood of evolving such mutants during a course of

therapy. On the other hand, the probability of emergence

of resistant mutants increases with the outgrowth of viral

replication, and therefore the development of drug

resistance becomes more probable with increasing delay

in the onset of therapy.

To model the evolution of drug resistance, let r(a)

represent the treatment rate at elapsed time a since an

exposed individual becomes infectious, and iU(t, a) and

iT(t, a) be the densities, with respect to a, of untreated

and treated infected individuals, respectively, with the

wild-type strain at current time t (figure 2). We define the

rate r(a)Zkq(a) for the emergence of drug resistance

within the window of opportunity (Stilianakis et al. 1998;

Ferguson et al. 2003), where k is the rate at which

resistant mutants evolve during treatment and q(a) is the

likelihood of developing drug resistance with delay a in

the onset of therapy. Let iU,r(t, a) and iT,r(t, a) denote the

densities of untreated and treated individuals with

resistant strain, respectively (figure 2). Then, with n

representing the size of the window of opportunity for

initiating therapy, we have (Webb 1985; Metz &

Diekmann 1986), for a2[0,n]

v

vt
C

v

va

� �
iUðt; aÞZKrðaÞiUðt; aÞ; ð2:3Þ

v

vt
C

v

va

� �
iTðt; aÞZ rðaÞiUðt; aÞKrðaÞiTðt; aÞ; ð2:4Þ

v

vt
C

v

va

� �
iU;rðt; aÞZKrðaÞiU;rðt; aÞ; ð2:5Þ

v

vt
C

v

va

� �
iT;rðt; aÞZ rðaÞiU;rðt; aÞCrðaÞiTðt; aÞ; ð2:6Þ
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subject to the following boundary conditions

iUðt; 0ÞZ pmEEðtÞ; iTðt; 0ÞZ 0

iU;rðt; 0ÞZ pmEErðtÞ; iT;rðt;0ÞZ 0:

Defining

vðaÞhe
K
Ð a

0
rðuÞdu

; qðaÞhe
K
Ð a

0
rðuÞdu

ð2:7Þ

and solving (2.3) and (2.4) leads to the solutions

iUðt; aÞZ pmEEðtKaÞqðaÞ; ð2:8Þ

iTðt; aÞZ pmEðEðtKaÞð1KqðaÞÞKEðtKaÞV ðaÞÞ; ð2:9Þ

for tRa, where

V ðaÞZ 1KvðaÞKvðaÞ

ða
0
rðxÞ

qðxÞ

vðxÞ
dx: ð2:10Þ

Let IU(t) and IT(t) denote the total number of

untreated and treated individuals with the wild-type

strain when aRn, respectively. Thus, we obtain

I 0UðtÞZ iUðt; nÞKðmU CdUÞIUðtÞ; ð2:11Þ

I 0TðtÞZ iTðt; nÞKðmT CdT CaTÞITðtÞ; ð2:12Þ

where 1/mU and 1/mT are the mean infectious periods of

symptomatic infection (secondary stage) and dU and dT

represent wild-type disease-induced mortality rates of

untreated and treated individuals, respectively. The

parameter aT denotes the rate at which infected

individuals under treatment develop drug resistance

during the secondary stage of symptomatic infection

(Stilianakis et al. 1998; Ferguson et al. 2003). This rate is

relatively high compared with r at the early stages

following the onset of symptoms, as resistant mutants in

viruses isolated from patients treated with oseltamivir

were mostly detected 3 days after start of treatment (Kiso

et al. 2004).

To express the equations for the total number of

untreated and treated individuals with resistant viral strain

for aRn, denoted by IU,r(t) and IT,r(t), respectively, we

need to solve equations (2.5) and (2.6). Substituting the

solution of (2.5) into (2.6) and solving, we obtain

iU;rðt; aÞZ pmEErðtKaÞqðaÞ; ð2:13Þ

iT;rðt; aÞZ pmEðErðtKaÞð1KqðaÞÞCEðtKaÞV ðaÞÞ; ð2:14Þ

for tRa. These solutions at aZn can be used to derive

I 0U;rðtÞZ iU;rðt; nÞKðmU CdU;rÞIUðtÞ; ð2:15Þ

I 0T;rðtÞZ iT;rðt; nÞCaTITðtÞKðmU CdU;rÞIT;rðtÞ; ð2:16Þ

where dU,r represents the disease-induced mortality rate of

the resistant strain.

In order to gain a better understanding of the

parameter v, we considered a simple scenario in which a

constant treatment coverage q is assumed as a result of a

pulse treatment rate. Thus,

V ðnÞZ 1KvKvq

ðn
0

d

dx

1

vðxÞ

� �
dxZ ð1KvÞð1KqÞ;

and therefore equation (2.12) reduces to

I 0TðtÞZ pmEEðtKnÞvð1KqÞKðmT CdT CaTÞITðtÞ;

where E(t)Z0 for t2[Kn,0]. Taking into account the

second term in equation (2.14), the parameter v may be

interpreted as the fraction of infected individuals



Table 1. Description of the model parameters (see electronic supplementary material) with their estimated values from the
published literature (Stilianakis et al. 1998; Ferguson et al. 2003, 2005, 2006; Longini et al. 2004, 2005; Mills et al. 2004; Gani
et al. 2005; Jefferson et al. 2006; Regoes & Bonhoeffer 2006.)

parameter description value (range)

1/mE mean latent period 1.25 days
1/mU mean infectious period of untreated symptomatic infection (secondary stage) 2.85 days
1/mT mean infectious period of treated symptomatic infection (secondary stage) 2.85 days
1/mA mean infectious period of asymptomatic infection 4.1 days
t mean infectious period of pre-symptomatic infection 0.25 day
n size of the window of opportunity for initiating antiviral treatment 2 days
dP relative infectiousness of pre-symptomatic infection 0.286
dA relative infectiousness of asymptomatic infection 0.071
dU relative infectiousness of untreated symptomatic infection (secondary stage) 0.143
dT relative infectiousness of treated symptomatic infection 0.4
dr relative transmission fitness of resistant strain variable
dU death rate of untreated symptomatic infection with wild-type strain 0.002 dayK1

dT death rate of treated symptomatic infection with wild-type strain 0.0002 dayK1

dU,r death rate of symptomatic infection with resistant strain 0.0004 dayK1

p probability of developing clinical disease 0.5–0.7
rmax maximum rate of emergence of drug resistance within the window of opportunity 0.036 dayK1

aT rate of emergence of drug resistance during secondary stage of symptomatic infection 0.036 dayK1

a age of infection (since an exposed individual becomes infectious) 0Kn
1Kq fraction of infected individuals who receive treatment variable
V fraction of treated individuals who develop drug resistance within the window of opportunity variable
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undergoing therapy without developing drug resistance

within the window of opportunity.

We are now in a position to define the force of infection

bQZb(QsCQr). Considering the infectious compart-

ments with the wild-type strain, we have

QsðtÞZ dAAðtÞCdUIUðtÞCdUdTITðtÞ

C

ð
t

0
dPiUðt; aÞdaC

ðn
t

�
iUðt; aÞCdTiTðt; aÞ

�
da;

ð2:17Þ

where dA, dP and dU represent the relative transmission

rates of the wild-type strain for asymptomatic, pre-

symptomatic and the secondary stage of symptomatic

infection without treatment, respectively. The parameter

dT is the relative infectiousness of a treated clinical case

with the wild-type strain. Assuming that the treatment has

no effect in reducing the infectivity of drug-resistant cases

(Stilianakis et al. 1998), and denoting the relative

transmission fitness of the resistant strain by dr, the

expression for Qr is given by

QrðtÞZdr

�
dAArðtÞCdUIU;rðtÞCdUIT;rðtÞ

�
Cdr

ðt
0
dPiU;rðt;aÞdaCdr

ðn
t

�
iU;rðt;aÞCiT;rðt;aÞ

�
da:

ð2:18Þ

Summarizing, the above derivations build our model in

the form of a system of delay differential equations (see

electronic supplementary material), where estimates of its

parameter values from the published literature are given

in table 1.
3. THE CONTROL REPRODUCTION NUMBER
We derived the control reproduction number (Rc) in order

to evaluate the potential impact of an antiviral strategy

during a pandemic. In the absence of treatment, this
Proc. R. Soc. B (2007)
quantity reduces to the basic reproduction number, defined

as the number of new infectious cases generated by a single

infected individual introduced into a wholly susceptible

population during the course of infection (Diekmann &

Heesterbeek 2000; van den Driessche & Watmough 2002).

To compute Rc, we assumed that the population is

entirely susceptible to the emerging pandemic strain with

no pre-existing immunity. Taking into account that

treatment is feasible after the onset of symptoms, we

first calculated the average number of drug-sensitive cases

(Rs
c) emanating from the introduction of an infectious

individual with the wild-type strain (see electronic

supplementary material). In the absence of therapy

(qh1), Rs
c reduces to the basic reproduction number of

the wild-type strain given by

Rs
0 ZbS0

ð1KpÞdA

mA

CpdPtCpðnKtÞC
pdU

mUCdU

� �
; ð3:1Þ

where S0 is the initial size of the susceptible population

and other parameters are defined in table 1.

An individual infected with the wild-type virus who has

started a course of therapy within the window of

opportunity may develop drug resistance, and therefore

generate a number of new resistant cases (Rr
c; see

electronic supplementary material). We also considered

the scenario in which an individual exposed to a resistant

viral strain is introduced into the population, and assumed

that treatment does not reduce viral replication in

individuals who shed resistant viruses (Stilianakis et al.

1998). The basic reproduction number of the resistant

strain is given by

Rr
0 ZdrbS0

ð1KpÞdA

mA

CpdPtCpðnKtÞC
pdU

mUCdU;r

� �
;

ð3:2Þ

which determines whether an outbreak of resistant cases

due to direct transmission occurs. We then calculated

RcZmaxfRs
c;R

r
0g as the control reproduction number and
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Figure 3. (a) Profile of treatment rate (ra0
) that decreases towards the end of the window of opportunity for starting an effective

course of antiviral therapy. (b) Rate of emergence of drug resistance (ra0
) during treatment within the window of opportunity.
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showed that the disease outbreak of both wild-type and

resistant strains can be prevented whenever Rc!1 (see

electronic supplementary material).

In the absence of control measures, the final size

relation (Arino et al. 2006; Gardam et al. 2007)

logeðS0=SNÞZ ð1KSN=S0ÞR
s
0; ð3:3Þ

can be used to estimate Rs
0 based on the given clinical

attack rate of the wild-type strain, defined as the fraction of

the initial susceptible population S0 which develops

clinical disease, and is given by p(1KSN/S0), where SN

is the size of susceptible population when the epidemic

dies out. Then, equation (3.1) provides a range of values

for the parameter bS0, and therefore the baseline

transmission rate of the wild-type virus (see electronic

supplementary material).
4. RATES OF TREATMENT AND EVOLUTION OF
DRUG RESISTANCE
Influenza A resistant viruses can emerge during treatment,

but they have only rarely been isolated from specimens

collected as part of routine influenza surveillance,

reporting less than 1% development of drug resistance

from untreated infected cases (Ziegler et al. 1999). We

therefore considered the scenario in which drug resistance

may develop as a result of treatment.

To investigate the feasibility of containing a pandemic

using antiviral agents, we prescribed a profile of treatment

rate that decreases linearly towards the end of the window

of opportunity. This corresponds to a strategy that gives

priority to those who are clinically diagnosed early in this

window by initiating a course of therapy immediately

(figure 3a). Such priority is justified by two major

epidemiological considerations: (i) early treatment

reduces the level/duration of infectiousness, and therefore

transmissibility of the virus, which affords a greater

opportunity for containing the wild-type strain and (ii) it

limits viral replication, and therefore inhibits formation of

resistant mutants, which is crucial for preventing the

emergence of drug resistance.

Owing to probable delay in seeking healthcare, we

assumed that treatment commences with a time lag a0
Proc. R. Soc. B (2007)
after the onset of clinical symptoms and defined

ra0
ðuÞZ

0; if u!a0;

bðnKuÞ; if a0%u%n;

(
ð4:1Þ

where b is the slope of the treatment rate ra . Thus, those who

have not started therapy within the window of opportunity

will progress to the secondary stage of symptomatic infection

without receiving treatment. Letting c denote the treatment

level of infected cases so that q(n)Z1Kc, and using equation

(2.7), we find bZrmax/(nKa0), where rmax is the maximum

rate of treatment given by

rmax ZK
2 lnð1KcÞ

nKt
:

The functional form of q(a; a0) with delay may then be

expressed as

qða;a0ÞZ

1; if t%a!a0;

e

K
rmaxðnKa0Þ

2
e

rmaxðnKaÞ2

2ðnKa0Þ
;

if a0%a%n:

8>>>><
>>>>:

With the initiation of therapy, the population is

threatened by the emergence of drug-resistant cases and

transmission of resistant viruses. To capture the dynamics of

emergence of resistant viral mutants, we considered a

linearly increasing rate r(a) with delay in the onset of

therapy within the window of opportunity (figure 3b), and

defined by

ra0
ðaÞZ

0; if t%a!a0;

rmax

aKt

nKt

0
@

1
A; if a0%a%n;

8>>>><
>>>>:

where rmax is the maximum rate of emergence of drug

resistance, corresponding to a high level of viral titre

(Baccam et al. 2006). The linearly increasing rate r(a)

provides a good approximation to the multi-cycle replication

of neuraminidase inhibitor-resistant mutants (E116D,

E116A, E116G, E116V, R149K, R291K and R292K)

observed in clinical investigations (Jackson et al. 2005; Yen

et al. 2005).
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Experimental studies of influenza A infection provide a

range of 1–18% incidence of neuraminidase resistance

during a standard 5-day treatment with oseltamivir

(Kiso et al. 2004; Yen et al. 2005). Taking into account

the corresponding estimates of neuraminidase mutation

rate in treated infected individuals, we set rmaxZkq(n)Z
0.036 per day, and assumed the same rate of drug-

resistant mutation during the secondary stage of sympto-

matic infection (Regoes & Bonhoeffer 2006).
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.2

0.3

delay in onset of treatment

Figure 5. The feasible region for containing the epidemic of
the wild-type strain, as a function of delay in the onset of
treatment and the level of treatment. Each contour corre-
sponds to a particular value of Rs

0 (labelled between 1.1 and
1.8), above which Rs

c is less than one and the wild-type strain
can be eliminated.
5. NUMERICAL EXPERIMENTS AND RESULTS
In this section, we determine the feasible region for disease

control under the prescribed profile of treatment, using

parameter values given in table 1. We evaluated the impact of

three important factors on the control reproduction

number: (i) the level of treatment (c), (ii) the delay in

initiating a course of therapy (a0), and (iii) the development

of drug resistance during treatment.

Figure 4 illustrates boundaries of the domain Rs
c!1,

within which the wild-type strain is eliminated for different

reproduction numbers. For these illustrations, we

assumed that the resistant virus is fivefold less transmis-

sible than that of the wild-type (Stilianakis et al. 1998),

though neuraminidase inhibitor-resistant mutants may

differ substantially in their fitness and transmissibility

(Yen et al. 2005). While R292K and H274Y neuramini-

dase mutations are recognized to have compromised

growth and transmissibility, the E119V mutant virus

may exhibit a comparable fitness to that of the wild-type

virus (Yen et al. 2005). With drZ0.2, the basic

reproduction number of the resistant virus varies between

0.28 and 0.4, corresponding to the range 1.4–2 of Rs
0. In

this case, since Rr
0!1 (see electronic supplementary
Proc. R. Soc. B (2007)
material), the occurrence of an outbreak can be prevented

by reducing Rs
c below unity. However, a substantial

improvement in the level of treatment is required as the

delay in initiating the course of treatment increases. This

leads to a more restricted region of Rs
c!1, with

increasingly stringent requirements of treatment level as

the transmissibility (and therefore Rs
0) of the wild-type

strain increases. This is evident from figure 5 which

illustrates the contour plots for Rs
0, corresponding to

Rs
cZ1, for the range of 1:1%Rs

0%1:8. Below each

contour, for a particular value of Rs
0, an outbreak of the

wild-type strain occurs (Rs
cO1), while above the contour

wild-type infection can be contained (Rs
c!1).
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To demonstrate the effect of treatment on the time

courses of wild-type infections, we simulated the model with

a single infected case introduced into the susceptible

population of size S0Z100 000, and treatment of indexed

cases beginning 1 day after the onset of clinical disease. For

the particular values Rs
0Z1:6 and Rs

0Z2, figure 6 clearly

indicates a substantial reduction in the magnitude of disease

outbreak due to treatment. Assuming that 60% of exposed

individuals develop clinical disease (see electronic supple-

mentary material), the clinical attack rate of the wild-type

strain is reduced from 38% (without treatment) to 25%

(with 60% treatment coverage) when Rs
0Z1:6. However,

the mitigation impact of treatment is less pronounced in

reducing the clinical attack rate (from 48 to 39%) when

Rs
0Z2. We also evaluated the effect of transmission fitness of

the resistant strain on the number of clinical infections

generated through direct transmission of resistant viruses.

With Rs
0Z1:6 and drZ0.2 and 0.6, numerical results show

that IU,r does not exceed one at any time during the entire

course of the epidemic (figure 7). While this holds true also

for Rs
0Z2 and drZ0.2, a small outbreak of resistant

infections (with a total number of 93 asymptomatic and

140 clinical infections) occurs when dr increases to 0.6, for

which Rr
0Z1:2.

Figure 8 illustrates the threshold curve Rr
0Z1, above

which an outbreak of resistant cases due to direct

transmission occurs (shaded area). As is evident, the

emergence of resistant viruses for which Rr
0O1 is more

probable with higher reproduction numbers of the wild-

type strain. This has important implications for pandemic

plans involving the application of antiviral drugs, in order

to not only prevent the development of drug resistance,

but also block transmission of resistant viruses using

appropriate control measures. If a pandemic were to occur
Proc. R. Soc. B (2007)
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with the reproduction number within the estimated ranges

of the 1918, 1957 and 1968 pandemics (Mills et al. 2004;

Gani et al. 2005; Viboud et al. 2006), the results indicate

that the emergence of resistant mutants with a relative

transmission fitness above 0.4 (for which Rr
0O1) could

potentially lead to an uncontrollable pandemic (figure 8).

While resistant mutants may emerge with lower trans-

mission fitness during treatment (Rr
c/1), the possible

compensatory mutations may improve their relative fitness

sufficiently to cause Rr
0O1 (Handel et al. 2006).
6. DISCUSSION
Antiviral therapy has been rationalized as the primary

public health mitigation strategy in response to a newly

emergent pandemic virus. Although this frontline defence

is crucial in the absence of a proven vaccine (Ferguson

et al. 2003, 2005, 2006; Longini et al. 2004, 2005; Gani

et al. 2005; Germann et al. 2006), it can potentially lead to

the emergence of drug-resistant viral strains by suppres-

sing replication of the wild-type strain. Drug resistance

may in turn limit the effective application of antiviral

agents through fixation of mutants in a treated patient and

transmission of these mutant viruses in the population as a

whole. We incorporated these two mechanisms in a delay

differential epidemic model to address the impact of three

important factors influencing an antiviral strategy: (i) the

delay in the onset of therapy, (ii) the population level of

treatment required for the control of wild-type strain, and

(iii) the emergence and spread of drug resistance at the

population level.

Our results show that control of the wild-type strain is

significantly affected by delay in initiating a course of

therapy, regardless of the evolutionary characteristics

of the virus. For sufficiently low transmission fitness of

resistant viruses (Rr
0!1), our simulations, over a range of

values of the reproduction number of the wild-type strain

(Longini et al. 2004, 2005; Gani et al. 2005), reveal that

the containment of a pandemic is more likely to be

achieved, and with the less stringent requirements on the

population level of treatment, the shorter the delay in

onset of therapy (figure 4). This underscores the

importance of early detection of clinical infections through

rapid implementation of reliable diagnostic tests for

influenza cases. To emphasize this point, we performed a

comparative analysis of different antiviral strategies in

which the treatment rate is either constant or linearly

increasing towards the end of the window of opportunity

(see electronic supplementary material). Such analysis

clearly demonstrates that the mitigation impact of the

treatment rate discussed above is considerably higher than

other treatment rates, offering a greater region for possible

containment of pandemic in terms of timing and level of

treatment (fig. 4 in electronic supplementary material).

Given the probable delay of 0.5–1 day in seeking

healthcare and therefore commencing treatment, the

findings indicate that a single strategy of antiviral

treatment would be unsuccessful at controlling the spread

of disease if the transmissibility of the wild-type strain

results in Rs
0 above 1.4 (figure 5).

While the early application of antiviral drugs is crucial

for reducing the pandemic burden, extreme caution is

required to prevent the emergence of drug-resistant viral

mutants. The evolution of host–pathogen systems occurs
Proc. R. Soc. B (2007)
on a short time-scale, due in part to the short generation

times and rapid adaptation of viral strains under strong

immunological pressure. Resistant strains with sufficiently

small reproductive ratio are soon out-competed, and

effective treatment may therefore result in disease

elimination. However, it is possible that a resistant strain

will undergo further mutations that compensate for the

replication fitness comparable to that of the wild-type

strain. Under these evolutionary changes, even a low level

of treatment could lead to an outbreak of resistant cases

(Handel et al. 2006), through a sufficient increase in

transmission fitness of resistant viruses for which the

reproduction number exceeds its threshold (Rr
0O1). In

our model, this is reflected in the relative transmission

fitness of the resistant strain (dr), which determines

whether it goes extinct or causes an uncontrollable

pandemic.

The model discussed here incorporates the use of

antiviral drugs as a single strategy which involves

treatment of only clinically diagnosed cases. In the

context of drug resistance, our study may be extended

to the application of antiviral prophylaxis, which reduces

the susceptibility to the wild-type strain (Regoes &

Bonhoeffer 2006; Lipsitch et al. 2007), and therefore

also the competitive interference between drug-sensitive

and drug-resistant viruses. For resistant mutants with

sufficiently high viral fitness, antiviral prophylaxis may

result in a dramatic increase in the number of resistant

cases, thereby establishing a self-sustaining epidemic

of viral resistance. In previous work (Gardam et al.

2007), we have shown that in the absence of resistant

mutants, targeted prophylaxis of healthcare workers

within an antiviral strategy can significantly reduce

morbidity and mortality of the general population.

While maintaining a healthcare work force in place is

critical, this strategy may enhance the spread of drug-

resistant viruses through intense contacts with patients

and colleagues in the healthcare setting and contacts

outside of the workplace.

The modelling efforts in this paper are based on the

homogenous mixing assumption, which may result in

high sensitivity of the epidemic size to the particular

conditions at the early stages of an outbreak, during

which stochastic effects play a dominant role in disease

propagation. However, simulating large-scale outbreaks

may require the development of models based on detailed

mobility patterns of interconnected heterogeneous sub-

populations (Regoes & Bonhoeffer 2006). For the results

reported here, we assumed that the use of antiviral drugs

would be as effective as their application in seasonal

influenza. We also used estimates for the parameters

associated with neuraminidase inhibitor resistance in

treated patients. Although the model has not addressed

the choice of drugs, recent studies indicate a significantly

lower incidence of resistance following treatment with

neuraminidase inhibitors than with M2 inhibitors (Kiso

et al. 2004; Yen et al. 2005). We should, however,

emphasize that the incidence of resistance, and therefore

the number of emergent cases (Rr
c), depends greatly on

several factors including the duration of treatment, the

rate of treatment, the delay in onset of therapy and the

rate at which de novo resistant mutations occur. Finally,

our model assumed that the supply of antiviral drugs is

secured for the entire course of a pandemic. In the case of
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scarce resources, the treatment rate would need to be

modified to take into account depletion of antiviral drug

supply, which would in turn affect the population level of

treatment, and therefore the outcome of an antiviral

strategy. This merits further investigation to determine an

optimal treatment rate that minimizes the emergence of

drug resistance while maximizing the benefit of drugs at

the population level. The effectiveness and optimal use of

drugs will then be significantly affected by limited supply,

limited production capacity and the surge in demand for

treatment. These constitute important public health

concerns and should be integrated in devising any

antiviral strategy.
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