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The Radon transform on hyperbolic space

�Arp �ad Kurusa

Abstract. The Radon transform that integrates a function in H n , the n-
dimensional hyperbolic space, over totally geodesic submanifolds with codi-
mension 1 and the dual Radon transform are investigated in this paper. We
prove inversion formulas and an inclusion theorem for the range.

0. Introduction

In this pap er we investigate the Radon transform and its dual on the hyp e r-
b olic space. This problem has b een intro duced in [7] and has also b een considered
in [7,14]. The most interesting que stion concerns the inverse of the transform, and
due to [7,14] this is known in o dd dimension.

If f 2 L 2 ( H n ), where H n is the n -dimensional hyp erb olic space, the Radon
transform of f is a function R f de�ned on the set of hyp erplanes , the totally
geo desic submanifolds with co dime ns ion 1. The value of R f at a given hyp erplane
is the integral of f over that hyp erplane. The dual Radon transform R � F of a
function F de�ned on the set of hyp erplanes is a function on H n . The value of
R � F at a given p oint X is the integral of F over the set of hyp erplanes passing
through X by the surface measure of the unit sphere of the tangent space at X (the
normals of the hyp erplane s at X pro jec t the surface measure of this unit sphere to
a measure on the set of the hyp erplanes through X ).

The p oints of the hyp erplanes nearest to an arbitrarily chosen origin de�ne a
hyp ersurface and the `b o omerang transform' integrates a function f de�ned on H n

over this hyp ersurface by the pro jected measure of the unit sphere in T X H n . This
means that the b o omerang transform is in principle the dual Radon transform,
provided H n is identi�ed (except at the origin) with the space of its hyp erplanes
| each one b eing represented by its closest p oint to the origin. The ab ove de-
�ned hyp ersurface is thus the set of the p oints from which the geo des ic segment
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Figure 1

Euclidean distance of O and P (resp. X ) is p (resp. x ). Here X is a p oint on the
geo desic M N and � (resp. fi ) is the angle b etween O X and O P (resp. X P ).

We start by noting the formulas

(1 : 1) p = x 2 + 1
2 x cos �

�

s �
x 2 + 1
2 x cos �

�2

� 1

and

(1 : 2) x =
p
r 2 + 1 cos � �

p
( r 2 + 1) cos 2 � � 1 ;

which derive from the law of cosine applied to the Euclidean triangles O N O 0 and
O X O 0. Let � = d ( P ; X ) denote the hyp erb olic dis tanc e of the p oints P and X .
Then by the Riemannian me tric ds 2 we have

� =
fi
fi
fi
filn
�
P M

P N
=
X M

X N

�fi
fi
fi
fi

and a straightforward calculation yie lds

(1 : 3) � = 1
2

fi
fi
fi
filn
�
r cos � + sin �

r cos � � sin �

�fi
fi
fi
fi;
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2. Inversion formulas and support theorems

We need the following two technical lemmas that can be easily proven from
the formulas given in [2] and [4].

Lemma 2.1. If m 2 Z then I = �= 2, where

I =
Z q

t

cos(m arccos(thh=th q))
q

1 � th2 h=th2 q
�

ch(m arcch(th h=th t))
q

th2 h=th2 t � 1

dh
shh chh

:

Lemma 2.2. If m 2 Z, n > 2, � = ( n � 2)=2 and C �
m denotes the Gegenbauer

polynomials of the �rst kind, then

M
�

sh(q � t)
shq sht

� n � 2

=
Z q

t
cthn � 3 h C �

m

�
th h
th t

�
C �

m

�
th h
th q

�
�

�
�

th2 h

th2 t
� 1

� n � 3
2

�
1 �

th2 h

th2 q

� n � 3
2 dh

sh2 h
;

where

M = � 23� n
�

�( m + n � 2)
�( m + 1)�( � )

� 2 1
�( n � 1)

:

Now we present two propositions that describe our transformations in terms
of spherical harmonics. For this purpose we recall the following facts.

A complete orthonormal system in the Hilbert spaceL 2(Sn � 1) can be chosen
consisting of spherical harmonicsYl;m , where Yl;m is of degreem. If Yl;m is a
member of such a system,f 2 C1 (Sn � 1 � R+ ) and p 2 R+ let the corresponding
coe�cients of the series in this system for f (!; p ) be f l;m (p). Then the series

1X

l;m

f l;m (p)Yl;m (! )

converges uniformly absolutely on compact subsets ofSn � 1 � R+ to f (!; p ) [13].
Below we use the expansions

f ('; q ) =
1X

m = �1

f m (q) exp(im' ) and f (!; q ) =
1X

l;m

f l;m (q)Yl;m (! )

in dimension 2 and in higher dimensions, respectively. These expansions will be
used for the Radon and boomerang transformsRf and Bf as well.
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and integrates from t to in�nity again. Then Lem ma 2.2 leads to

F ( t ) = M
j S n � 2j
C �
m (1)

Z 1

t

f l ;m ( q ) sh n � 2 ( q � t ) dq :

To �nish the pro of it is enough to observe that

d 2

dt 2 sh k ( q � t ) = k 2 sh k ( q � t ) + k ( k � 1) sh k � 2 ( q � t ) :

The following two corollaries are direct consequences of the ab ove theorems.
The �rst one has a stronger version in [8,Theorem I I I.1.2].

Corollary 2.7. If f 2 C 1
c ( H n ) and A > 0 then the values ofR f ( ! ; p ) for p � A

determine f ( ! ; p ) for p � A . If R f ( ! ; p ) = 0 on this domain, then f ( ! ; p ) = 0 too.

Corollary 2.8. If f 2 C 1 ( H n ) and A > 0 then the values ofB f ( ! ; p ) for 0 � p � A

determine f ( ! ; p ) for 0 � p � A . If B f ( ! ; p ) = 0 on this domain, then f ( ! ; p ) = 0
too.

3. Null spaces and ranges

Our �rst prop osition in this section establishes the continuity of the Radon
and b o omerang transforms. Let  ( ! ; p ) denote the hyp ersurface from the p oints
of which the geo desic segment joining O and i H ( ! ; p ) is seen at a right angle. To
calculate the b o omerang transform at the p oint i H ( ! ; p ) one needs only integrate
on  ( ! ; p ).

Proposition 3.1. Let S be a measurable set inH n and n � 3 . The maps
R : L 2 ( S; sh n � 1 � x dx ) ! L 2 ( SR ) and B : L 2 ( S; sh 1� n � x dx ) ! L 2 ( SB ) are contin-
uous, where

SR = f ( ! ; p ) 2 S n � 1 � R+ : � ( ! ; p ) \ S 6= ;g ;

SB = f ( ! ; p ) 2 S n � 1 � R+ :  ( ! ; p ) \ S 6= ;g ;

� x is the distance of x from the origin and dx is the Lebesgue measure onH n .
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Theorem 3.3. Let S be a measurable set inHn (may be Hn ), n � 3 and
gj;l;m (!; h ) = th j h

ch2 h Yl;m (! ) for j; l; m 2 N, where 0 � j < m and (m � j ) is even.
The kernel of the boomerang transform inL 2(S; sh1� n � x dx) is Cl Spf gj;l;m (!; h )g.

4. Closed inversion formula

Theorem 4.1. Let n � 2, � = ( n � 2)=2 and f 2 C1
c (Hn ). If n is odd then

f (�!; t ) = ( � 1)
n � 1

2
21� n

� n � 1 � 1� 3 : : : � n � 2

�
B

�
Rf (!; h )

cth2� h
shh

�
(�!; t ) shn � 1 t

�
:

If n is even then

f (�!; t ) = ( � 1)
n
2

21� n

� n

d
dt

� 2� 4 : : : � n � 2

�
B

�
H

D
Rf (!; h )

cth2� h
shh

E�
(�!; t ) shn � 1 t

�
;

where the H distribution is

H f (!; h ) =
1

ch2 h

Z 1

�1
f (!; r )

1
th r � th h

dr:

(We use here the natural identi�cation f (!; r ) = f (� !; � r ) for r < 0:)

Proof. We start with the odd-dimensional case, where Theorem 2.5 tells us that

f l;m (t) = CD
Z 1

t
(Rf ) l;m (h)C �

m

�
th h
th t

� �
th2 h

th2 t
� 1

� n � 3
2 shn � 2 t

shh
cthn � 2 h dh;

whereC = �( m +1)�( � )
2� n= 2 �( m + n � 2) and D = � 1� 3 : : : � n � 2. The integral

R1
t can be modi�ed

by making use of
R1

t =
R1

0 �
Rt

0 which yields
(� )

f l;m (t) = I + C(� 1)n � 1=2D
Z t

0
(Rf ) l;m (h)C �

m

�
th h
th t

�
�

�
�

1 �
th2 h

th2 t

� n � 3
2 shn � 2 t

shh
cthn � 2 h dh;

where

I = CD
Z 1

0
(Rf ) l;m (h)C �

m

�
th h
th t

� �
th2 h

th2 t
� 1

� n � 3
2 shn � 2 t

shh
cthn � 2 h dh:
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