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Limited domain Radon transform

�Arp �ad Kurusa �

Abstract. The problem in this article is to recover a function on Rn from its
integrals known only on hyperplanes intersecting the unit ball.

1. Introduction

There is a number of papers concerning the reconstruction of a function from
only a partial knowledge of the function's Radon transform. The two most known
examples are the exterior Radon transform [6] and the limited angle Radon trans-
form [4].

The classical Radon transform is de�ned for an integrable functionf on R n

by

Rf (!; p ) =
Z

H (!;p )
f (x)dxh ;

where ! 2 Sn � 1 is a unit vector, p 2 R + and Rf (!; p ) is just the integral of f over
the hyperplane H (!; p ) = f x 2 R n : hx; ! i = pg by the surface measuredxh on it.

In the limited angle caseRf (!; p ) is restricted in ! to a subset ofSn � 1. The
exterior Radon transform is the restriction of Rf to the set p > 1.

We de�ne the limited domain Radon transform RL f of a function as the
restriction of Rf onto the set p � 1. In the next section we show its continuity
on a weighted classL 2

�;� ( E n ) of square integrable functions that are zero in a
neighborhood of the origin. In Section 3 we give the null space and range ofRL

acting on L 2
�;� ( E n ) for the odd dimensional spaces. In Section 4 we do the same

for even dimensional spaces, where the injectivity ofRL on L 2
�;� ( E n ) turns out.

The author thanks the Matematische Institut of the Universit•at der Erlangen-
N•urnberg and the Department of the University of Maryland for their support and
assistance while working on this paper.

AMS Subject Classi�cation (2000): 44A12.
� Supported by the Hungarian NFS, Grants No. T4427, W015452 and F016226

Math. Balkanica , 11 (1997), 327{337. c
 �A. Kurusa

http://www.math.u-szeged.hu/tagok/kurusa

http://www.math.u-szeged.hu/tagok/kurusa


Limited domain Radon transform 3

absolutely on compact subsets ofSn � 1 � R to f (!; p ). For further references we
refer to [7]. Below we shall use the expansions

g('; p ) =
1X

m = �1

gm (p) exp(im' ) and g(!; p ) =
1X

`;m

g`;m (p)Y`;m (! )

in dimension two and in higher dimensions, respectively. In dimension two,' will
mean the angle of the respective unit vector to a �xed direction.

The spherical expansions of the Radon transforms are well known [6]. Apply-
ing these to the functions in L 2

�;� ( E n ) we obtain

(2:1) (RL f )m (p) = 2
Z 1

1
f m (q)

cos(m arccos(p=q))
p

1 � p2=q2
dq

for dimension two and

(2:2) (Rf ) l;m (p) =
jSn � 2j
C �

m (1)

Z 1

1
f `;m (q)qn � 2C �

m

�
p
q

� �
1 �

p2

q2

� n � 3
2

dq

for higher dimensions, whereC �
m is the Gegenbauer polynomial of degreem, � =

(n � 2)=2 and p � 1.
An important consequence of these expansions is the continuity ofRL .

Theorem 2.1. RL maps L 2
�;� ( E n ) continuously into L 2


;� ( B n ), where � > n � 2,

� < 1, 
 > � 1 and � >
�

� 1 if n � 3
� 1=2 if n = 2.

Proof. First observe that

(2:3) kRL f k2

;� =

X

`;m

kY`;m k2
2

Z 1

0
(RL f )2

`;m (p)p
 (1 � p2) � dp:

Using (2.1), (2.2) and that jC �
m (x)j � j C �

m (1)j for jxj � 1 we can over estimate
(2.3) by

c1

Z 1

0

�
�
�
�
�

Z 1

1
f `;m (q)qn � 2

�
1 �

p2

q2

� n � 3
2

dq

�
�
�
�
�

2

p
 (1 � p2) � dp;

where c1 is a suitable constant independent fromm. For n � 3 this is less than

(2:4) c1

�
�
�
�

Z 1

1
f `;m (q)qn � 2dq

�
�
�
�

2 Z 1

0
p
 (1 � p2) � dp:
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The shifted Jacobi polynomialsP (0 ;� 1=2)
k (2x � 1) constitute a complete orthogonal

system on [0; 1] with respect to the weight 1=
p

x [2(8.904)], therefore� `;m must be
in the closure of the span off P (0 ;� 1=2)

k (2x � 1)g1
k= d+1+[ m= 2] .

For m odd we have

(3:5) 0 =
Z 1

0
� `;m (x)x j dx for all 0 � j � d + ( m � 1)=2:

The Jacobi polynomialsP (0 ;0)
k (2x � 1) constitute a complete orthogonal system on

[0; 1] [2(8.904)], so� `;m is in the closure of the span off P (0 ;0)
k (2x � 1)g1

k= d+1+[ m= 2] .
The results of (3.4) and (3.5) give the theorem.

In the following we determine the range of the limited domain Radon trans-
form.

Theorem 3.3. RL maps theL 2
�;� (En ) closure of the span of the functions

hk;`;m (!; q ) = q� n � 2k Y`;m (! ); 0 � k � d + [ m=2]

where n � 1 � � < n and � 1 < � < 0, onto the L 2

;� (Bn ) closure of the span of

functions

F`;m (!; p ) = Y`;m (! )
d+[ m= 2]X

i =0

pm +2 d� 2i b̀ ;m;i

continuously and bijectively.

Proof. The easy veri�cation of hk;`;m 2 L 2
�;� (En ) and F`;m 2 L 2


;� (Bn ) is left to
the reader.

SinceRL : L 2
�;� (En ) ! L 2


;� (Bn ) is continuous by Theorem 2.1, it takes closed
set to closed set. Further it is injective on the given functions by Theorem 3.2,
therefore we only have to give coe�cients e0

k;`;m 2 R so that

F`;m = RL (f `;m Y`;m ); where f `;m Y`;m =
d+[ m= 2]X

k=0

e0
k;`;m hk;`;m :

Eliminating Y`;m and reordering the summation we can search forf `;m in the form

(3:6) f `;m (q) =
d+[ m= 2]X

k=0

ek;`;m q� n P (0 ;" m )
k (2q� 2 � 1);
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Theorem 4.2. The limited domain Radon transform RL is injective on L 2
�;� (En )

if n � 1 � � < n and � 1 < � < 0.

Proof. Easy calculation shows� `;m 2 L 2
� 1=2;0([0; 1]). Then RL f (!; p ) = 0 for

p < 1 implies c`;m;i = 0 for all i; m � 0, hence� `;m must be zero.

Because (4.3) is an in�nite series, we need more sophisticated tools to deter-
mine the range ofRL .

Theorem 4.3. RL maps theL 2
n � 1;0(En ) closure of the span of the functions

f k;`;m (!; q ) = q� n � 2k Y`;m (! ); 0 � k

onto the L 2

;� (Bn ) closure of the span of functions

Fj;`;m (!; p ) = p2j + m � 2[m= 2]Y`;m (! ) 0 � j

continuously and bijectively.

Proof. The veri�cation of f k;`;m 2 L 2
n � 1;0(En ) and Fj;`;m 2 L 2


;� (Bn ) is left to the
reader. SinceRL : L 2

n � 1;0(En ) ! L 2

;� (Bn ) is continuous by Theorem 2.1, it takes

closed set to closed set. Further it is injective by Theorem 4.2, therefore we only
have to give coe�cients e0

k;`;m 2 R so that

Fj;`;m = RL (f `;m Y`;m ); where f `;m Y`;m =
1X

k=0

e0
k;`;m f k;`;m :

The functions f `;m of this form can be written in the form

(4:5) f `;m (q) =
1X

k=0

ek;`;m q� n P (0 ;" m )
k (2q� 2 � 1)

with unique coe�cients ek;`;m . To �nd these coe�cients we consider (4.5) and
(4.3), where the left hand side is substituted with Fj;`;m , as a system of linear
equations with in�nite dimensional matrix of entries

ai;k;m =
Z 1

1
q� 2� 2i +2[ m= 2]� m P (0 ;" m )

k (2q� 2 � 1)dq

=
1
2

Z 1

0
x i P (0 ;" m )

k (2x � 1)x" m dx:
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However, the results can be extended to the spacesL 2
�;� for n � 1 � � < n and

� 1 < � � 0.
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