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CEVA’S AND MENELAUS’ THEOREMS
IN PROJECTIVE-METRIC SPACES

ÁRPÁD KURUSA

Abstract. We prove that Ceva’s and Menelaus’ theorems are valid in a
projective-metric space if and only if the space is any of the elliptic geom-
etry, the hyperbolic geometry, or the Minkowski geometries.

1. Introduction

In this short note, first we give appropriately unified versions of the known
theorems of Menelaus, resp. Ceva for constant curvature planes.

Then we prove that these unified versions are not valid for other projective-
metric spaces. Eventually, we conclude in Theorem 4.1 and Theorem 4.2 that
among the projective-metric spaces the unified versions of Ceva’s and Meneleus’
theorems are valid only in the elliptic geometry, the hyperbolic geometry, and the
Minkowski geometries.

2. Notations and preliminaries

Points of Rn are denoted as A,B, . . . , vectors are
−−→
AB or a, b, . . . . Latter nota-

tions are also used for points if the origin is fixed. Open segment with endpoints
A and B is denoted by AB, AB is the ray starting from A passing through B, and
the line through A and B is denoted by AB. The Euclidean scalar product is 〈·, ·〉.

We interpret the ratio of two directional vectors of a straight line as the con-
stant needed to multiply the denominator to get the nominator. The affine ratio
(A,B;C) of the collinear points A, B and C 6= B is therefore (A,B;C) =

−→
AC/

−−→
CB.

The affine cross ratio of the collinear points A, B, C 6= B, and D 6= A is
(A,B;C,D) = (A,B;C)/(A,B;D) [1, page 243].

Let (M, d) be a metric space given in a set M with the metric d. If M is a
projective space Pn or an affine space Rn ⊂ Pn or a proper open convex subset
of Rn for some n ∈ N, and the metric d is complete, continuous with respect to
the standard topology of Pn, and the geodesic lines of d are exactly the non-empty
intersection ofM with the straight lines, then the metric d is called projective.

If M = Pn, and the geodesic lines of d are isometric with a Euclidean circle;
or M ⊆ Rn, and the geodesic lines of d are isometric with a Euclidean straight
line, then (M, d) is called a projective-metric space of dimension n (see [1, p. 115]
and [6, p. 188]). Such projective-metric spaces are called of elliptic, parabolic or
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hyperbolic type according to whetherM is Pn, Rn, or a proper convex subset of Rn.
The projective-metric spaces of the latter two types are called straight [2, p. 1].

The geodesics of a projective-metric space of elliptic type have equal lengths, so
we can set their length to π by simply multiplying the projective metric with an
appropriate positive constant. Therefore we assume from now on that

projective-metric spaces of elliptic type have geodesics of length π.

If A,B are different points inM, and C ∈ (AB∩M)\{B}, then the real number

〈A,B;C〉d =

{
d(A,C)
d(C,B) , if C ∈ AB,
−d(A,C)
d(C,B) , otherwise

(2.1)

is called the metric ratio of the triple (A,B,C). In Minkowski geometries this
coincides with the affine ratio.

To find and prove an appropriate unified version of Ceva’s and Menelaus’ the-
orems in constant curvature spaces, we use the projector map µ̃ which projects a
point given in polar coordinates (u, r) at a point O in the constant curvature space
Kn to the point (u, µ(r)) given in polar coordinates of the tangent space TOKn.
The projector function µ is given in the table

Pn

Rn
O

Hnµ̃ Kn κ ν µ

Hn (hyperbolic) −1 sinh r tanh r

Rn (Euclidean) 0 r r

Sn or Pn (elliptic) +1 sin r tan r

where κ is the curvature, ν is the so-called size function giving the isometry factor
between the geodesic sphere of radius r and the Euclidean sphere of radius ν(r)
(see [3]).

Let A,B be different points in a projective-metric space (M, d), and let C ∈
(AB ∩M) \ {B}. Then the real number

〈A,B;C〉◦d =

{
ν(d(A,C))
ν(d(C,B)) , if C ∈ AB,
−ν(d(A,C))
ν(d(C,B)) , otherwise

(2.2)

is called the size-ratio of the triplet (A,B,C), where ν is the size function of the
hyperbolic, Euclidean, or elliptic space according to the type of (M, d).

Observe that for constant curvature spaces a size ratio 〈A,B;C〉◦d is nothing else
but the affine ratio of the orthogonal projections of the points into the tangent
space TCKn.

Notation ABC4 means the triangle with vertices A,B,C. Non-degenerate tri-
angles are called trigons,
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By a triplet (Z,X, Y ) of the trigon ABC4 we mean three points Z,X and Y
being respectively on the straight lines AB, BC and CA [4]. A triplet (Z,X, Y ) of
the trigon ABC4 is

(p1) of Menelaus type if the points Z, X and Y are collinear, and
(p2) of Ceva type if the lines AX, BY and CZ are concurrent.

A triple (α, β, γ) of real numbers is
(n1) of Menelaus type if α · β · γ = −1, and
(n2) of Ceva type if α · β · γ = +1.

We say that a projective-metric space has the Menelaus property or the Ceva prop-
erty if for every triplet (Z,X, Y ) of every trigon ABC4 is of Menelaus type or of
Ceva type, respectively, if and only if the triple (〈A,B;Z〉◦d, 〈B,C;X〉◦d, 〈C,A;Y 〉◦d)
is of Menelaus type or of Ceva type, respectively.

With these terms, we can reformulate the known results [5].

Theorem 2.1. Constant curvature spaces have the Menelaus and Ceva properties.

It is known [4] that non-hyperbolic Hilbert geometries do not have even quite
weak versions of the Ceva or Menelaus properties.

3. The Ceva and Menelaus properties

Lemma 3.1. If a projective-metric space (M, d) has the Ceva property, then for
any four collinear points A,R,Z,Q,B in order A ≺ R ≺ Z ≺ Q ≺ B that satisfies
(Z,A;R)(B,Z;Q)(A,B;Z) = 1 we have

〈Z,A;R〉◦d〈B,Z;Q〉◦d〈A,B;Z〉◦d = 1. (3.1) 〈4〉

Proof. Let ν be the appropriate size function of (M, d).
If (M, d) is of elliptic type, then let us cut out a projective line and consider the

remaining part with the inherited metric (this is a restriction of d so we denote it
with the same letter d). This way we can consider the trigons in an affine plane
independently of the type of (M, d).

Let us take a segment AZ and a point C out of line AZ. Let the point B ∈ AZ
be such that (A,B;Z) = (Z,A;R), letX ∈ BC be such that (B,C;X) = (B,Z;Q),
and let Y ∈ CA be such that (C,A;Y ) = (Z,A;R).

Then the affine Ceva theorem proves that segments AX, BY and CZ intersect
each other in a common point, say M . As (M, d) has the Ceva property, this
means

〈C,A;Y 〉◦d〈B,C;X〉◦d〈A,B;Z〉◦d = 1. (3.2) 〈4〉

A B

C

XY

Z
M

R Q
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Map trigon ABC4 continuously into the degenerate triangle AZB4 via the axial
affinity with axis CZ and moving point C along the segment CZ. That is, C → Z,
X → Q, and Y → R. Then, as d and ν are continuous functions, we obtain (3.1)
from (3.2). �

Using the additivity of metric d, Lemma 3.1 can be written in the equivalent
form
−−→
ZB −

−→
ZQ

−→
ZA−

−→
ZR

−→
RZ
−→
ZQ

−→
AZ
−−→
ZB

= 1 ⇔ ν(d(Z,B)− d(Z,Q))

ν(d(A,Z)− d(R,Z))

ν(d(R,Z))

ν(d(Z,Q))

ν(d(A,Z))

ν(d(Z,B))
= 1 (3.3) 〈5, 6〉

for collinear points A≺ R≺ Z≺ Q≺ B.

Lemma 3.2. If a projective-metric space (M, d) has the Menelaus property, then
for any four collinear points Q,Y,X,R,Z in order Q ≺ Y ≺ X ≺ R ≺ Z that
satisfies (X,R;Z)(R,Q;X)(Q,X;Y ) = −1 we have

〈X,R;Z〉◦d〈R,Q;X〉◦d〈Q,X;Y 〉◦d = −1. (3.4) 〈4〉

Proof. Let ν be the appropriate size function of (M, d).
If (M, d) is of elliptic type, then let us cut out a projective line and consider the

remaining part with the inherited metric (this is a restriction of d so we denote it
with the same letter d). This way we can consider the trigons in an affine plane
independently of the type of (M, d).

Let us take a segment AZ and a point C out of line AZ. Let the point B ∈ AZ be
such that (A,B;Z) = (X,R;Z), let X ∈ BC be such that (B,C;X) = (R,Q;X),
and let Y ∈ CA be such that (C,A;Y ) = (Q,X;Y ).

Then the affine Menelaus theorem proves that points X, Y and Z lay on a
common straight line, say m. As (M, d) has the Menelaus property, this means

〈C,A;Y 〉◦d〈B,C;X〉◦d〈A,B;Z〉◦d = −1. (3.5) 〈4〉

m

A B

C

XY

Z

R

Q

Map trigon ABC4 continuously into the degenerate triangle XRQ4 via the axial
affinity with axis XY and moving point A along the segment AX. That is, C → Q,
B → R, and A → X. Then, as d and ν are continuous functions, we obtain (3.4)
from (3.5). �

Using the additivity of metric d, Lemma 3.2 can be written in the equivalent
form
−−→
XQ−

−−→
XY

−−→
XZ −

−−→
XR

−−→
ZX
−−→
XQ

−−→
RX
−−→
XY

=1 ⇔ ν(d(X,Q)− d(X,Y ))

ν(d(X,Z)− d(X,R))

ν(d(Z,X))

ν(d(X,Q))

ν(d(R,X))

ν(d(X,Y ))
=1 (3.6) 〈5〉
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for collinear points Q ≺ Y ≺ X ≺ R ≺ Z.
Relabeling the points Q ≺ Y ≺ X ≺ R ≺ Z as Q 7→ B, Y 7→ Q, X 7→ Z,

R 7→ R, and Z 7→ A shows that (3.6) is equivalent to (3.3).

Theorem 3.3. A projective-metric space of elliptic type satisfies (3.3) if and only
if it is the elliptic geometry.

Proof. We have ν(·) = sin(·). Let the linear function P : R → RQ be such that
Z = P (0), A = P (a), R = P (r), Q = P (q), B = P (b), and a < r < 0 < q < b.
Further, let ` : RQ→ R be such that `(s) = sin(d(P (s), Z)).

Using the coordinates in function P , the addition formulas for functions sine
and `, (3.3) give

b− q
b

−a
r − a

−r
q

= 1 ⇔ `(b) cos(d(Z,Q))− cos(d(Z,B))`(q)

`(a) cos(d(R,Z))− cos(d(A,Z))`(r)

`(r)

`(q)

`(a)

`(b)
= 1.

After some easy simplifications this shows
1

q
− 1

b
=

1

a
− 1

r
⇔ cot(d(Z,Q))−cot(d(Z,B)) = cot(d(R,Z))−cot(d(A,Z)). (3.7) 〈5, 6〉

Fixing points R and Z, and letting b→∞ and a→ −∞, implies that q → −r by
the left-hand equation of (3.7). From the right-hand equation of (3.7) we get that
cot(d(Z,Q)) = cot(d(R,Z)), hence d(Z,Q) = d(R,Z). Thus, q = −r is equivalent
to d(Z,Q) = d(R,Z), hence ` is an even function.

Let function f : R → R+ be defined by f(x) := cot(d(Z,P (x))). Then (3.7)
reads as

f
( abr

ar + br − ab

)
= f(b) + f(r)− f(a).

Putting r = −b (hence accepting a < −b too!), this gives f
(

ab
2a+b

)
= 2f(b)− f(a),

because f is an even function due to the evenness of `. Define

g(x) =

{
f(1/x), if x > 0,

−f(1/x), if x < 0,

which is an odd function. Then, as 2a+ b < a < 0 < b, we get

g
(2

b
+

1

a

)
= 2g

(1

b

)
+ g
(1

a

)
. (3.8) 〈5〉

For the moment let b = −a/2. Then (3.8) gives g
(−3
a

)
= 2g

(−2
a

)
+ g
(
1
a

)
. So g(0)

follows from a → −∞ by the continuity of g. Now, a → −∞ in (3.8) gives by
the continuity of g that g(2/b) = 2g(1/b). Substituting this into (3.8) we arrive at
Cauchy’s functional equation [7] for the continuous function g, so we obtain that
g(x) = cx for some c > 0 and every x. By the definition of g and f this gives
d(P (s), P (0)) = | arctan(cs)| which implies c = 1, and so the theorem. �

Theorem 3.4. A projective-metric space of parabolic type satisfies (3.3) if and
only if it is a Minkowski geometry.

http://www.math.u-szeged.hu/tagok/kurusa
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Proof. Now, we have ν(·) = ·. Let the linear function P : R → RQ be such that
Z = P (0), A = P (a), R = P (r), Q = P (q), B = P (b), and a < r < 0 < q < b.
Further, let ` : RQ→ R be such that `(s) = d(P (s), Z).

Using the coordinates in function P , (3.3) gives

b− q
b

−a
r − a

−r
q

= 1 ⇔ `(b)− `(q)
`(a)− `(r)

`(r)

`(q)

`(a)

`(b)
= 1.

After some easy simplifications this shows
1

q
− 1

b
=

1

a
− 1

r
⇔ 1

`(q)
− 1

`(b)
=

1

`(r)
− 1

`(a)
. (3.9) 〈6〉

Fix R and Z, and let a→ −∞ and b→∞. Then (3.9) gives

1

q
= −1

r
⇔ 1

`(q)
=

1

`(r)
,

hence the affine and the d-metric midpoint of any segment coincide. So, according
to Busemann [2, page 94], d is a Minkowski metric. �

Theorem 3.5. A projective-metric space of hyperbolic type satisfies (3.3) if and
only if it is a Hilbert geometry.

Proof. This time, we have ν(·) = sinh(·). Let the linear function P : R→ RQ be
such that Z = P (0), A = P (a), R = P (r), Q = P (q), B = P (b), and a < r < 0 <
q < b. Further, let ` : RQ→ R be such that `(s) = sinh(d(P (s), Z)).

Using the coordinates in function P , the addition formulas for functions hyper-
bolic sine and `, (3.3) give

b− q
b

−a
r − a

−r
q

= 1 ⇔ `(b) cosh(d(Z,Q)) + cosh(d(Z,B))`(q)

`(a) cosh(d(R,Z)) + cosh(d(A,Z))`(r)

`(r)

`(q)

`(a)

`(b)
= 1.

After some easy simplifications this shows
1

q
− 1

b
=

1

a
− 1

r
⇔ coth(d(Z,Q))+coth(d(Z,B))=cot(d(R,Z))+cot(d(A,Z)). (3.10) 〈7〉

The intersection of a straight line and the domain M can be of three types: a
whole affine line AB, a ray A∞B, or a segment A∞B∞. Now we consider these
cases one after another.

Fixing points R and Z on the affine line AB, and letting b→∞ and a→ −∞,
implies that q → −r by the left-hand equation of (3.7). From the right-hand
equation of (3.7) we get that coth(d(Z,Q)) = coth(d(R,Z)), hence d(Z,Q) =
d(R,Z). Thus, q = −r is equivalent to d(Z,Q) = d(R,Z), hence ` is an even
function. Moreover, the map ρd;e;z : P (z − x) ↔ P (z + x) is a d-isometric point
reflection of e for every P (z) ∈ e, hence

τd;e;z,t := ρd;e;t ◦ ρd;e;z : P (y)→ P (2z − y)→ P (2(t− z) + y))

http://www.math.u-szeged.hu/tagok/kurusa
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is a d-isometric translation. So d(P (x), P (y)) = d(P (0), P (y − x)), hence

d(P (0), P (y − x)) + d(P (0), P (z − y)) = d(P (x), P (y)) + d(P (y), P (z))

= d(P (x), P (z)) =d(P (0), P (z−x)).

Thus the continuous function f(x) = d(P (0), P (x)) satisfies Cauchy’s functional
equation [7], hence a constant ce > 0 exists such that d(P (x), P (y)) = ce|x− y| for
every x, y ∈ R.

Fixing points R and Z on the ray e = A∞B, where A∞ = P (a∞), and letting
b→∞ and a→ a∞, implies that

1

q
=

1

a∞
− 1

r
⇔ coth(d(Z,Q)) = coth(d(R,Z)) (3.11) 〈7〉

by (3.10). Reparameterizing ray e by the linear map P̄ : R → RQ such that
Ā∞ = P̄ (0), R = P̄ (r), Z = P̄ (z), Q = P̄ (q), we can reformulate the equivalence
in (3.11) to

1

q − z
=

1

−z
− 1

r − z
⇔ d(Z,Q) = d(R,Z),

where 0 < r < z < q. Thus, the map ρd;e;z : P (r)↔ P (z2/r) is a d-isometric point
reflection on ray e for every P (z) ∈ e, hence

τd;e;z,t := ρd;e;t ◦ ρd;e;z : P (r)→ P (z2/r)→ P (rt2/z2)

is a d-isometric translation. So d(P (r), τd;e;z,t(P (r))) does not depend on r, hence
it is a real function δ of t/z. As d is additive, this implies δ(x) + δ(y) = δ(xy), so
by the solution of Cauchy’s functional equation [7] we have a constant c̄e > 0 such
that δ(x) = 2ce| ln(x)|, hence for every x, y ∈ R we have

d(P (x), P (y)) = d(P (x), τ
d;e;1,
√
y/x

(P (x))) = δ(
√
y/x) = c̄e| ln(y/x)|.

This is the Hilbert metric d(P (x), P (y)) = c̄e| ln(A∞,∞;P (y), P (x))| on ray e.
Fixing points R and Z on the segment e = A∞B∞, where A∞ = P (a∞) and

B∞ = P (b∞), and letting b→ b∞ and a→ a∞, implies that

1

q
− 1

b∞
=

1

a∞
− 1

r
⇔ coth(d(Z,Q)) = coth(d(R,Z)).

by (3.10). Reparameterizing segment e by the linear map P̄ : R → RQ such that
Ā∞ = P̄ (0), R = P̄ (r), Z = P̄ (z), Q = P̄ (q), and B̄∞ = P (1) we can reformulate
the equivalence in (3.11) to

1

q − z
− 1

1− z
=

1

−z
− 1

r − z
⇔ d(Z,Q) = d(R,Z),

http://www.math.u-szeged.hu/tagok/kurusa
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where 0 < r < z < q < 1. Thus, the map ρd;e;z : P (r) ↔ P
( z2(1−r)
z2−r(2z−1)

)
is a

d-isometric point reflection on segment e for every P (z) ∈ e, hence

τd;e;z,t := ρd;e;t ◦ ρd;e;z : P (r)→ P
( z2(1− r)
z2 − r(2z − 1)

)
→ P

( 1

1 + 1−r
r

z2

(1−z)2
(1−t)2
t2

)
is a d-isometric translation. So d(P (r), τd;e;z,t(P (r))) does not depend on r, hence it
is a real function δ of z2

(1−z)2
(1−t)2
t2 . As d is additive, this implies δ(x)+δ(y) = δ(xy)

so by the solution of Cauchy’s functional equation [7] we have a constant c̄e > 0
such that δ(x) = 2ce| ln(x)|, hence

d(P (x), P (y)) = d(P (x), τd;e;1, x
1−x

1−y
y

(P (x)))

= δ
(√ x

1− x
1− y
y

)
= c̄e

∣∣∣ ln( x

1− x
1− y
y

)∣∣∣.
This is d(P (x), P (y)) = c̄e| ln(A∞, B∞;P (y), P (x))|, i.e. a Hilbert metric on seg-
ment e.

Having the metric for every possible domain of a projective-metric space of
hyperbolic type, we are ready to step forward by considering the properties of the
domainM.

If M contains a whole affine line, then by [1, Exercise [17.8]] it is either a
half plane or a strip bounded by two parallel lines, because it is not the whole
plane. Thus, M is either P(0,∞) := {(x, y) ∈ R2 : 0 < x} or P(0,b) := {(x, y) ∈
R2 : 0 < x < b} in suitable linear coordinates. As the perspective projectivity
$ : (x, y) 7→

(
x
x+1 ,

y
x+1

)
maps P(0,∞) onto P(0,1) bijectively, it is enough to consider

the caseM = P(0,1).
By the above, we know about the metric that d((x, y), (x, z)) = c(x)|z− y| for a

continuous function c : (0, 1)→ R+, and

d((x, λ+ σx), (µx, λ+ µσx)) = c̄(λ, σ)
∣∣∣ ln(0,

1

x
; 1, µ

)∣∣∣ = c̄(λ, σ)
∣∣∣ ln 1− µx

µ(1− x)

∣∣∣,
where c̄ : R×R+ → R+ is also a continuous function. Putting these together gives

d((x, 0), (s, y)) =

{
c̄
(−yx
s−x ,

y
s−x
)∣∣ ln x(1−s)

s(1−x)
∣∣, if x 6= s,

c(x)|y|, if x = s,

for every x, s ∈ (0, 1) and y ∈ R. For y = k(s− x) > 0, where k ≥ 0, this gives

kc(x) = lim
s→x

d((x, 0), (x, s− x))

s− x
= c̄(−kx, k) lim

s→x

∣∣∣ ln x(1−s)
s(1−x)

s− x

∣∣∣
= c̄(−kx, k) lim

s→x

∣∣∣ ln (1− 1
s(1−x)/(s−x)

)s(1−x)/(s−x)
s(1− x)

∣∣∣ =
c̄(−kx, k)

x(1− x)
.

Thus 0=limk→0 c̄(−kx, k), hence continuity implies c̄(0, 0) = 0, a contradiction.

http://www.math.u-szeged.hu/tagok/kurusa
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Thus M does not contain a whole affine line, hence it is either bounded or
contains some rays. Then the metric on every chord ` ∩ M is of the form c`δ,
where δ is the Hilbert metric on M. Multiplier c` depends from ` continuously,
because d and δ are continuous. Given non-collinear points A,B,C ∈M the strict
triangle inequality gives that |δ(A,C)− δ(B,C)| < δ(A,B) and

|cACδ(A,C)− cBCδ(B,C)| = |d(A,C)− d(B,C)| < d(A,B) = cABδ(A,B).

These imply∣∣∣ δ(A,C)

δ(B,C)
− 1
∣∣∣ < δ(A,B)

δ(B,C)
, and

∣∣∣cAC δ(A,C)

δ(B,C)
− cBC

∣∣∣ < cAB
δ(A,B)

δ(B,C)
.

If C tends to a point ∞ on the boundary ∂M of M, then the first inequality
implies δ(A,C)

δ(B,C) → 1, so from the second inequality cA∞ = cB∞ follows. Thus c` is
the same for every line with common point on ∂M. This clearly implies that c`
does not depend on `, i.e. constant, hence (M, d) is a Hilbert geometry. �

4. The Ceva and Menelaus properties are characteristic

In sum, the results in the previous section prove the following main result of this
paper.

Theorem 4.1. A projective-metric space has the Ceva property if and only if it is
a Minkowski geometry, or the hyperbolic geometry, or the elliptic geometry.

Proof. Lemma 3.1 and the theorems in the previous section imply that a projective-
metric space which has the Ceva property can only be either the elliptic geometry,
or a Minkowski geometry, or a Hilbert geometry. However, [4, Theorem 3.1] proves
that a Hilbert geometry which has the Ceva property is hyperbolic. �

Theorem 4.2. A projective-metric space has the Menelaus property if and only
if it is either a Minkowski geometry, or the hyperbolic geometry, or the elliptic
geometry.

Proof. Lemma 3.2 and the theorems in the previous section imply that a projective-
metric space that has the Meneleus property can only be either the elliptic geom-
etry, or a Minkowski geometry, or a Hilbert geometry. However, [4, Theorem 3.2]
proves that a Hilbert geometry which has the Menelaus property is hyperbolic. �

5. Discussion

The results of Section 4 show that neither Ceva’s nor Menelaus’ theorems can
have common forms for projective-metric spaces except the elliptic geometry, the
hyperbolic geometry, and the Minkowski geometries. Therefore to keep versions of
Ceva’s or Menelaus’ theorems valid in more projective-metric spaces one needs to
allow more freedom for the ratios.

http://www.math.u-szeged.hu/tagok/kurusa
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Let A,B be different points in a projective-metric space (M, d), and let C ∈
(AB ∩M) \ {B}. Then the real number

〈A,B;C〉†d =

{
λ(d(A,C))
λ(d(C,B)) , if C ∈ AB,
−λ(d(A,C))
λ(d(C,B)) , otherwise,

(5.1)

is called the λ-ratio of the triplet (A,B,C), where λ is a non-negative strictly
increasing function of the positive real numbers.

The question arises whether a projective-metric space exists on which Ceva’s
or Menelaus’ theorems are valid with a λ-ratio. We show that the answer to this
question for the Hilbert geometries (M, d) is negative. For, just choose five points
on ∂M, and fit an ellipse E through these points. Then E intersects ∂M in at
least six points in a circumcise order M1,M2,M3,M4,M5,M6. The chords M1M4,
M2M5, and M3M6 in general intersect each other in three points, say in A, B, and
C. Now, on the side-lines of trigon ABC4 the hyperbolic metric is given, hence
Ceva’s and Menelaus’ theorems are valid with λ(·) ≡ sinh(·). For the hyperbolic
geometry only the hyperbolic sine function is a good choice, and we know from the
results of the previous section that it just does not work for more general Hilbert
geometries.
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