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EULER’S RATIO-SUM FORMULA
IN PROJECTIVE-METRIC SPACES

ÁRPÁD KURUSA AND JÓZSEF KOZMA

Abstract. We prove that Euler’s ratio-sum formula is valid in a projective-
metric space if and only if it is either elliptic, hyperbolic, or Minkowskian.

1. Introduction

There has always been quite a broad interest (see [10, 4, 5, 12, 13]) in L. Euler’s
classical ratio-sum formula

d(A,O)

d(O,X)
+
d(B,O)

d(O, Y )
+
d(C,O)

d(O,Z)
+ 2 =

d(A,O)

d(O,X)
· d(B,O)

d(O, Y )
· d(C,O)

d(O,Z)
(1.1) 〈1, 2, 3〉

for triangles ABC4 in the Euclidean plane, where O is any point outside of the
sides (lines) of ABC4, and X = AO ∩ BC, Y = BO ∩ CA, Z = CO ∩ AB. In
Euler’s original paper [3] O is an interior point of ABC4, and we assume so in
this paper too.
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Already Euler started to look for analogous results on the sphere [3] (see also
[9]), and by [10] we also have the hyperbolic analogue.

In this article, we give appropriate and unified generalizations of (1.1) to constant
curvature planes in Theorem 2.2 with very simple proof.

Then we look for generalizations for projective-metric spaces, but eventually
conclude in Theorem 4.5, that among the projective-metric spaces Euler’s ratio-
sum formula characterizes the elliptic geometry, the Minkowskian geometries, and
the hyperbolic geometry.

2. Notations and preliminaries

Points of Rn are denoted as A,B, . . . , vectors are
−−→
AB or a, b, . . . . Latter nota-

tions are also used for points if the origin is fixed. Open segment with endpoints
A and B is denoted by AB, AB is the ray starting from A passing through B, and
the line through A and B is denoted by AB. The Euclidean scalar product is 〈·, ·〉.
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The affine ratio (A,B;C) of the collinear points A, B and C 6= B is defined by
(A,B;C)

−−→
BC =

−→
AC. The affine cross ratio of the collinear points A, B, C 6= B,

and D 6= A is (A,B;C,D) = (A,B;C)/(A,B;D) [1, page 243].
Let (M, d) be a metric space given in a set M with the metric d. If M is a

projective space Pn or an affine space Rn ⊂ Pn or a proper open convex subset
of Rn for some n ∈ N, and the metric d is complete, continuous with respect to
the standard topology of Pn, and the geodesic lines of d are exactly the non-empty
intersection ofM with the straight lines, then the metric d is called projective.

If M = Pn, and the geodesic lines of d are isometric with a Euclidean circle;
or M ⊆ Rn, and the geodesic lines of d are isometric with a Euclidean straight
line, then (M, d) is called a projective-metric space of dimension n (see [1, p. 115]
and [14, p. 188]). Such projective-metric spaces are called of elliptic, parabolic or
hyperbolic type according to whetherM is Pn, Rn, or a proper convex subset of Rn.
The projective-metric spaces of the latter two types are called straight [2, p. 1].

The geodesics of a projective-metric space of elliptic type have equal lengths, so
we can set their length to π by simply multiplying the projective metric with an
appropriate positive constant. Therefore we assume from now on that

projective-metric spaces of elliptic type have geodesics of length π.

If A,B are different points inM, and C ∈ (AB∩M)\{B}, then the real number

〈A,B;C〉d =

{
d(A,C)
d(C,B) , if C ∈ AB,
−d(A,C)
d(C,B) , otherwise

(2.1)

is called the metric ratio of the triple (A,B,C). In Minkowski geometries this
coincides with the affine ratio.

The following theorem is proved in [8], but its partial proofs can be found in
earlier publications too (see [3], [9] and [10]).

Theorem 2.1. In the Euclidean plane we have:

(1) If O is a point in the open triangle ABC4, and X = AO ∩ BC, Y =
BO ∩CA, and Z = CO ∩AB, then (1.1) is valid, and the sum of any two
of the numbers

p =
d(A,O)d(O,X)

d(A,X)
, q =

d(B,O)d(O, Y )

d(B, Y )
, r =

d(C,O)d(O,Z)

d(C,Z)
(2.2) 〈2〉

is bigger than the third one.
(2) If three segments AX, BY , and CZ has a common point O such that (1.1)

is fulfilled, and the sum of any two of the numbers in (2.2) is bigger than
the third one, then the segments AX, BY , and CZ can be turned around O
so that every one of X,Y, Z lays on the side of the triangle ABC4 opposite
to the appropriate vertex X,Y, Z, respectively.

http://www.math.u-szeged.hu/tagok/kurusa
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The sequence of algebraically equivalent equations

1

1 + a
+

1

1 + b
+

1

1 + c
= 1 (2.3) 〈4〉

(1 + b)(1 + c) + (1 + a)(1 + c) + (1 + a)(1 + b) = (1 + a)(1 + b)(1 + c)

a+ b+ c+ 2 = abc

is crucial in the proof of Theorem 2.1, and implies that (1.1) is equivalent to

d(O,X)

d(A,X)
+
d(O, Y )

d(B, Y )
+
d(O,Z)

d(C,Z)
= 1. (2.4) 〈4〉

To find and prove the appropriate version of Euler’s ratio-sum in constant cur-
vature spaces, we use the projector map µ̃ which projects a point given in polar
coordinates (u, r) at a point O in the constant curvature space Kn to the point
(u, µ(r)) given in polar coordinates of the tangent space TOKn. The projector
function µ is given in the table

Pn

Rn
O

Hnµ̃ Kn κ ν µ

Hn (hyperbolic) −1 sinh r tanh r

Rn (Euclidean) 0 r r

Sn or Pn (elliptic) +1 sin r tan r

where κ is the curvature, ν is the so-called size function giving the isometry factor
between the geodesic sphere of radius r and the Euclidean sphere of radius ν(r)
(see [7]).

Let A,B be different points in a projective-metric space (M, d) and let C ∈
(AB ∩M) \ {B}. Then the real number

〈A,B;C〉′d =

{
µ(d(A,C))
µ(d(C,B)) , if C ∈ AB,
−µ(d(A,C))
µ(d(C,B)) , otherwise

(2.5)

is called the tangential ratio of the triplet (A,B,C), where µ is the projector func-
tion of the hyperbolic, Euclidean or elliptic space according to the type of (M, d).

Observe that for constant curvature spaces a tangential ratio 〈A,B;O〉′d is noth-
ing else but the affine ratio of the projected points µ̃(A), µ̃(B), and µ̃(O) = O, i.e.
〈A,B;O〉′d = (µ̃(A), µ̃(B);O). This observation is the idea behind the following
result.

http://www.math.u-szeged.hu/tagok/kurusa
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Theorem 2.2. In a constant curvature space Kn with projector function µ we
have the following.

(1) Let O be a point in the open triangle ABC4. If X = AO ∩ BC, Y =
BO ∩ CA, and Z = CO ∩AB, then

〈A,X;O〉′d + 〈B, Y ;O〉′d + 〈C,Z;O〉′d + 2

= 〈A,X;O〉′d · 〈B, Y ;O〉′d · 〈C,Z;O〉′d,
(2.6) 〈4, 7, 8, 9, 11〉

and the sum of any two of the numbers

p =
µ(d(A,O))

〈A,X;O〉′d + 1
, q =

µ(d(B,O))

〈B, Y ;O〉′d + 1
, and r =

µ(d(C,O))

〈C,Z;O〉′d + 1
(2.7) 〈4〉

is bigger than the third one.
(2) If three segments AX, BY , and CZ has a common point O such that (2.6)

is fulfilled, and the sum of any two of the numbers in (2.7) is bigger than
the third one, then the segments AX, BY , and CZ can be turned around
O so that X = AO ∩BC, Y = BO ∩ CA, and Z = CO ∩AB.

Proof. Consider the tangent space TOKn at point O, and project the triangle into
TOKn by the projector map µ̃. In the tangent space TOKn use Theorem 2.1 for
the projected triangle and use the easy observation preceding the theorem to get
the statements of this theorem. �

Observe that (2.4) fails for non-vanishing curvatures, because µ is not linear in
this case. However the equivalent version (2.3) gives

1 =
1

〈A,X;O〉′d + 1
+

1

〈B, Y ;O〉′d + 1
+

1

〈C,Z;O〉′d + 1
. (2.8) 〈6, 7〉

We will need the following ellipse characterization. According to [11, p. 64], a
point O is called a projective center of the set S ⊆ Pn, if there is a projectivity $
such that $(O) is the affine center of $(S).

Lemma 2.3. If the nonempty open convex set M in the plane is such that any
five different points P, P1, . . . , P4 of ∂M, ordered as P1 ≺ P2 ≺ P3 ≺ P4 ≺ P1 for
a circuit of ∂M, determine such an ellipse E that ray PO intersects E in a point
of ∂M, where O = P1P3 ∩ P2P4, then ∂M is an ellipse.

Proof. Take a point O ∈ M, and let `o and `e be any two different straight lines
through O. Let {P1, P3} = `o ∩ ∂M and {P2, P4} = `e ∩ ∂M. For any point
P ∈ ∂M let E be the ellipse that goes through the points P, P1, . . . , P4. Then the
condition of the lemma says that ray PO intersects E in a point of ∂M.

Take the projectivity $ that maps the points O,P1, . . . , P4 to (0, 0), (−1, 1),
(1, 1), (1,−1), and (−1,−1), respectively. Then the ellipse $(E) goes through the
points (−1, 1), (1, 1), (1,−1), and (−1,−1), hence it is symmetric in (0, 0) = $(O).

http://www.math.u-szeged.hu/tagok/kurusa
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Further, as projectivities are bijective, ray $(P )(0, 0) intersects $(E) in a point
of $(∂M). As $(E) is symmetric in (0, 0), and P is an arbitrary point of ∂M, it
follows that (0, 0) is an affine center ofM. Thus, O is a projective center ofM.

As every point of M is a projective center of M, it follows by [11, Theo-
rem 3.3(a)] that ∂M is an ellipse. �

3. Euler’s ratio-sum formula in Hilbert planes

LetM be an open, strictly convex, bounded domain in Rn with boundary ∂M.
The function d :M×M→ R defined by

d(A,B) =

{
0, if A = B,
1
2

∣∣ ln(P,Q;A,B)
∣∣, if A 6= B, where PQ =M∩AB,

(3.1) 〈5〉

is a metric onM [1, page 297], and is called the Hilbert metric on M. It satisfies
the strict triangle inequality, i.e. d(A,C)+ d(C,B) = d(A,B) is valid if and only if
C ∈ AB. A pair (M, d), where d is the Hilbert metric for its domain M, is called
a Hilbert geometry. Notice that Hilbert geometries are projective-metric spaces of
hyperbolic type.

Lemma 3.1. Let A, B, and C be collinear points in the Hilbert geometry (M, d),
and take an affine coordinate system AB → R such that for the points in {P,Q} =
AB ∩ ∂M we have P 7→ 0, Q 7→ q. If A 7→ a, B 7→ b, and C 7→ c, then the
tangential ratio of the triplet (A,B,C) is

〈A,B;C〉′d = (A,B;C)
(b+ c)q − 2bc

(a+ c)q − 2ac
. (3.2) 〈5〉

Proof. From the first condition of the Lemma we have 0 < a < b < q. Then (3.1)
gives

d(A,C) =
1

2

∣∣∣ ln( c
a

q − a
q − c

)∣∣∣ and d(C,B) =
1

2

∣∣∣ ln(b
c

q − c
q − b

)∣∣∣.
As tanh d = ed−e−d

ed+e−d = e2d−1
e2d+1

, these imply

tanh d(A,C) =
|c− a|q

(a+ c)q − 2ac
, and tanh d(C,B) =

|b− c|q
(b+ c)q − 2bc

,

hence the formula in the lemma. �

Observe that by (3.2) we have

〈A,B;C〉′d = (A,B;C)
( b+ c

a+ c
− 2c2(b− a)/(a+ c)

(a+ c)q − 2ac

)
. (3.3) 〈7〉

This shows that 〈A,B;C〉′d is a strictly monotone function of q. It is strictly
increasing if (A,B;C) > 0, and strictly decreasing if (A,B;C) < 0.

http://www.math.u-szeged.hu/tagok/kurusa
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Theorem 3.2. A Hilbert geometry is hyperbolic if and only if it satisfies Euler’s
ratio-sum formula for every trigon.

Proof. Let (M, d) be a Hilbert geometry satisfying Euler’s ratio-sum formula for
every trigon. We prove that it is hyperbolic.

First, we observe that a Hilbert geometry satisfies Euler’s ratio-sum formula if
and only if its any projective image satisfies Euler’s ratio-sum, hence we can assume
thatM is bounded. Now, it is sufficient to prove thatM is an ellipse.

By [2, (16.12), p. 91] we have that
a convex body in Rn (n ≥ 3) is an ellipsoid if and only if for any
fixed k ∈ {2, . . . , n−1} every k-plane through the origin intersects
it in a k-dimensional ellipsoid,

(3.4)

so we need to prove the statement of the theorem only in the plane.
Conducting an indirect proof, assume that ∂M is not an ellipse, and Euler’s

ratio-sum formula still holds for every triangle inM.
AsM is not an ellipse, it follows by Lemma 2.3 that there exists such an ellipse

E that E ∩ ∂M has five different points P1, . . . , P5 such that P1P3 meets P2P4

in a point O, and ray P5O intersects E and ∂M in different points E and M ,
respectively. Then, open segments P1P3 and P2P4 are straight lines of the Hilbert
geometries (M, d) and (E , dE), while P5E is a straight line of (E , dE), and P5M is
a straight line of (M, d).

Take a triangle ABC4 such that A ∈ OE ∩OM , B ∈ OP4, and C ∈ OP1. Let
X = OA ∩BC, Y = OB ∩ CA, and Z = OC ∩AB (see Figure 3.1).

∂M
E

P2

P3

P4

P5

P1

M

E

X

Y

ZA

B

C

O

Figure 3.1. Construction of common triangles

Triangle ABC4 is in (M, d) and also in (E , dE), so Euler’s tangential ratio-sum
formula (2.8) is valid for both, so

1

〈A,X;O〉′d + 1
+

1

〈B, Y ;O〉′d + 1
+

1

〈C,Z;O〉′d + 1
= 1,

1

〈A,X;O〉′dE + 1
+

1

〈B, Y ;O〉′dE + 1
+

1

〈C,Z;O〉′dE + 1
= 1.

http://www.math.u-szeged.hu/tagok/kurusa
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Since segments P2P4 and P1P3 are common straight lines in both geometries, the
second and third terms in the left-hand sides of these equations are equal, hence
〈A,X;O〉′d = 〈A,X;O〉′dE follows. This contradicts (3.3), hence the proof is com-
plete. �

4. Euler’s ratio-sum formula is characteristic

Lemma 4.1. If a projective-metric space fulfills Euler’s tangential ratio-sum for-
mula (2.6) for every triangle, then for any four collinear points A,B,Z, T satisfying
(Z,A;T,B) = −1, we have

1 = 2
µ(d(T,Z))

µ(d(A, T ))+µ(d(T,Z))
+

µ(d(T,A))

µ(d(B, T ))+µ(d(T,A))
. (4.1) 〈7〉

Proof. So, we have a projective-metric space (M, d) satisfying (2.8) with the pro-
jector function µ given appropriately to the type of (M, d).

If (M, d) is of elliptic type, then let us cut out a projective line and consider the
remaining part with the inherited metric (this is a restriction of d so we denote it
with the same letter d). This way we can consider the triangles in an affine plane
independently of the type of (M, d).

Let us take a segment AZ, a point B such that Z ∈ AB, and a point C out
of line AB. Let X ∈ BC be such that ZX ‖ AC. Finally, let O be the point of
intersection of segments AX and CZ, while Y = AC ∩BO.

Map triangle ABC4 continuously into the degenerate triangle AAB4 via the
axial affinity with axis AB and moving point C along the segment CA. That is,
C → A, X → Z, and O goes to a point T on AB.

A B

C

XY

Z
O

T

As d and µ are continuous functions, we obtain
µ(d(O,X))

µ(d(A,O))+µ(d(O,X))
→ µ(d(T,Z))

µ(d(A, T ))+µ(d(T,Z))
,

µ(d(O, Y ))

µ(d(B,O))+µ(d(O, Y ))
→ µ(d(T,A))

µ(d(B, T ))+µ(d(T,A))
, and

µ(d(O,Z))

µ(d(C,O))+µ(d(O,Z))
→ µ(d(T,Z))

µ(d(A, T ))+µ(d(T,Z))
.

Substituting these into (2.8) leads to (4.1).
In the other hand, as ZX ‖ AC and also TO ‖ AC, the intercept theorem gives

(Z,A;T ) = −(Z,A;B), which proves the theorem. �

http://www.math.u-szeged.hu/tagok/kurusa
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Theorem 4.2. A projective-metric space of elliptic type fulfills Euler’s tangential
ratio-sum formula (2.6) for every triangle if and only if it is the elliptic geometry.

Proof. By Lemma (4.1) we have

1 =
2 tan(d(T,Z))

tan(d(A, T ))+tan(d(T,Z))
+

tan(d(T,A))

tan(d(B, T ))+tan(d(T,A))
(4.2) 〈8〉

for every collinear points A,B,Z, T satisfying (Z,A;T,B) = −1.
Let function P : R → AZ be such that P (s) = Z + sv, A = P (y), B = P (−x),

and T = P (t). Further, let ` : ZA→ R such that `(s) = tan(d(P (s), Z)).
Observe that (P (x), P (−x);Z,P (−∞)) = −1, so (4.2) gives `(x) = d(P (x), Z) =

d(Z,P (−x)) = `(−x), hence ` is an even function.
Using tangential addition formulas tan(d(A, T )) = `(y)−`(t)

1+`(y)`(t) and tan(d(B, T )) =
`(x)+`(t)
1−`(x)`(t) in (4.2), (4.2) becomes

1 = 2
`(t)(1 + `(y)`(t))

`(y)(1 + `2(t))
+

(`(y)− `(t))(1− `(x)`(t))
`(x)`(y)(1 + `2(t))

.

Multiplication by `(x)`(y)(1 + `2(t)) and rearrangement of this result in `(t) =
`(x)`(y)
`(y)+2`(x) . As (Z,A;T,B) = −1, we have t = xy

y+2x , hence

`
( xy

y + 2x

)
=

`(x)`(y)

`(y) + 2`(x)
. (4.3) 〈8〉

Define the function f(z) = 1/`(1/z) for z 6= 0. Then (4.3) mutates to

f
( 1
x
+

2

y

)
= f

( 1
x

)
+ 2f

(1
y

)
. (4.4) 〈8〉

Differentiation of this by x immediately gives that f ′ is a constant, and so f is linear.
Substituting a linear function into (4.4) clearly shows that the constant vanishes,
so we obtain that `(x) = cx for some c > 0 and every x. By the definition of ` this
gives d(P (s), P (0)) = arctan(cs) which implies c = 1, and so the theorem. �

Theorem 4.3. A projective-metric space of parabolic type fulfills Euler’s tangential
ratio-sum formula (2.6) for every triangle if and only if it is a Minkowski geometry.

Proof. By Lemma (4.1) we have

1 = 2
d(T,Z)

d(A, T )+d(T,Z)
+

d(T,A)

d(B, T )+d(T,A)
(4.5) 〈8〉

for every collinear points A,B,Z, T satisfying (Z,A;T,B) = −1.
If B goes to any infinity point B∗ of the affine line ZA, then (Z,A;T,B) = −1

implies that T tends to the affine midpoint T ∗ of the affine segment AZ. This
implies d(B∗, T ∗) = ∞, so 1 = 2 d(T∗,Z)

d(A,T∗)+d(T∗,Z) , follows from (4.5). This means
that d(A, T ∗) = d(T ∗, Z).

http://www.math.u-szeged.hu/tagok/kurusa
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Thus, the affine and the d-metric midpoint of any segment coincide, so, according
to Busemann [2, page 94], d is a Minkowski metric. �

Theorem 4.4. A projective-metric space of hyperbolic type fulfills Euler’s tangen-
tial ratio-sum formula (2.6) for every triangle if and only if it is the hyperbolic
geometry.

Proof. By Lemma (4.1) we have

1 = 2
tanh(d(T,Z))

tanh(d(A, T ))+tanh(d(T,Z))
+

tanh(d(T,A))

tanh(d(B, T ))+tanh(d(T,A))
(4.6) 〈9〉

for every collinear points A,B,Z, T satisfying (Z,A;T,B) = −1.
Let B∗ be the d-metric infinity of the hyperbolic line AZ on the ray AZ, and

let point T ∗ be such that (Z,A;T ∗, B∗) = −1. If B → B∗, then T → T ∗, and
d(B, T )→∞, so tan(d(B, T ))→ 1, hence (4.6) gives

2 =
1

tanh(d(T ∗, Z))
− 1

tanh(d(A, T ∗))
. (4.7) 〈9, 10〉

If B∗ is the affine infinity on ray AZ, then (Z,A;T ∗, B∗) = −1 implies that T ∗

is the affine midpoint of AZ.
If there exists a whole affine line inM, then both the d-metric infinities coincide

with the infinities of the affine line AZ, hence (4.7) remains valid after A and Z
are exchanged. This is a contradiction, so no whole affine line can exist inM.

If AZ in M is a ray, then denote the d-metric infinity on the ray AZ by A∗,
and let function P : [0,∞] → A∗A be such that P (t) = A∗ + tv, where A = P (s),
T ∗ = P (s+ x), hence Z = P (s+ 2x). Then (4.7) says that

2 =
1

tanh(d(P (s+ x), P (s+ 2x)))
− 1

tanh(d(P (s), P (s+ x)))

for every s ≥ 0 and x > 0. This implies step-by-step that

2 + 1 = 2 +
1

tanh(d(P (0), P (y)))
=

1

tanh(d(P (y), P (2y)))
,

2 +
1

tanh(d(P (y), P (2y)))
=

1

tanh(d(P (2y), P (3y)))
,

...
2 +

1

tanh(d(P ((k − 1)y), P (ky)))
=

1

tanh(d(P (ky), P ((k + 1)y)))
,

and the sum of all these equations give

1 + 2k =
1

tanh(d(P (ky), P ((k + 1)y)))

http://www.math.u-szeged.hu/tagok/kurusa
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for every y. In other form,

d
(
P (z), P

(k + 1

k
z
))

= tanh−1
( 1

1 + 2k

)
=

1

2
ln
(1 + 1

1+2k

1− 1
1+2k

)
=

1

2
ln
(k + 1

k

)
.

Hence

lim
h→0

d
(
P (z), P

(
z + h

))
h

= lim
k→∞

d
(
P (z), P

(
z + 1

kz
))

z/k
=

1

2z
lim
k→∞

ln
((

1+
1

k

)k)
=

1

2z
.

Integration of this results in

d(x, y) =

∫ y

x

1

2z
dz =

ln y − lnx

2
=

1

2
ln
y

x
,

so the metric, on rays, is d(C,D) = 1
2 ln(A

∗,∞;C,D), which is the Hilbert metric.
If AZ ∩M = A∗B∗ is a chord of ∂M, then let function P : [0, 1] → A∗B∗ be

such that P (0) = A∗ + t(B∗ − A∗). Let A = P (s), T = P (s + x), Z = P (s + z)
and B = P (s + y). Then, by the intercept theorem, (z − x) : x = (y − z) : y, i.e.
(x+ y)z = 2xy. If B → B∗, then y = 1− s, so (x+ 1− s)z = 2x(1− s). So (4.7)
says that

2 +
1

tanh(d(P (s), P (s+ x)))
=

1

tanh(d(P (s+ x), P (s+ 2x(1−s)
x+1−s )))

.

This implies step-by-step that

2 + 1 = 2 +
1

tanh(d(P (0), P (y)))
=

1

tanh(d(P (y), P ( 2y
1+y )))

,

2 +
1

tanh(d(P (y), P ( 2y
1+y )))

=
1

tanh(d(P ( 2y
1+y ), P (

3y
1+2y )))

,

2 +
1

tanh(d(P ( 2y
1+y ), P (

3y
1+2y ))))

=
1

tanh(d(P ( 3y
1+2y ), P (

4y
1+3y )))

,

...
2 +

1

tanh(d(P ( ky
1+(k−1)y ), P (

(k+1)y
1+ky ))))

=
1

tanh(d(P ( (k+1)y
1+ky ), P ( (k+2)y

1+(k+1)y )))
,

and the sum of all these equations give

1 + 2(k + 1) =
1

tanh(d(P ( (k+1)y
1+ky ), P ( (k+2)y

1+(k+1)y ))

for every x. In other form,

d
(
P (z), P

( (k + 1)z

k + z

))
= tanh−1

( 1

1 + 2k

)
=

1

2
ln
(1 + 1

1+2k

1− 1
1+2k

)
=

1

2
ln
(k + 1

k

)
.

http://www.math.u-szeged.hu/tagok/kurusa
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Hence

lim
h→0

d
(
P (z), P

(
z + h

))
h

= lim
k→∞

d
(
P (z), P

(
z + z(1−z)

k+z

))
)

z(1−z)
k+z

= lim
k→∞

1
2 ln

(
k+1
k

)
z(1−z)
k+z

=
1

2z(1− z)
lim
k→∞

ln
((

1 +
1

k

)k+z)
=

1

2z(1− z)
.

By integrating this, we get

d(x, y) =

∫ y

x

1

2z(1− z)
dz =

1

2

∫ y

x

1

z
+

1

1− z
dz

=
(ln y − lnx)− (ln(1− y)− ln(1− x))

2
=

1

2
ln
y : (1− y)
x : (1− x)

,

so, on chords A∗B∗, d(C,D) = 1
2 ln(A

∗, B∗;C,D), which is the Hilbert metric.
Thus, (M, d) is a Hilbert geometry, and so Theorem 3.2 finishes the proof. �

In sum, the above results prove the following main result of this paper.

Theorem 4.5. A projective-metric space fulfills Euler’s tangential ratio-sum for-
mula (2.6) for every triangle if and only if it is a Minkowski geometry, the hyperbolic
geometry, or the elliptic geometry.
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