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CEVA’S AND MENELAUS’ THEOREMS CHARACTERIZE

THE HYPERBOLIC GEOMETRY

AMONG HILBERT GEOMETRIES

JÓZSEF KOZMA AND ÁRPÁD KURUSA

Abstract. If a Hilbert geometry satisfies a rather weak version of either

Ceva’s or Menelaus’ theorem for every triangle, then it is hyperbolic.

1. Introduction

Hilbert geometries, as introduced by David Hilbert in 1899 [6], are natural gen-
eralizations of hyperbolic geometry. It raised the question immediately whether
some Hilbert geometries are isomorphic to hyperbolic geometry, and several such
results were born over the years. For a recent survey of this subject, see [5].

In this short note we prove that rather weak hyperbolic versions of the classical
results known as Theorem of Menelaus, resp. Ceva, provide us with a criterion
which makes Hilbert geometry hyperbolic.

2. Preliminaries

Points of Rn are denoted as a,b, . . . ; the line through different points a and
b is denoted by ab, the open segment with endpoints a and b is denoted by ab.
Non-degenerate triangles are called trigons.

For given different points p and q in Rn, and points x,y ∈ pq one has the unique
linear combinations x = λ1p + µ1q, y = λ2p + µ2q (λ1 + µ1 = 1, λ2 + µ2 = 1)

which allows to define the cross ratio (p,q;x,y) = µ1λ2

λ1µ2
of the points p,q,x and

y [1, page 243] provided that λ1µ2 6= 0.
Let H be an open, strictly convex set in Rn (n ≥ 2) with boundary ∂H. The

function dH : H×H → R defined by

(1) dH(x,y) =

{
0, if x = y,
1
2

∣∣ln |(p,q;x,y)|
∣∣, if x 6= y, where pq = H ∩ xy,

is a metric on H [1, page 297], and is called the Hilbert metric on H. The pair
(H, dH) is called the Hilbert geometry given in H.
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Note that two Hilbert geometries are isomorphic if there is a projective map be-
tween their sets of points, because all the defining conditions of a Hilbert geometry
is projective invariant.

The generalized Cayley–Klein model [7] of the hyperbolic geometry Hn is, in
fact, a Hilbert geometry (E , dE) of special kind given by an ellipsoid E . By the
above note, all these are isomorphic to each other and to Hn. It is easy to see that
a Hilbert geometry is hyperbolic if and only if H is an ellipsoid.

The following results become useful in the next section. The first one is a week
version of [3, Lemma 12.1, pp. 226].

Lemma 2.1. A bounded open convex set H in Rn (n ≥ 2) is an ellipsoid if and
only if every section of it by any 2-dimensional plane is an ellipse.

Lemma 2.2. For any nonempty open convex set H in the plane, which is not an
ellipse, there is an ellipse E such that ∂E ∩∂H has at least six different points, and
E \ H is nonempty.

Proof. By [2, Theorem 2] of F. John, there is an ellipse E containing H and having
at least 3 contact points, i.e., |∂H ∩ ∂E| ≥ 3.

As H is not an ellipse, E \ H is not empty, but contains an open set of points.
If |∂H ∩ ∂E| ≥ 6, then the statement is proved.
If |∂H∩ ∂E| ≤ 5, then shrinking the ellipse E with a homothety χ at a center in

H with coefficient 1− ε, where ε > 0 is small enough, moves the points in ∂H∩ ∂E
into H and the resulting ellipse χ(E) proves the lemma. �

Let a,b be different points in H and let c be in (ab ∩ H) \ {b}. The so called
hyperbolic ratio1 〈a,b; c〉H of the triple a,b, c is defined by

(2) 〈a,b; c〉H =

{
− sinh dH(c,a)

sinh dH(b,c) , if c ∈ ab,
sinh dH(c,a)
sinh dH(b,c) , otherwise.

Lemma 2.3. Let a,b and c be collinear points in a Hilbert geometry H, and let
{p,q} = ab ∩ ∂H, such that a separates p and b. Set an Euclidean coordinate
system on ab such that the coordinates of p and a are 0 and 1, respectively. Let
q, b and c, with assumptions q > b > 1 and 0 < c < q, be the coordinates of q, b
and c, respectively. Then we have

(3) |〈a,b; c〉H| =
|c− b|
|c− 1|

√
b

√
1 +

b− 1

q − b
.

1The name ‘hyperbolic ratio’ comes from the hyperbolic sine function in the definition.

http://www.math.u-szeged.hu/tagok/kurusa
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Proof. Using (2) we can write

|〈a,b, c〉H| =
sinh

(
sign(c−b)

2 ln c(q−b)
b(q−c)

)
sinh

(
sign(1−c)

2 ln q−c
c(q−1)

) =

(
c(q−b)
b(q−c)

) sign(c−b)
2 −

(
b(q−c)
c(q−b)

) sign(c−b)
2

(
q−c
c(q−1)

) sign(1−c)
2 −

(
c(q−1)
q−c

) sign(1−c)
2

=

(
(c(q − b))sign(c−b) − (b(q − c))sign(c−b)) (c(q − 1)(q − c))

sign(1−c)
2(

(q − c)sign(1−c) − (c(q − 1))sign(1−c)
)

(b(q − c)c(q − b))
sign(c−b)

2

.

Now we have three cases to handle: 0 < c < 1, 1 < c < b and b < c < q.
If 0 < c < 1, hence sign(1− c) = 1 and sign(c− b) = −1, then

|〈a,b, c〉H| =
(
(c(q − b))−1 − (b(q − c))−1

)
(c(q − 1)(q − c)) 1

2

((q − c)− c(q − 1)) (b(q − c)c(q − b))−1
2

=
(b− c)q (q − 1)

1
2

q(1− c) (b(q − b)) 1
2

=
(b− c)

(1− c)
√
b

√
q − 1

q − b
.

The other two cases can be calculated in the same way, hence this lemma is proved.
�

3. Ceva’s and Menelaus’ Theorems in Hilbert geometry

Ceva’s and Menelaus’ Theorems are valid also in the hyperbolic geometry [7,
pp. 467-468] if the hyperbolic ratio (2) is used. For the sake of completeness we
recall here the necessary terms and the Theorems themselves.

Let a,b, c be the vertices of a trigon. By a triplet (c′,a′,b′) of the trigon abc
we mean three points c′,a′ and b′ being respectively on the straight lines ab, bc
and ca. A triplet (c′,a′,b′) of the trigon abc is called

(p1) a Menelaus triplet if the points c′, a′ and b′ are collinear, and
(p2) a Ceva triplet if the lines aa′, bb′ and cc′ are concurrent.

A triple (α, β, γ) of real numbers is

(n1) of Menelaus type if α · β · γ = −1, and
(n2) of Ceva type if α · β · γ = +1.

With these terms, Hyperbolic Ceva’s Theorem states that a triplet (c′,a′,b′) of a
trigon abc in Hn is of Ceva type if and only if the triple (〈a,b,a′〉Hn , 〈b, c,a′〉Hn ,
〈c,a,b′〉Hn) is of Ceva type. The Hyperbolic Menelaus’ Theorem asserts that a
triplet (c′,a′,b′) of a trigon abc in Hn is of Menelaus type if and only if the triple
(〈a,b, c′〉Hn , 〈b, c,a′〉Hn , 〈c,a,b′〉Hn) is of Menelaus type.

In Hilbert geometries neither of these theorems are valid, in general. Instead,
quite weak versions of them characterize the hyperbolic the Hilbert geometry.
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The next theorem readily generalizes R. Guo’s result on medians of a trigon [4].
The way of proving2 goes basically along the idea of R. Guo.

Theorem 3.1 (Ceva type characterization). If for every trigon abc in H there is
a Ceva triplet (c′,a′,b′) such that the triple (〈a,b, c′〉H, 〈b, c,a′〉H, 〈c,a,b′〉H) is
of Ceva type, then the Hilbert geometry (H, dH) is the hyperbolic geometry.

Proof. We have to show that H is an ellipsoid. By Lemma 2.1 we only need to
work in the plane, therefore H is in a plane from now on in this proof.

Assume that ∂H is not an ellipse. Then, by Lemma 2.2, we have an ellipse E
such that ∂E ∩ ∂H has at least six different points pi (i = 1, . . . , 6), and E \ H
contains some some open sets.

Choose a point p0 ∈ E \ H such that a neighborhood U of it is in E \ H.
The lines p0pi (i = 1, 2, 3, 4, 5) are clearly pairwise different, therefore exactly

one of them separates the four remaining points, so that exactly two of those points
are on both sides of it. Assume that the indexes were chosen in such a way that
this separating line is p0p3, points p1 and p2 are on its left side, p4 and p5 are on
its right side, and the segment p1p4 meets p2p5 in a point a ∈ E ∩H. If a ∈ p0p3,
then move the point p0 a little bit over so that it remains in U and p0p3 separates
p1p2 and p4p5. In this way we have a /∈ p0p3.

H

E

e

hp0

p2

p3

p1

p4

p5

c

b

a

Figure 1. The triangle given by the contact points.

Let b = p0p3 ∩ p1p4, and c = p0p3 ∩ p2p5. Then abc is a trigon.

2We point out that in Guos’s proof the procedure is inadequate to find proper ellipse with six
appropriate points on the border of the Hilbert geometry and it does not allow considering

general Ceva triplets, because some points of some Ceva triplets might fall outside of the ellipse.
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Observe that the open segments p1p4 and p2p5 are lines of the Hilbert geometry
(H, dH) and of the hyperbolic geometry (E , dE) too. Furthermore, the open segment
p3e = H∩p3p0 is a line of the hyperbolic geometry (E , dE), and the open segment
p3h = H ∩ p3p0 is a line of the Hilbert geometry (H, dH). Moreover, p3h ⊂ p3e.

By the condition in the theorem, there is a Ceva triplet (c′,a′,b′) of the trigon
abc such that

(4) the triple (〈a,b, c′〉H, 〈b, c,a′〉H, 〈c,a,b′〉H) is of Ceva type.

Observe that 〈a,b, c′〉H = 〈a,b, c′〉E and 〈c,a,b′〉H = 〈c,a,b′〉E by coincidence,
and 〈b, c,a′〉H 6= 〈b, c,a′〉E by Lemma 2.3. Then (4) implies that

(5) the triple (〈a,b, c′〉E , 〈b, c,a′〉E , 〈c,a,b′〉E) is not of Ceva type

what contradicts the hyperbolic Ceva’s Theorem, and hence proves the theorem.
�

Theorem 3.2 (Menelaus type characterization). If for every trigon abc in H there
is a Menelaus triplet (c′,a′,b′) such that the triple (〈a,b, c′〉, 〈b, c,a′〉, 〈c,a,b′〉) is
of Menelaus type, then the Hilbert geometry (H, dH) is the hyperbolic geometry.

This theorem can be proved in the same way as the previous one.
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