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Projective metrics 1. Short history and concise theory

Give all the metrics on every projective space P" of dimension n that satisfies the strict
triangle inequality.

Let D be the support of such a projective metric. Then there are exactly three cases:
elliptic (D = P"), parabolic (D = P* \ R") and hyperbolic (D ¢ P* \ R"” convex)

Construction (Busemann 1961 g [3]; based on Blaschke’s extension [2] of the Crofton-formula [6])

Let u be a quasi pozitive' “measure” on the set of the hyperplanes.
Let the length of a curve be the measure u/2 of the set of intersecting hyperplanes.

Busemann’s construction gives all the projective metrics.

Busemann [4]: "... It is clear from Hilbert's comments that he was not aware of the immense num-
ber of these metrics, so that the second part of the problem ... has inevitably been replaced by the
investigation of special, or special classes of, interesting geometries.” .

1Lm necessarily positive everywhere, but for any non-collinear triple ABC of points the “measure” of the hyperplanes intersecting
AB U BC is positive and the “measure” of those hyperplanes passing through B is zero.
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Projective metrics 24E [ lassic, Mir i and Hilbert geometries

Classic metrics . Hilbert metric . dy: H x H — R is defined by
0, ifX=Y,
dy(X,Y) =1, .
Hin(x, Y; Hy, Hy)|, ifX # Y,

where H, the infinity, is an open, strictly convex,
bounded domain in R" and HyHy = H N XY.

H,y
Y
Iy
OH  Ix
Hy 0Ix
V(NS is isometric to a metric sphere of

radius r > 0 in K. The projection function Minkowski metric . d;: R"xR" — R is defined
ue: [0,i) — R, makes geodesic correspon- by dz(X,Y) = (Y, Iy;X) , where T, the indicatrix,

The size function v,.: Ry = R is such that

dence by fic: Expp(rw) = p(rw. is an open, strictly convex, bounded domain cen-
LR T c ] v [ o [ i ] trally symmetric at O in R” and Iyly = Iy N XY.
H"? —1 | sinhr | tanhr | oo
R” 0 r r 00

S @ ([ +1 ] snr | @r |72 Elliptic metric . d: P* x P" — R is defined by

—_— — .
Here we identified the space 7oK} with R” by the natural way, d(X, Y) =arccos |<0X’ OY>| ’ where the pomts of
and used w € 8" in both senses. P" are the diagonal point pairs of S".
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Projective metrics 3. Metric ellipses and classic metrics

Aset &, . ={P:2a=d(F,P)+dP.F)),

where Fy, F,, the focuses, are fixed points and
f = d(F,,F,)/2 < a, is called metric ellipse.

w

F, C F, The metric ellipse is called metric circle if
f = 0. The metric midpoint of the segment
& r, F\F, is called the metric center of &% FLF

A projective metric d is called strongly quadratic if for every a > 0 and pair of points F, F>,
such that a > d(F, F»), the metric ellipse & dF. £ is quadratic. J

Folkloric result. The classic metrics are strongly quadratic. )
Proof for the hyperbolic plane only?. inthe quadratic model B2 = {(x.y.2) : 2 + 1% - 22 = -1, z > 1} the mefric is
d(p,q) = cosh™ (p gyand x = —1. Fixf >0and a > f, and let F| = (sinh(—f),0, coshf) and F; = (smhf,O,coshf). Then C = (0,0, 1). For

any point P = (x,y,7) € SZ:F] © H2 there is a t € [0,f] such that
a+t=d(F,X)= cosh™! (—xsinhf +zcoshf), and a-t=dX,F;)= cosh™! (xsinhf + zcoshf).

Taking cosh gives coshacosh? + sinhasinht = cosh(a + 1) = zcoshf F xsinhf, hence coshacosht = zcoshf and sinhasinhs = —xsinhf.

This implies 2 - 2 =cosh? - sinh? =1, hence 7% — x2 “"hzf cosh?a = 7}—wnh2f
cosh? al cosh2f sinh2 al sinhzf ) h ’ © !anh2 a cosh2f 1-tanh? a
Substituting the C-based polar coordinates (w, r) of P, we have P = (sinh r cos w, sinh r sin w, cosh r), which results in
& . 1 _ cos® w . sin” w
WL 20w) @ @@ - )1 - 0F@) |
2It is very much the same for the Euclidean plane and the sphere. See [11].
3/9 27. 07. 2016.
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Projective metrics 4. Classifications by metric spheres

Which projective metrics are such that one, many or all of its metric ellipses are quadratic?

A projective metric d is called strongly e-quadratic for an ¢ € [0, 1) if for every a > 0 and pair
of points Fy, F,, where ea = d(Fy, F»), the metric ellipse SZ;FI’FZ is quadratic. J

If a projective metric is Riemannian, then it is elliptic, Euclidean or Bolyai’s hyperbolic.

Condition “Riemmannian” can be thought of as every infinitesimal sphere is quadratic.

A Minkowski metric is Euclidean if and | If the unit metric sphere of every associ-
only ifits unit metric spheres are quadratic. | ated Minkowski metrics of a Hilbert metric is
quadratic, then it is Bolyai's hyperbolic metric.

A projective metric is called weakly quadratic if it has a quadratic metric ellipse. J

Is a weakly quadratic projective metric classic? I

There is no known counterexample (yet?) but we have positive results.
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Projective metrics 5. Classifications by metric ellipses 5.1. Weakly quadratic Minkowski metric

Weakly quadratic Minkowski metric is Euclidean. I

Detailed sketch of proof. Suppose that & ... ;. is quadratic. Then it is the unit circle Elo

of a Euclidean metric d, where O is the midpoint of segment F, F2. Place I so that its center
is 0. Since t, L FF, L tg, obviously ¢;(0) = &,(0) = 0.

As di(F\,E) = %3

and dr(E.Fy) = %7,
we have

_el@ el
a = + .
r@  r@)

The derivative of this
with respect to ¢ at 0
and the consequence
t; || t; of the symme-
try of 7 proves #; L
Fle 1 ty.

As parallelism does not depend on metrics this is proves #; || za || #3 || #,. Let € be the straight
line through O which is parallel to ¢, and let C; and C, be the intersection of £ with SZI;FJ,Fz'
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Projective metrics

5. Classifications by metric ellipses 5.1. Weakly quadratic Minkowski metric

We choose now a different Euclidean metric d, such that d>(0, C) = a* - f* and d,(0,1) =

1. Then & . p,

definition of these ellipses we have

= SZE;F,,FZ as they have 4 points and two tangents in common. By the

eif(@) e . ex(a)
el(@) +ex(B) =2a = , e @) =-0pB)————r,
r@ (B e1(B) +2ad(p)
where §: ¢ = r(g)-1. Taking the limit as ¢ — 0, we obtain lim, o §3 = —4L = —(Fy, F1; B).

If 68 + O,
then differential
geometric rea-
soning (see [11,
Lemma  3.4]),
implies

(F, Fi;B) = -1
which is a con-
tradiction.

Thus 6(8) = 0
for small enough
B.

Observe that

é(B) # 0 if and
only if 6(a) # 0.

& =&
diF| Fy ~CdeiF Fy
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Projective metrics 5. Classifications by metric ellipses 5.1. Weakly quadratic Minkowski metric

Take a look at the figure!

P2i
@i

Bai

P2i+1 $2i+2

"
@41 @y ..

=
Boivi > P

We Clearly haVeﬁZHZ < @y < ﬁz,‘ and ﬁ2i+l < @iyl < ﬁZi*l anditis easy to prove thatﬁz,' - 0.

Thus, for large enough i € N we obtain §(8,i) = 0, hence § = 0. -
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Projective metrics 5. Classifications by metric ellipses 5.2. Weakly quadratic Hilbert metric

Weakly quadratic Hilbert metric is Bolyai’s hyperbolic metric. I

Sketch of proof without details. The idea is similar as for the Minkowski case, but needs

much more complicated formulas and new tricks. Let &; . r, be a quadric.
Let ¢ be the line F\F, if F| #

F, and OF, if F, = F,
where O is the affine center of
& r - Toreach

71,02

fllealles ll t,
where 1;,t; and t4,t3 are the
tangents of 7 and & , .,
respectively, is the first step
and usually needs projectivity.
Then a Bolyai plane # is con-
structed such that &) ., . =

a
SdrH;Fl JFyt

Then a complicated estimate of the difference of the radial functions of 7 and H, using dif-
ferential geometric methods, proves 7 = H in a neighborhood of 1. Considering sequences
of angles finishes the proof. u
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Projective metrics 6. Further considerations

A projective metric d is called e-quadratic if for every a > 0 and point F; there is a point F»,
such that ea = d(F, F,) and the metric ellipse 82;1-‘1,1-'2 is quadratic. J

Conjecture. An e-quadratic projective metric is classic. J

7

Aset Hyp p, = {P 1 2a = |d(F\,P) — d(P, F»)l},
where F; and F,, the focuses, are fixed points
and 0 < a < d(F1,Fy)/2 = f, is called metric
hyperbola. The metric midpoint of the segment
F\F is called the center of Hy . ...

If a metric hyperbola of a Minkowski metric or Hilbert metric in the plane is quadratic, then
the metric is Euclidean.

the directrix, is a fixed straight line, F ¢ ¢, the focus, is
a fixed point, and ¢ > 0, is called metric conic.

f‘ (F Aset(C,, = {P: od((,P) = d((, F)d(F,P)|}, where ¢,

If a metric conic of a Minkowski metric in the plane is quadratic, then the metric is Euclidean.
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