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Projective metrics 1. Short history and concise theory

Hilbert’s IV. problem (Hilbert 1900, [7])

Give all the metrics on every projective space Pn of dimension n that satisfies the strict
triangle inequality.

Classification of projective metrics (Hamel 1903, [8])

Let D be the support of such a projective metric. Then there are exactly three cases:
elliptic (D = Pn), parabolic (D = Pn \ Rn) and hyperbolic (D ( Pn \ Rn convex)

Construction (Busemann 1961, [3]; based on Blaschke’s extension [2] of the Crofton-formula [6])

Let µ be a quasi pozitive1 “measure” on the set of the hyperplanes.
Let the length of a curve be the measure µ/2 of the set of intersecting hyperplanes.

Theorem. (Pogorelov 1973, [13] on the plane; Szabó 1986, [14] any dimension).

Busemann’s construction gives all the projective metrics.

Busemann [4]: ”... It is clear from Hilbert’s comments that he was not aware of the immense num-
ber of these metrics, so that the second part of the problem ... has inevitably been replaced by the
investigation of special, or special classes of, interesting geometries.” .

1not necessarily positive everywhere, but for any non-collinear triple ABC of points the “measure” of the hyperplanes intersecting
AB ∪ BC is positive and the “measure” of those hyperplanes passing through B is zero.
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Projective metrics 2. Examples: classic, Minkowski and Hilbert geometries

Classic metrics .

Kn
1

Kn
0

Kn
−1µ̃

The size function νκ : R+ → R is such that
νκ(r)Sn−1 is isometric to a metric sphere of
radius r > 0 in Kn

κ . The projection function
µκ : [0, ı̊κ) → R+ makes geodesic correspon-
dence by µ̃κ : ExpO(rω) 7→ µκ(r)ω.

Kn
κ κ νκ µκ ı̊κ

Hn −1 sinh r tanh r ∞

Rn 0 r r ∞

Sn (Pn) +1 sin r tg r π/2

.

Here we identified the space TOK
n
κ with Rn by the natural way,

and used ω ∈ Sn−1 in both senses.

Hilbert metric . dH : H ×H → R is defined by

dH (X,Y) =

0, if X = Y ,
1
2

∣∣∣ln(X,Y; HX ,HY )
∣∣∣, if X , Y ,

where H , the infinity, is an open, strictly convex,
bounded domain in Rn and HXHY = H ∩ XY.

∂H

HX

HY

X

Y

∂IX

IX

X
IY

Y

Minkowski metric . dI : Rn×Rn → R is defined
by dI(X,Y) = (Y , IY ; X) , where I, the indicatrix,
is an open, strictly convex, bounded domain cen-
trally symmetric at O in Rn and IXIY = IX ∩ XY.

Elliptic metric . d : Pn × Pn → R is defined by

d(X,Y)=arccos |〈
−−→
OX,
−−→
OY〉| , where the points of

Pn are the diagonal point pairs of Sn.
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Projective metrics 3. Metric ellipses and classic metrics

Ea
F1 ,F2

F1 F2C
ω

A set Ea
d;F1 ,F2

:= {P : 2a = d(F1,P) + d(P,F2)} ,

where F1,F2, the focuses, are fixed points and
f := d(F1,F2)/2 < a, is called metric ellipse.
The metric ellipse is called metric circle if
f = 0. The metric midpoint of the segment
F1F2 is called the metric center of Ea

d;F1 ,F2
.

A projective metric d is called strongly quadratic if for every a > 0 and pair of points F1,F2,
such that a > d(F1,F2), the metric ellipse Ea

d;F1 ,F2
is quadratic.

Folkloric result. The classic metrics are strongly quadratic.

Proof for the hyperbolic plane only2. In the quadratic model H2 = {(x, y, z) : x2 + y2 − z2 = −1, z ≥ 1} the metric is
d(p, q) = cosh−1〈p, q〉 and κ = −1. Fix f > 0 and a > f , and let F1 = (sinh(−f ), 0, cosh f ) and F2 = (sinh f , 0, cosh f ). Then C = (0, 0, 1). For
any point P = (x, y, z) ∈ Ea

d;F1 ,F2
⊂ H2 there is a t ∈ [0, f ] such that

a + t = d(F1 ,X) = cosh−1(−x sinh f + z cosh f ), and a − t = d(X,F2) = cosh−1(x sinh f + z cosh f ).
Taking cosh gives cosh a cosh t ± sinh a sinh t = cosh(a ± t) = z cosh f ∓ x sinh f , hence cosh a cosh t = z cosh f and sinh a sinh t = −x sinh f .
This implies z2

cosh2 a/ cosh2 f
− x2

sinh2 a/ sinh2 f
=cosh2 t − sinh2 t=1, hence z2 − x2 tanh2 f

tanh2 a
= cosh2 a

cosh2 f
=

1−tanh2 f
1−tanh2 a

Substituting the C-based polar coordinates (ω, r) of P, we have P = (sinh r cosω, sinh r sinω, cosh r), which results in

Ea
dκ ;F1 ,F2

:
1

ν2
κ (r(ω))

=
cos2 ω

ν2
κ (a)

+
sin2 ω

(µ2
κ (a) − µ2

κ (f ))(1 − κν2
κ (a))

.

2It is very much the same for the Euclidean plane and the sphere. See [11].
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Projective metrics 4. Classifications by metric spheres

Problem. (Kurusa, 2015).

Which projective metrics are such that one, many or all of its metric ellipses are quadratic?

A projective metric d is called strongly ε-quadratic for an ε ∈ [0, 1) if for every a > 0 and pair
of points F1,F2, where εa = d(F1,F2), the metric ellipse Ea

d;F1 ,F2
is quadratic.

Beltrami’s theorem. (1865, [1]).

If a projective metric is Riemannian, then it is elliptic, Euclidean or Bolyai’s hyperbolic.

Condition “Riemmannian” can be thought of as every infinitesimal sphere is quadratic.

Tétel. (Busemann 1953, [5, 25.4]).

A Minkowski metric is Euclidean if and
only if its unit metric spheres are quadratic.

Tétel. (Kay 1967, [9, 296. old.]).

If the unit metric sphere of every associ-
ated Minkowski metrics of a Hilbert metric is
quadratic, then it is Bolyai’s hyperbolic metric.

A projective metric is called weakly quadratic if it has a quadratic metric ellipse.

Question (Kurusa, 2015)

Is a weakly quadratic projective metric classic?

There is no known counterexample (yet?) but we have positive results.
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Projective metrics 5. Classifications by metric ellipses 5.1. Weakly quadratic Minkowski metric

Theorem. (Kurusa 2016, [11]).

Weakly quadratic Minkowski metric is Euclidean.

Detailed sketch of proof. Suppose that Ea
dI;F1 ,F2

is quadratic. Then it is the unit circle E1
d;O

of a Euclidean metric d, where O is the midpoint of segment F1F2. Place I so that its center
is O. Since tA ⊥ F1F2 ⊥ tB, obviously ė1(0) = ė2(0) = 0.

∂I

O

Ea
dI;F1 ,F2

= E1
d;O,O

E

F1 F2

A
B

tA tB

I
J

tI tJ

f1 f2

ϕα βe1(α)

e 2(
β)

r(α)r(
β)

As dI(F1,E) = e1(α)
r(α)

and dI(E,F2) = e2(β)
r(β) ,

we have

2a =
e1(α)
r(α)

+
e2(β)
r(β)

.

The derivative of this
with respect to ϕ at 0
and the consequence
tI ‖ tJ of the symme-
try of I proves tI ⊥

F1F2 ⊥ tJ .

As parallelism does not depend on metrics this is proves tI ‖ tA ‖ tB ‖ tJ . Let ` be the straight
line through O which is parallel to tA and let C1 and C2 be the intersection of ` with Ea

dI;F1 ,F2
.
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Projective metrics 5. Classifications by metric ellipses 5.1. Weakly quadratic Minkowski metric

We choose now a different Euclidean metric de such that d2
e (O,C1) = a2 − f 2 and de(O, I) =

1. Then Ea
dI;F1 ,F2

≡ Ea
de;F1 ,F2

as they have 4 points and two tangents in common. By the
definition of these ellipses we have

e1(α) + e2(β) = 2a =
e1(α)
r(α)

+
e2(β)
r(β)

, i.e. δ(α) = −δ(β)
e2(α)

e1(β) + 2aδ(β)
,

where δ : ϕ 7→ r(ϕ)−1. Taking the limit as ϕ→ 0, we obtain limϕ→0
δ(α)
δ(β) = −

a−f
a+f = −(F2,F1; B).

If δ(β) , 0,
then differential
geometric rea-
soning (see [11,
Lemma 3.4]),
implies
(F2,F1; B) = −1
which is a con-
tradiction.

Thus δ(β) = 0
for small enough
β.

Observe that
δ(β) , 0 if and
only if δ(α) , 0.

1

C1

O

r(ϕ) (cosϕ;sinϕ)
δ

Eϕ

J=r(0)

I=r(π)

∂I

C

Ea
dI ;F1 ,F2

=Ea
de ;F1 ,F2

ϕ

A B

e1(α)

αF1

e2(α)

βF2
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Projective metrics 5. Classifications by metric ellipses 5.1. Weakly quadratic Minkowski metric

Take a look at the figure!

O

E2i

E2i+1

F1 F2

A
B

ϕ2i
ϕ2i+1

α2i
α2i+1 β2iβ2i+1 β2i+2

e 2
(β

2i
)

e 1(α
2i)

e 1(α
2i+1

)
e2(β2i+1)

ϕ2i ϕ2i+1 ϕ2i+2

α2i
+π
7−→ α2i+1 α2i+2

+π
7−→ . . .

β2i β2i+1
−π
7−→ β2i+2

We clearly have β2i+2 < α2i < β2i and β2i+1 < α2i+1 < β2i−1 and it is easy to prove that β2i → 0.
Thus, for large enough i ∈ N we obtain δ(β2i) = 0, hence δ ≡ 0.
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Projective metrics 5. Classifications by metric ellipses 5.2. Weakly quadratic Hilbert metric

Theorem. (Kurusa 2016, [11]).

Weakly quadratic Hilbert metric is Bolyai’s hyperbolic metric.

Sketch of proof without details. The idea is similar as for the Minkowski case, but needs
much more complicated formulas and new tricks. Let Ea

dI;F1 ,F2
be a quadric.

∂I

O

Ea
dI;F1 ,F2

E

F1 F2

A
B

tA tB
I

J

tI tJ

U1

V1

U2

V2

f1 f2

ϕα β

r1(α +
π)

e1(α) r1(α)
r 2

(β
+
π)

e 2(
β)

r 2
(β

)

Let ` be the line F1F2 if F1 ,
F2 and OF1 if F1 = F2,
where O is the affine center of
Ea

dI;F1 ,F2
. To reach
tI ‖ tA ‖ tB ‖ tJ ,

where tI , tJ and tA, tB are the
tangents of I and Ea

dI;F1 ,F2
,

respectively, is the first step
and usually needs projectivity.
Then a Bolyai planeH is con-
structed such that Ea

dI;F1 ,F2
=

Ea
dH ;F1 ,F2

.

Then a complicated estimate of the difference of the radial functions of I and H , using dif-
ferential geometric methods, proves I = H in a neighborhood of I. Considering sequences
of angles finishes the proof.
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Projective metrics 6. Further considerations

A projective metric d is called ε-quadratic if for every a > 0 and point F1 there is a point F2,
such that εa = d(F1,F2) and the metric ellipse Ea

d;F1 ,F2
is quadratic.

Conjecture. An ε-quadratic projective metric is classic.

A set Ha
d;F1 ,F2

:= {P : 2a = |d(F1,P) − d(P,F2)|},
where F1 and F2, the focuses, are fixed points
and 0 < a < d(F1,F2)/2 = f , is called metric
hyperbola. The metric midpoint of the segment
F1F2 is called the center of Ha

d;F1 ,F2
. Ha

F1 ,F2

Ha
F1 ,F2

F1 F2C

Theorem. (Kurusa & Kozma, 2016, [12]).

If a metric hyperbola of a Minkowski metric or Hilbert metric in the plane is quadratic, then
the metric is Euclidean.

` F
C
%
d;F,`

A set C%d;`,F := {P : %d(`,P) = d(`,F)d(F,P)|}, where `,
the directrix, is a fixed straight line, F < `, the focus, is
a fixed point, and % > 0, is called metric conic.

Theorem. (Kurusa, 2015, [10]).

If a metric conic of a Minkowski metric in the plane is quadratic, then the metric is Euclidean.
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Projective metrics

Thank you for your attention!
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