
Orbital integrals on Lorentzian spaces
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Abstract. We present a rotation symmetric model in the Euclidean space for

the Lorentzian of curvature −1 in which the Lorentzian spheres around the

points of an apriori fixed spacelike totalgeodesic are straightlines. Investigating

the mean value operators in this model yields to various representations of

functions by means of their integrals over Lorentzian spheres.

1. Introduction

In this talk, I will speak on the problem of recovering a function from its

integrals over the spheres in pseudo Riemannian spaces. As Helgason pointed out

in [1,2], formulas representing functions by their mean values plays very important

role in the theory of differential operators on higher rank symmetric spaces. Al-

though more generality could be allowed, we shall concentrate mainly on the two

dimensional Lorentzian space of curvature −1, because most of the interesting fea-

tures of our subject appear in this setting and the formulation remains relatively

natural.

An easy example to demonstrate the intimate connection between the orbital

integrals and the differential operators is the well known Cauchy problem in three

dimension

Lu =
∂2u

∂t2
, u(x, 0) = 0,

∂u

∂t
(x, 0) = f(x),

where x ∈ R
3 and f ∈ S(R3) is a given function. Using the commonly accepted

notation M rf(x) for the integral of f on the sphere around x of radius r > 0, the

solution takes the form u(x, t) = tM tf(x), that is Huygens’ principle.

On the Riemannian manifolds it is very easy to determine a function f from

its spherical mean values M rf simply by f = limr→0 M rf/M r1. In the Lorentzian
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2 Á. KURUSA

spaces the situation changes considerable – a Lorentzian sphere does not shrink to

its center as its radius approaches zero and it is nor connected, as the light cone

separates it into parts, neither compact.

We present a model for L2, that is obtained as the orthogonal projection of

S. Helgason’s quadratic surface model [2] along the straightline of the two ideal

points. The set M2 of Lorentzian circles with center on an apriori fixed spacelike

totalgeodesic E, the equator, becomes straightlines in this model, that helps a lot

in representing the function f with its spherical integrals M rf . First we show

a representation similar in spirit to the Riemannian formulation. Then we use

only the restricted set M2 of circles to give an other representation via the corre-

sponding integral transform M , that integrates functions on circles in M2. This

representation is also unique, i.e. M is invertible as an integral operator, despite

of the restricted set of circles.

2. The model

Our following model for the Lorentz space of signature (1, 1) and of curvature

−1, can be obtained from Helgason’s quadratic hypersurface model [2]. This is

defined in R
3 by the bilinear form B(x, y) = x1y1 − x2y2 − x3y3 on the surface

Q2
−1 = {x ∈ R : B(x, x) = −1}. Q2

−1 with its Lorentz structure is axially symmetric

around the x1-axis, and is symmetric with respect to the origin. Helgason proved [2]

that the geodesics are the intersections of Q2
−1 with the two dimensional subspaces

of R
3.

Our model L2 of the Lorentzian is the projection of Q2
−1 with its structure

into the plane x1 = 0 along the axis x1. Then L2 is rotational symmetric around

the origin. Let us take a point P on Q2
−1, and take the plane π of R

3 containing

P and the x1-axis. Clearly, the intersection of π with Q3
−1 is a hyperbola. Say,

this hyperbola intersects the plane x1 = 0 of R
3 in the point O. Let r denote

the Lorentzian distance of P from O. Then r is the Lorentzian distance of P

from the equator E, the intersection of Q2
−1 and x1 = 0. Let the coordinates of

P be (p1, p2, p3) in R
3. Relative to π we may use the coordinates ρ1 = p1 and

ρ2 =
√

p2
2 + p2

3. These coordinates are p1 = ρ1 = sinh(r) and ρ2 = cosh(r). Hence

the projection µ(P ) of P , where µ: Q2
−1 → L2 is the above mentioned projection,

is a point in the corresponding direction, i.e. in π, and |µ(P )| = cosh r. We param-

eterize L2 according to the Euclidean polar coordinates of R
2 so that (ω, r) means

the point µ(P ) = ω cosh r, where ω ∈ S1. Because all the objects considered are

symmetric to the plane x1 = 0, we may, without restrictions, identify the points of

Q2
−1 symmetric to this plane.
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Orbital integrals on Lorentzian spaces 3

The Lorentzian inner product on T(ω,r)Ln is

〈(dr, dω), (dr′, dω′)〉(ω,r) = drdr′ sinh−2 r −
n−1
∑

i=1

dωidω′
i,

where dr means the radial part of the vector (dr, dω) ∈ T(ω,r)Ln and dω means

the part orthogonal, in Euclidean meaning, to the radius. We shall call dω the

spherical part.

The Lorentzian circle falls into four parts, determined by the timelike and

spacelike vectors. We call these parts timelike and spacelike spheres, respectively.

There are two connected spacelike spheres and two connected timelike spheres. In

higher dimensions there are also two connected timelike spheres, but ‘only’ one

spacelike sphere.

As usual, we parameterize the set of straightlines in R
2, so that H(ω, p)

denotes the straightline perpendicular to ω ∈ S1 and going through p · ω ∈ R
2,

where p ∈ R+. The corresponding Lorentzian set of points in L2 will be denoted by

Ĥ(ω, p). This correspondence is not one-to-one for p < 1, because the intersection

of the corresponding plane with Q2
−1 falls into two parts.

Lemma 2.1. For p 6= 1, the set Ĥ(ω̄, p) is the Lorentzian sphere around (ω̄, 0) ∈ L2

of radius

r =

{

arccosh p if p > 1, timelike

arccosp if p < 1, spacelike.

Ĥ(ω̄, 1) is lightlike geodesic.

With the natural parameter p [3], the geodesics take the form

y2 p2 − 1

p2
+ z2 = 1.

Figure 1. Circles and geodesics in L2.
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4 Á. KURUSA

Summing up, the Euclidean unit circle in L2 is the equator Q2
−1 ∩ {x1 = 0}.

The Euclidean circle around the origin of radius cosh r is the ‘ring’ Q2
−1 ∩ {x1 =

sinh r}. The lightlike geodesics are the straightlines touching the unit sphere. The

spacelike resp. timelike geodesics are ellipses resp. hyperbolas. The spacelike resp.

timelike circles around the points of the equator are the straightlines intersecting or

avoiding the Euclidean unit circle. (Note that we call a part of a sphere timelike or

spacelike according to what type of geodesics it meets. We found this more natural

than the naming convention [1,2], that gives the name according to the type of the

tangent vectors, generally used for submanifolds.)

Lemma 2.2. The arclength measure on the circle Ĥ(ω̄, p) at the point X = (ω, r) ∈
L2 is

dA =
p
√

|p2 − 1|
〈ω, ω̄〉

√

p2 − 〈ω, ω̄〉2
dω,

where cosh r = p/〈ω, ω̄〉, 0 < 〈ω, ω̄〉 < p and 〈., .〉 is the standard Euclidean inner

product.

Proof. If dω is the infinitesimal element at ω on S1, and di is the corresponding

Euclidean arclength element on H(ω̄, p) at X , then di = p
cos2 αdω, where cosα =

〈ω, ω̄〉. The radial resp. spherical part of di are dr = di sin α resp. ds = di cosα.

Therefore
di2 = 〈di, di〉X = (dr2 sinh−2 r − ds2)

= (sin2 α sinh−2 r − cos2 α) · p2dω2

cos4 α
.

Via sinh−2 r = (cosh2 r − 1)−1 = cos2 α/(p2 − cos2 α) this gives the statement.

For X ∈ L2, let LX ⊂ TX be the cone of lightlike vectors, CX be the set of

timelike vectors and DX be the set of spacelike vectors. The angle γ of ω1, ω2 ∈ TX

is defined for timelike and spacelike vectors differently:

cosh2 γ = d(ω1, ω2) if ω1, ω2 ∈ CX

sinh2 γ = −d(ω1, ω2) if ω1, ω2 ∈ DX ,

where

d(ω1, ω2) =
〈ω1, ω2〉2X

〈ω1, ω1〉X〈ω2, ω2〉X
.

Some simple calculation gives
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Lemma 2.3. Let X = (ω̄, r) ∈ L2 and for every ω ∈ S1 let ω̂ ∈ Σ1
X be tangent to

Ĥ(ω, 〈ω, ω̄〉 cosh r). Then

dω̂ =
| sinh r|

cosh2 r〈ω, ω̄〉2 − 1
dω on Σ1

X \ LX .

Note, that Lemma 2.2 and 2.3 give the same measure in basically different

coordinate systems.

3. Spherical means on concentric spheres

We call a function on the Lorentzian space even resp. odd, if its repre-

sentation f on Q2
−1 satisfies f(x1, x2, x3) = f(−x1, x2, x3) resp. f(x1, x2, x3) =

−f(−x1, x2, x3). From the symmetry of the spacelike circles centered to points on

the equator we deduce, that the odd functions have zero integral on these spheres.

The timelike spheres centered to points on the equator never meet with the equator,

hence the formulas representing the functions can not depend on the parity of the

functions. Therefore, we restrict the considerations onto the even functions, that

makes the mapping µ essentially one-to-one, but keep in mind that the timelike

formulas are valid for any function.

First we introduce notations for the orbital integrals, that fits to our situation.

For a function f integrable on all the circles Mf(ω, p) denotes its integral over the

circle Ĥ(ω, p) with the Lorentzian arclength measure determined in Lemma 2.2.

We point our attention to the set C∞
c (L2) of infinitely differentiable functions of

compact support. Then by Lemma 2.2 we have

(3.1) Mf(ω̄, p) =

∫

S1

ω̄,p

f
(

ω, arccosh
( p

〈ω, ω̄〉
)) p

√

|p2 − 1|
〈ω, ω̄〉(p2 − 〈ω, ω̄〉2)1/2

dω,

where S1
ω̄,p = {ω ∈ S1 : 0 < 〈ω, ω̄〉 < p}, and we used the coordinates of L2

for parameterizing f . Note that both arguments in the notation of Mf(ω, p) are

Euclidean objects.

We shall frequently use the radially acting differential operators Dt resp. Ds

that is defined on the functions f ∈ C∞
c (L2) as

Dtf =
d

dr

( f(ω, r)

sinh r cosh r

)

and Dsf =
d

dr

( f(ω, r)

sin r cos r

)
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6 Á. KURUSA

Theorem 3.1. For f ∈ C∞
c (L2)

f(ω, 0) = lim
r→0

− sinh r

2
Dt

(

cosh rMf(ω, cosh r)
)

(timelike)

and

f(ω, 0) = lim
r→0

− sin rDs

(

cos rMf(ω, cos r)
)

(spacelike).

Note that sinh r as well as sin r can be replaced with r.

Proof. We deal here only with the timelike case. Formula (3.1) takes the form

Mf(α, p) =

∫ α+π/2

α−π/2

f
(

β, arccosh
( p

cosβ

)) p
√

|p2 − 1|
cosβ(p2 − cos2 β)1/2

dβ,

where we used angles instead of vectors.

The timelike circle Ĥ(α, p) is symmetric to its point closest to the equator,

therefore it is enough to prove for symmetric functions. With this in mind, substi-

tuting cosβ = cosh r
cosh z yields to

Mf(α, cosh r) = 2

∫ ∞

r

f(z)
cosh z sinh r

√

cosh2 z − cosh2 r
dz.

Since cosh2 z−cosh2 r = sinh2 z−sinh2 r, partial integration with f(z)/ sinh z gives

Mf(α, cosh r) = −2 sinh r

∫ ∞

r

( f(z)

sinh z

)′√
sinh2 z − sinh2 rdz.

Now we can differentiate with respect to r and get

(3.4)

− sinh r

2
Dt

(

cosh rMf(ω, cosh r)
)

= sinh2 r cosh r

∫ ∞

r

f(z) cosh z − f ′(z) sinh z

sinh2 z
√

sinh2 z − sinh2 r
dz.

For r < 1 we break up the integral as
∫ ∞

r
=

∫

√
r

r
+

∫ ∞√
r
. For any g ∈ C∞

c (L2)

∣

∣

∣

∣

∣

sinh2 r

∫ ∞

√
r

g(z)

sinh2 z
√

sinh2 z − sinh2 r
dz

∣

∣

∣

∣

∣

≤
∫ ∞

0

|g(z)|dz
(sinh r/ sinh

√
r)2

√

sinh2 √r − sinh2 r
,
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where the right hand side goes to zero as r → 0, therefore we are only interested

in the integration
∫

√
r

r . Changing the variable t = sinh r/ sinh z we see

∣

∣

∣

∣

∣

sinh2 r

∫

√
r

r

g(z)

sinh2 z
√

sinh2 z − sinh2 r
dz

∣

∣

∣

∣

∣

≤
∫ 1

0

|g(arcsinh (
sinh r

t
))

t√
1 − t2

dt.

In case of g(0) = 0 the right hand side goes to zero along r → 0, therefore the only

not vanishing part in (3.4) is

sinh2 r cosh r

∫ ∞

r

f(0) cosh z

sinh2 z
√

sinh2 z − sinh2 r
dz.

The substitution sinh z = sinh r/t gives immediately the desired result.

In a similar way we can show the following generalization of Helgason’s sim-

ilar formula [2], but with some differences. Our formula works in any dimensions

and also works for spacelike spheres in even dimensions. Further, our differen-

tial operator is not invariant, but has half of the rank than Helgason’s invariant

operator.

Theorem 3.2. Let f ∈ C∞
c (Ln). For even dimensions

f(ω, 0) = lim
r→0

(−1)[n/2](n − 3)!!

|Sn−2| D[n/2]
t

(

cosh rMf(ω, cosh r)
)

and for odd dimensions

f(ω, 0) = lim
r→0

(n − 3)!! sinh r

|Sn−2|(−1)[n/2]
D[n/2]

t

(

cosh rMf(ω, cosh r)
)

.

Proof. Observe, that the timelike spheres are rotation symmetric and the operator

M commutes with the rotations around ω. This allows working only with functions

rotation symmetric around ω.

Considering the spacelike spheres in odd dimensions, it turns out, that there

can not exist formulas representing general functions with formulas of this Rie-

mannian style, because only some moments of f appears in Mf . However in even

dimensions formulas can also be obtained.
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8 Á. KURUSA

Theorem 3.3. Let f ∈ C∞
c (Ln). For even dimensions

f(ω, 0) = lim
r→0

(n − 3)!!

|Sn−2| D[n/2]
s

(

cos rMf(ω, cos r)
)

.

The missing result for odd dimension raises the idea to look for other repre-

sentations. We only sketch our results.

4. Spherical means on a restricted set of spheres

We consider the representation of functions by their spherical integrals over

spheres centered to points of the equator. (Note that any spacelike totalgeodesic

can be chosen as equator by the homogeneity of the space L2.) These spheres in

our higher dimensional model are the hyperplanes. We restrict our considerations

onto the even functions, to make the mapping µ essentially one-to-one, but keep

in mind that the timelike formulas remains valid for any function.

We use all the spherical integrals Mf(ω, p), and from now on we think of

Mf(ω, p) as a transform of the function f into a function on the set of spheres

Ĥ(ω, p).

The key is to connect the orbital integral transform M with the exterior Radon

transform on the Euclidean space. We define E
n = R

n \ Bn, where Bn is the unit

open ball.

Theorem 4.2. Let n > 2 and g ∈ C∞
c (En). If f(ω, r) = g(ω, cosh r)| sinh r| then

R̄g(ω̄, p) = Mf(ω̄, p) · 1/2
√

|p2 − 1|
(p 6= 1),

where R̄ denotes the Euclidean Radon transform on R
n.

Proof. First, f is well defined as an even function on Ln. It is well known [2] that

2 · R̄g(ω̄, p) =

∫

S1

g
(

ω · p

〈ω, ω̄〉
) p

|〈ω, ω̄〉|2 dω.

On the other hand, by the higher dimensional analog of formula (3.1) we have

Mf(ω̄, p)

2
√

|p2 − 1|
=

1

2

∫

Sn−1

ω̄,p

f
(

ω, arccosh
( p

〈ω, ω̄〉
)) pn−1

〈ω, ω̄〉n−1(p2 − 〈ω, ω̄〉2)1/2
dω

=
1

2

∫

Sn−1

ω̄,p

g
(

ω
p

〈ω, ω̄〉
)( p2

〈ω, ω̄〉2 − 1
)1/2 pn−1〈ω, ω̄〉1−n

(p2 − 〈ω, ω̄〉2)1/2
dω

that gives the statement immediately.
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Worth to note that g ∈ C∞
c (En) implies f ∈ C∞

c (Ln). Furthermore, if g ∈
S(En) then f ∈ S(Ln), that is, f and all of its derivatives are fast decreasing at

the infinity.

Theorem 4.2 can be used to transfer most of the results known about the

Radon transform on the Euclidean space to the spherical integral transform on

the Lorentzian space. We make the transfer only for the support theorem and the

inversion formula.

Theorem 4.3. If f ∈ C(Ln) (not necessarily even!), f(ω, r) coshk r is bounded for

all k ≥ 0 and for an A > 0 the spherical integrals Mf(ω, r) are zero for r ≥ A then

f is zero for r ≥ A.

Proof. Let g: En → R be g(ω, cosh r) = f(ω, r)/ sinh r. Then R̄g(ω̄, p) =

Mf(ω̄, p) 1/2√
|p2−1|

. Our condition says Mf(ω̄, p) = 0 if p > A. Therefore we

only have to show that g satisfies the conditions of Helgason’s support theorem [2].

To formulate the transferred inversion formula, we need the operator

ΛΦ(ω, p) =











∂n−1

∂pn−1
Φ(ω, p) n odd

i

π

∫ ∞

−∞

∂n−1

∂tn−1
Φ(ω, p)

dt

t − p
n even

for Φ in the Schwartz space of the set of hyperplanes in R
n.

Theorem 4.4. For f ∈ S(Ln)

cf = cosh1−n rM t
( 1

|1 − p2|Λ
( Mf(ω, p)

2
√

|1 − p2|

))

,

where c = (−4π)(n−1)/2Γ(n/2)/Γ(1/2).

Proof. Observe | sinh r|RtF (ω, r) = R̄∗G(ω, cosh r for G(ω, p) = F (ω, p)/|1 − p2|,
where R̄∗ is the Euclidean dual Radon transform. Substitute this and Theorem 4.2

into Helgason’s Theorem 3.4 in [2].

Therefore the inversion is local in odd dimensions contrary the even dimen-

sions, where the reconstruction needs Mf on all the spheres. On the other hand,
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this inversion formula hides the important aspect of the spherical integral trans-

form, namely, that the integrals over the timelike spheres alone make the recon-

struction possible. To prove this, one needs an extensive calculations with the

spherical harmonic expansion of our integral transform, therefore we omit the de-

tails and give only the result, that that represents the functions by their integrals

over timelike spheres via their spherical harmonic expansion. The functions are

expanded into spherical harmonic series like

g(ϕ, p) =

∞
∑

m=−∞
gm(p) exp(imϕ) and g(ω, p) =

∞
∑

ℓ,m

gℓ,m(p)Yℓ,m(ω)

in dimension two and in higher dimensions, respectively. The spherical harmonics

Yℓ,m, of rank m are known to constitute a complete polynomial orthonormal system

in the Hilbert space L2(Sn−1).

Theorem 4.6. For f ∈ S(Ln) we have

(i) for n ≥ 3

fℓ,m(s) = (−1)n−1 Γ(m + 1)Γ(λ)

πn/2Γ(m + n − 2)
δn−1Fℓ,m(s),

where δ = d
ds

(

.
sinh s

)

, λ = (n − 2)/2 and

Fℓ,m(s) = −
∫ ∞

s

(Mf)ℓ,m(cosh r)Cλ
m

(cosh r

cosh s

)(cosh2 r

cosh2 s
− 1

)

n−3

2

sinh s coshn−2 s

coshn−1 r
dr.

(ii) for n = 2

fm(s) = −π
d

ds

∫ ∞

s

(Mf)m(cosh r)
cosh(m arccosh (cosh r/ cosh s))

cosh r
√

cosh2 r/ cosh2 s − 1
dp.

A singular value decomposition is also possible via the spherical harmonic

expansion according to Quinto’s result [5].

In sum, the functions can be recovered from their timelike spherical integral

transform that raises the similar question for the spacelike spherical integral trans-

form. But the spacelike spherical integral transform (Mf)ℓ,m in higher odd dimen-

sions determines only some moments of fℓ,m and therefore the spacelike spherical

integral transform does not allow general exact reconstruction. (One can determine

its null space and range.)

To end, we give the uniqueness result for even dimensions and call attention

that the uniqueness fails in two dimension.
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Theorem 4.7. If f ∈ S(Ln) and n ≥ 4 is even then f ≡ 0 if the spacelike spherical

integral transform of f is zero.
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