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Recovering functions from their integrals
on curves or surfaces

Árpád Kurusa (Hungary)

In this talk, all I want to speak about happen on the two dimensional Euclidean

space. One could allow more generality, but all the interesting features of our subject

appear in the plane, while the formulation remains more natural.

The general framework is the following. Suppose that for each ω ∈ Ω, Ω is a

set of indices, there is a family Γω, we call this a spread, of nonintersecting curves

resp. surfaces gω,t, we call these support curves resp. support surface, in R
2 resp.

R
3 so that Gω = ∪t∈T gω,t is a connected submanifold of R

2 resp. R
3. Further, on

each gω,t there is a measure µω,t so that we can introduce the generalized Radon

transform R by

(1) Rf(ω, t) =

∫

gω,t

fµω,tds

for functions integrable on each gω,t, where ds is the arclength measure on gω,t.

Note that gω,t is a foliation of Gω, and the classical Radon transform defined

on R
2 by Ω = S1, T = [0,∞] and gω,t = {x : 〈x, ω〉 = t}.

When the spreads and measures are known, the most interesting problems are

(a) to invert the transform R, and

(b) to characterize the range and the null space of R.

These are fairly well known by now. Also, a number of results are known in

the more general point of view, when we ask

(c) for what type of the spreads is R invertible,

AMS subject classifications (1980): 44A12

Key words and phrases: Radon transform



Recovering functions / Árpád Kurusa

(d) for what type of the measures is R invertible.

Recently a new direction came into interest. The problem is

(e) to determine the spreads Γω,

(f) and the function f from only the knowledge of Rf .

Obviously the problem (f) depends very much on problem (e), that we call the

identification problem. This will constitute the subject of this talk.

The identification problem has of course great relevance in applications, as in

a number of applications one can measure only integrals. At the same time in the

practice one knows very often at least some rough estimates or symmetry of the

spreads and measures, and also often the functions, we call these test function, or at

least the type of the functions, can be chosen to test the transform R. Anyhow, we

see from (1), that in the identification problem we have much less data than we are

interested in. Therefore a mathematically complete answer should impose very rest-

rictive conditions on the spreads and measures or has to restrict the considerations

onto functions in a small set.

To my knowledge the first result is of Mukhometov [20]. Let D be a compact

domain with a piecewise smooth boundary ∂D, that is parameterized by arclength

with α so that ∂D = {(x(α), y(α)) : α ∈ [0, δ]} in the plane coordinated by (x, y),

where δ is the length of ∂D. Suppose we have a Riemannian structure of the

form g(x,y)(v, w) = r(x, y)〈v, w〉 on Ḋ = D \ ∂D, where 〈., .〉 is the ordinary Euc-

lidean inner product. The curve gα,β is the unique geodesic joining (x(α), y(α))

and (x(β), y(β)) and we suppose also that any two points in Ḋ can be joined by a

unique geodesic. Further necessary assumption is on the geodesic hx,y(ω, t) starting

from (x, y) ∈ Ḋ in direction ω ∈ S1 with arclength t, the existence of a constant

C > 0 so that tC ≤ det | ∂h
∂ω

, ∂h
∂t

|. As measure we take the Riemannian length, so

our definition for the Radon transform gives

(2) Rf(α, β) =

∫

gα,β

fr ds

for, say, continuous functions on D, where ds is the Euclidean arclength measure

on gα,β . Mukhometov’s result is then the following.
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Theorem 1. If r ∈ C4(D), and Rf is known for f ≡ 1, then r, and so all the

spreads are uniquely determined in D.

Applying this result we get immediately the following: Led D be the unit

circle, and R1(α, β) = 2 sin |β−α|
2 . Then the spreads are parallel straightlines. In

[21] Mukhometov generalized this for higher dimensions. Note however, that this

result gives only uniqueness not any reconstruction.

The next result belongs to Natterer [22]. Now the spreads are known to be

straightlines, that we parameterize as gω,t = {(x, y) : xω1 + yω2 = t}, where

ω = (ω1, ω2) ∈ S1 and t ∈ R+. We are interested in the measure and suppose

that it has the form

dµω,t = exp
(

−

∫

g+

ω,t

ν(x, y)ds
)

,

where ν is a smooth compactly supported function on R
2, g+

ω,t is the half line

tω + sω⊥, where s > 0 and ω⊥ = (−ω2, ω1) and ds is the arclength measure. The

result is the following.

Theorem 2. If Rf is known for the unknown function f known to be a finite sum

of Dirac measures, then µω,t(x, y) can be computed up to a multiplicative constant

for all (ω, t) if (x, y) is in the support of f .

Although the class of measures that are covered by this theorem seems to

be quite small there is still not better general result that would cover all these

measures in this reconstructive way. Although this reconstruction is valid only

in the support of f that is a discrete point set of R
2, assuming ν to be rotation

symmetric, this determines µ completely and then by the known results on inverting

the attenuated Radon transform will give also the function f . (This observation

seems to have missed the attention of Natterer.) However, the theorem suffers the

serious disadvantage, that no noise in f is allowed. A noise would be an L2 function,

but this is out of the range of the proof of this theorem.

J. Boman [5] tried to avoid the special conditions imposed on the measure in

Natterer’s result, but unfortunately he lost the reconstruction in exchange. To for-

mulate his result we need to introduce two generalized Radon transform R and R̄

in the usual meaning, like in Natterer’s result, but without specializing the corres-

ponding measures, µ and µ̄.
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Theorem 3. Assume f , g are finite sums of Dirac measures and functions in L2
c(R

2)

and Rf = R̄g. Then the Dirac distributions of f and g have to be concentrated to

the same points and there is a function a on R
2 so that µω,t(x, y) = a(x, y)µ̄ω,t(x, y)

for all (ω, t) if (x, y) is in the support of the Dirac deltas of f .

To get back the lost reconstructibility one should find a description of the

range of R. By now this seems to be almost impossible. Even for constant ν in

Natterer’s special class of measures no characterization of the range is known; only

some necessary conditions are known. On the other hand one should pay attention,

that here noise can occur in the test functions.

All these results show that to have more usable results more additional condi-

tions are necessary. The set of test functions can not in fact further restricted, so

one comes to find conditions on the spreads and measures.

So, I was looking for conditions on the spreads and measures that can guarantee

the reconstructibility of the transform R, i.e. the spreads and measures in whole (!),

meanwhile allows to use test functions with noise. These are found in [17] and now

I would like to present the main results of my work [17].

We work with the spreads Γα, so that Γα is Γ0 rotated around the origin

by angle α. Γ0 consists of support curves g0,r, where r ∈ (0,∞), that are closed,

passing through the origin and have exactly two intersections with each of the circle

of radius ̺ ∈ (0, r) centered to the origin. We assume further, that |Pr| = r for the

point Pr ∈ g0,r farthest from the origin and that g0,r is symmetric with respect to

the straight line, that is, say, the first axis, through Pr and the origin. The curve

gα,r is g0,r rotated around the origin by the angle α.

The conditions imply that in polar coordinates g0,r can be parameterized as

g0,r(̺) = (̺, ϕr(̺)) in the positive (upper) half plane and as g0,r(̺) = (̺,−ϕr(̺))

in the negative (downward) half plane so that |g0,r(̺)| = ̺ ∈ [0, r] and ϕr(̺) is the

angle of g0,r(̺) to the first axis. We assume further that ϕr(̺)√
r−̺

∈ C2({(r, ̺) ∈ R
2 :

0 ≤ ̺ ≤ r}).

The arclength measure on g0,r is
√

1 + ̺2ϕ̇2
r(̺)d̺. Therefore, using polar co-

ordinates, the Radon transform takes the form

RΓf(α, r) =

∫ r

0

(f(α + ϕr(̺), ̺) + f(α − ϕr(̺), ̺))
√

1 + ̺2ϕ̇2
r(̺) d̺.
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In [18] I showed that an invertible Radon transform should have, in a certain

sense, support curves like the above defined ones, without the symmetry, therefore

the conditions are not as restrictive.

Theorem 4. If all the elements of Γ0 are similar to each other, and RΓf(ω, r) =

F (ω, r) is known for an unknown function f known to be a sum of finitely many

Dirac measures and an L2 function, then Γ can be computed.

Although this is not as general result than the previous one of Boman, but it

covers a large set of problems in practice and is reconstructive. The only disadvan-

tage we can mention is that the reconstruction needs infinitely many trying in the

computation (not in the measuring!). Similar result is proved in [17] for measures

on the straightlines:

Theorem 5. If µω,r(x, y) = ν(
√

x2 + y2/r) for a smooth function ν, and

Rf(ω, r) = F (ω, r) is known for an unknown function f known to be a sum of

finitely many Dirac measures and an L2 function, then µ can be computed.

The idea behind these results is that for the function f =
∑m

i=1 δPi
+ ℓ, where

ℓ ∈ L2(R2) and δPi
is the Dirac measure at Pi ∈ R

2, we have that

〈F, h〉 = 〈Rµf, h〉 = 〈f, R∗
µh〉 = 〈f, Rµ∗h〉 =

m
∑

i=1

Rµ∗h(Pi) + 〈Rµℓ, h〉

for any function h ∈ L2(R2), where µ∗ is the measure dual to µ. Observing the

functions

h(x,y),j(x
′, y′) =

{

0 if (x′ − x)2 + (y′ − y)2 > 1/j2,

j if (x′ − x)2 + (y′ − y)2 < 1/j2,

one sees that lim〈Rµℓ, h(x,y),j〉 = 0 for all (x, y) ∈ R
2 as j → ∞. The limit

lim Rµ∗h(x,y),j(Pi) is not zero if and only if (x, y) is on the sphere with diameter

OPi. For these, we find

lim
j→∞

〈F, h(x,y),j〉 = ν(|Pi|/
√

x2 + y2)

that determines µ.

Our following result is of interest when test function can not be chosen, but

from some other considerations the existing test function can be determined.
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Theorem 6. If all the elements of Γ are similar to each other, then it is determined

by knowing F (ω̄, r) = RΓf(ω̄, r) together with the function f ∈ C2(R2) ∩ L2(R2)

that is zero in a neighborhood of the origin and has no vanishing negative moment.

Proof. Let If(X) = |X|
∫

S1 f(|X|ω) dω. Then RΓIf(ω̄, r) = IRΓf(ω̄, r) =

IF (ω̄, r), hence we can suppose f to be radial.

We have

RΓf(rω̄) = 2

∫ r

0

f(̺ω̄)

√

1 +
̺2

r2
ϕ̇2

(̺

r

)

d̺,

where ω̄ is a unit vector and ϕ ≡ ϕ1. Substituting ̺ = rt we obtain

r−1RΓf(ω̄, r) = 2

∫ 1

0

f(rtω̄)
√

1 + t2ϕ̇2(t) dt.

Integration by r−k, where k ≥ 1, over [0,∞] results in

∫ ∞

0

r−1−kRΓf(ω̄, r) dr = 2

∫ ∞

0

̺−kf(̺ω̄) d̺×

×

∫ 1

0

tk−1
√

1 + t2ϕ̇2(t) dt.

Since the negative moments of f are not zero, this gives the moments of

v(̺) =
√

1 + ̺2ϕ̇(̺)

and this finishes the proof. �
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