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Boundary rigidity of projective metrics 1. Generalized Radon transforms

Definition of generalized Radon transforms
Let Sw be a set of hypersurfaces Sw,t in Rn

such that w ∈ Sn−1 and t ∈ [0,∞).

The Radon transform R
S,µ

of functions
f : Rn → R integrable on each Sw,t is de-
fined by

(1.1) R
S,µf (w, t) =

∫
Sw,t

f (x)µw,t(x) dx,

where dx is the natural surface measure
on Sw,t and µw,t is a strictly positive contin-
uous function on Sw,t that depends contin-
uously on w and t.

In this definition, the hypersurfaces Sw,t
are called petals, set S =

⋃
w∈Sn−1 Sw

is called flower and µw,t is called
the weight on the petal Sw,t.

The “classic” Radon transform is R
H ,1, where

H = {Hw,t : w ∈ Sn−1, t ∈ [0,∞)} is the flower of
the petals Hw,t = {x : 〈x,w〉 = t} with weight 1.

O
tw

Hw,t

The “dual” Radon transform is R
S,1, where S =

{Sw,t : w ∈ Sn−1, t ∈ [0,∞)} is the flower of the
petals Sw,t = {x : 〈tuw − x, x〉 = 0} with weight 1.

O

tw Sw,t
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Boundary rigidity of projective metrics 1. Generalized Radon transforms Characterizations and identifications

Characterizations and identifications

Characterizing by invariances. Quinto proved in [22] that translation invariant Radon
transforms have exponential weight. (See also [12] for a slightly different result.) Quinto
proved in [23] that rotationally invariant Radon transforms have rotational weight. (See also
[13] for general rotational flower.) Hertle characterized the “classic” Radon transform in [8]
as the continuous, rotationally, dilationally, translationally invariant operator. See also [11].

Identifying by image. Hertle proved in [9] that for exponential Radon transform R
H ,µ

the
map (f , µ) 7→ R

H ,µ
f is injective on the set of the compactly supported, not radial distribu-

tions f . Solmon computed the weight from R
H ,µ

f in [24].

Identifying by Dirac-test. Following Natterer [18, 19] and Boman [4], it is proved in [13],
that a conformal, differentiable and not self-tangent flower S is determined by F(w̄, r) =
R
S,µ

f (w̄, r) if the unknown function f is of the form f =
∑m

i=1 δxi + g, where g ∈ L2(Rn) and δxi

is the Dirac measure at point xi. Further, µw,r(xi) can be calculated if xi ∈ Sw,r is satisfied.

Identifying by a measurement [13]. A conformal Radon transform R
S,µ

is reconstructible
by means of f and F = R

S,µ
f , if f ∈ L2(Rn) is radial without vanishing moments and is of

compact support, and either the flower or the weight is known and symmetric.
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Boundary rigidity of projective metrics 2. X-ray transform and boundary-rigidity

Identification of X-ray transform by a measurement
LetM ⊆ Rn be a compact connected domain. Let C be a set of curves inM, such that two
curves intersect each other in at most one point, and there is a unique curve CX,Y ∈ C for
any two different points X,Y ∈ M that contains both points X,Y.
The X-ray transform XC,µ maps a function f : M → R integrable
on each curve of C into function XC,µf : ∂M2 → R such that

(2.1) XC,µf : ∂M2 3 (P,Q) 7→ XC,µf (P,Q)=
∫
CP,Q

f (x) dµP,Q(x),

where dx is the natural arc-length measure and µP,Q is a distri-
bution on CP,Q. We call the curves petals, C the flower, and µP,Q the weight.

∂M
P

Q M

Identification. Mukhometov proved in [16, 17] that function XC,11 determines the flower if
the petals are the geodesics of a Riemannian metric conformal to the Euclidean metric.

Michel, Uhlman et al. generalized this to Riemannian manifolds with boundary [15, 20, 25],
etc., but without conformality rigidity is up to diffeomorphism.
Contemplating these results the feeling comes that the system of the petals may play more
important role than that the differentiability allows us to see. This motivated the investigation
of the boundary-metric of projective metrics [14], where the petals, i.e. the geodesics, are
known, but there is no differentiability restriction on the metric.

The extension and unicity theorems presented here are the results of joint work with Tibor Ódor.
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Boundary rigidity of projective metrics 3. Projective metrics Definition and examples

A projective metric is a continuous metric defined on a compact1 convex domainM of the
Euclidean space such that its geodesics are the chords ofM.

Here are two projective metrics for instance.

Hilbert metric. dM : M×M→ R is defined by

dM(X,Y) =

0, if X = Y ,∣∣∣ln(X,Y; XM,YM)
∣∣∣/2, if X , Y ,

whereM is an open, strictly convex, bounded domain
in Rn and XMYM =M∩ XY.

∂M

M
YM

XM X

Y

∂IX

XI

X
YI

Y Minkowski metric. dI : Rn × Rn → R is defined by
dI(X,Y) = (Y ,YI ; X), where I, the indicatrix, is an open,
strictly convex, bounded, centrally symmetric domain in
Rn, IX is its translate symmetric in X, and XIYI = IX∩XY.

By Beltrami’s theorem [3], if a projective metric is Riemannian than it has constant curva-
ture (Euclidean, hyperbolic or elliptic metric). (Non hyperbolic Hilbert metrics are Finslerian.)

According to the solution of Hilbert’s fourth problem, the class of the projective metrics is re-
ally huge [21, 1, 2, 26], and the projective metrics can be generated by the BB-construction.

1Elliptic case is intentionally left out from the definition.
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Boundary rigidity of projective metrics 3. Projective metrics Blaschke–Busemann construction

BB-construction of projective metrics I
M is a convex non-empty domain in Rn. P∗ denotes the set of hyperplanes through point P.
A measure µ : 2M

∗

→ R+ is p-admissible if

1 µ(P∗) = 0 (µ is definit),

2 µ
(⋃

X∈PQ X∗
)
> 0 (µ is positive), and

3 µ
(⋃

X∈PQ X∗ ∩
⋃

Y∈QR Y∗
)
> 0 (µ is strict)

for every non-collinear points P,Q,R ∈ M.

P Q

R

Blaschke–Busemann construction [6]. If µ : 2M
∗

→ R+ is a p-admissible measure, then
the function d : M×M→ R+ defined by d(P,Q) = µ(

⋃
X∈PQ X∗)/2 is a projective metric.

Proof. If µ : 2M
∗

→ R+ is a p-admissible measure, then d(P,Q) = µ(
⋃

X∈PQ X∗)/2 is positive
and vanishes if and only if P ≡ Q. Moreover,

2d(P,Q) + 2d(Q,R) = µ
( ⋃

X∈PQ

X∗ ∪
⋃

Y∈QR

Y∗
)
= µ

( ⋃
Z∈PR

Z∗
)
+ µ

({
XY : X ∈ PQ ∧ Y ∈ QR

})
= 2d(P,R) + µ

( ⋃
X∈PQ

X∗ ∩
⋃

Y∈QR

Y∗
)
> 2d(P,R)

is the triangle inequality.
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Boundary rigidity of projective metrics 3. Projective metrics Blaschke–Busemann construction

BB-construction of projective metrics II
Lines in M∗ correspond to the complement of M#, the poles of straight lines avoiding M,
through a polarity ε, because the pole (point) ε(e) of every straight line e through a point P
lays on the polar (straight line) ε(P) of P. M# is a bounded open non-empty convex domain.

e
f

P

$(P)

Q

ε(P)
ε(e)

ε(f )

O

M

M#

A segment PQ corresponds to the two-edge
ε(PQ

∗
) =

⋃
X∈PQ

ε(X∗) =
⋃

X∈PQ

ε(X) =: E(ε(P), ε(Q)).

It is bounded by the union of the polar lines p = ε(P) and q = ε(Q).
So, we have
(3.1) µ ◦ ε(E(ε(P), ε(Q))) = µ(PQ

∗
).

M#

E(p, q)

E(p, q)

p

q

ε(PQ)

Notice that in the Blaschke–Busemann construction this is just d(P,Q), so we are looking

for the proper measure onM#.
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Extension theorem (in plane)

Extending boundary-metrics to projective metrics I
Due to the triangle inequality, and to that the diagonal point X =
PR ∩ QS of any convex quadrangle �(PQRS) inM falls inM, every
projective metric d : M×M→ R+ satisfies the quadrangle inequality

(3.2) d(P,R) + d(Q, S) − d(P, S) − d(Q,R) ≥ 0,
where equality happens only if �(PQRS) degenerates to a segment.

M X

PQ

R S

Extension theorem [14]. If a continuous bounded metric δ : ∂M× ∂M → R+ satisfies the
quadrangle inequality (3.2) for any convex non-degenerate quadrangle �(PQRS) inscribed
in ∂M, then it is the restriction of a projective metric d : M×M→ R+.

Sketch of proof. A p-admissible measure µ : 2M
∗

→ R+ needs to be constructed such that
δ(P,Q) = µ(

⋃
X∈PQ X∗)/2 for every points P,Q ∈ ∂M.

We first construct a set function ν on P2 that will generate µ ◦ ε.

For a chord PQ inscribed in ∂M, we set
(3.3) ν(E(ε(P), ε(Q))) := δ(P,Q).
This is necessary by (3.1).
Two-edges outside M# are called support
two-edges if their bounding edges are tangent
toM#.

M#

E(p, q)

E(p, q)

p = ε(P)

q = ε(Q)

ε(PQ)
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Extension theorem (in plane)

Extending boundary-metrics to projective metrics II
Let 4(ABC) be a triangle with side-lines p = AB = ε(P),
q = BC = ε(Q), and r = CA = ε(R), such that E(p, q),
E(q, r), and E(r, p) support M#. Observe that outside
lines p, q, r we have 2χ

4(ABC) = χ
E(p,q) +χE(q,r) −χE(r,p).

Therefore, using (3.3), we define

(3.4) ν(4(ABC)) := (δ(P,Q) + δ(Q,R) − δ(P,R))/2,
which is non-negative by the triangle inequality. Trian-
gles considered here are called support triangles.

M#

E(p, r)

E(p, r)

E(p, q)

E(q, r)

p

q
r

AB

C

Let �(ABCD) be a convex quadrangle with side-lines
p = AB = ε(P), q = BC = ε(Q), r = CD = ε(R), and s =
DA = ε(S), such that E(p, q), E(q, r), E(r, s), and E(s, p)
support ∂M#. Let the diagonal points of �(ABCD) be
X = AC ∩ BD, Y = p ∩ r, and Z = q ∩ s. Since the side-
lines of triangles 4(YBC), 4(ZDC), 4(YAD), and 4(ZAB)
supportM#, using (3.4), we define

p

r q

s
Y Z

C

D
A

B

M#

2ν(�(ABCD)) := ν(4(YAD)) + ν(4(ZAB)) − ν(4(YBC)) − ν(4(ZCD))

= δ(P,Q) + δ(R, S) − δ(R,Q) − δ(P, S)
(3.5)

which is non-negative by the quadrangle inequality. Quadrangles considered here are called
support quadrangles.
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Extension theorem (in plane)

Extending boundary-metrics to projective metrics III
Let Q be the set of the quadrangles all of whose side-lines support M#. Let R be the
smallest semiring containing Q. Then the sets in R are the union of mutually disjoint closed
polygons all of whose side lines supportM#.
As all side-lines of a closed polygon P ∈ R
support M#, the side-lines cut P into finitely
many mutually disjoint quadrangles Qi ∈ Q
(i = 1, . . . , n). So we define
(3.6) ν(P) :=

∑n
i=1 ν(Qi).

As every set R ∈ R is the union of such
mutually disjoint closed polygons Pj ∈ R
(j = 1, . . . , `), we can finish defining ν by
(3.7) ν(R) :=

∑`
j=1 ν(Pi).

Let r and q be the supporting lines of M#

through C <M#. One of the two-edges, say
EC, with vertex C containsM#. Let E†C be the
quadrant in EC that does not containM#. Let
s be a tangent ofM# that contains C andM#

on the same side. Let p , s be the tangent of
M# parallel to s. Let the pointed lane LC;s be
the intersection of E†C and the strip between
s and p. Let D∞ = r ∩ s and B∞ = q ∩ p.

q

r

M# s

p

D∞

B∞ LC;s

C

E
†

C

We claim that νC;s=ν�RC;s , where RC;s= {R : R3R⊂LC;s} is extendible to a measure on LC;s.
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Extension theorem (in plane)

Extending boundary-metrics to projective metrics IV
Set-function νC;s is clearly additive and σ-subadditive. Its σ-finiteness is needed.
Let points Di ∈ CD∞ and Bi ∈ CB∞ (i = 1, . . . ,∞) be
such that

−−−→
CB∞ = i

−−−−→
BiB∞ and

−−−→
CD∞ = i

−−−−→
DiD∞, respectively.

Let si = ε(Si) and pi = ε(Pi) be the tangent lines ofM#

such that Di ∈ si , r and Bi ∈ pi , q, respectively. Let
Ai = pi ∩ si. As

⋃k
i=1 �(AiBiCDi) = �(AkBkCDk), and⋃∞

i=1 �(AiBiCDi) = LC;s, we obtain

q

r

s

p

D∞

B∞
LC;s

C

E
†

C

Di

Bi

Ai

2νC;s(LC;s)=2 lim
k→∞

νC;s(�(AkBkCDk))=2 lim
k→∞

ν(�(AkBkCDk))

= lim
k→∞

(δ(Pi,R)+δ(Q, Si)−δ(Pi, Si)−δ(Q,R))=δ(P,R)+δ(Q, S)−δ(P, S)−δ(Q,R)<∞,

where P = limk→∞ Pk, and S = limk→∞ Sk, by the continuity of metric δ, and q = ε(Q),
r = ε(R), p = ε(P), s = ε(S).
Thus, by Charatodory’s [10, Theorem 1.53], set function νC;s extends to a σ-finite measure
µC;s on σ(RC;s), the set of the Borel sets in LC;s.

Observe that µC;s(�(ABCD)) = ν(�(ABCD)) for every quadrangle �(ABCD) in ring RC;s,
hence every measure µC;s takes the same value on every quadrangle �(ABCD) in the com-
mon domain, so all such measures are equal on every Borel set in the common domain.
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Extension theorem (in plane)

Extending boundary-metrics to projective metrics V

Now we can define the measure µ requested in the theorem as follows:
Given a Borel set, divide it to disjoint parts so that every part falls in a setLC;s, then measure
every such part by the appropriate measure µC;s, and sum up the values.

To finish the proof we only have to check that δ is a restriction of the projective metric d
defined from µ by the Blaschke–Busemann-construction.
Let �(ABCD) be a convex quadrangle with side-lines p = AB = ε(P), q = BC = ε(Q),
r = CD = ε(R), and s = DA = ε(S), such that E(p, q), E(q, r), E(r, s), and E(s, p) support
∂M#. Observe that

δ(P,Q) + δ(R, S) − δ(R,Q) − δ(P, S)

= 2ν(�(ABCD)) = 2νC;s(�(ABCD)) = 2µC;s(�(ABCD)) = 2µ(�(ABCD))

= d(P,Q) + d(R, S) − d(R,Q) − d(P, S).
where the first and last equation is proved by the derivation of (3.5). Letting Q → R and
S → P in this equality, the continuity of δ and d implies 2δ(P,R) = 2d(P,R) that completes
the proof.

Notice: The unicity of the projective metric does not follow directly from the unicity part of
Caratéodory’s theorem, as the unicity of the definition of the basic values of ν is not proven.
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Uniqueness theorems (in space)

Boundary-rigidity of projective metrics I
As a projective metric is projective metric on any plane section of its domain, the following rigidity results are valid in any dimension.

Boundary-rigidity [14].
A projective-metric d:M×M→R+ is determined by its boundary-metric δ = d�∂M.

Sketch of proof. By the Extension Theorem, we have a p-admissible measure µ : 2M
∗

→

R+, such that d(P,Q) = µ(E(ε(P), ε(Q))). So we only need to determine that µ.

Following (3.3), (3.4) and (3.5) we can calcu-
late µ for two-edges, triangles and quadran-
gles with side-lines supportingM#:

2µ(E(ε(P), ε(Q))) = δ(P,Q)

2µ(4(ABC)) = δ(P,Q) + δ(Q,R) − δ(P,R),

2µ(�(ABCD))

= 2(δ(P,Q) + δ(R, S) − δ(R,Q) − δ(P, S)),

where P,Q,R, S ∈ ∂M.

Let Q be the set of the convex quadrangles
all of whose side-lines support M#. Let R
be the smallest semiring containing Q. Then
the sets in R are the union of mutually disjoint
closed polygons all of whose side lines sup-
port M#. As all side-lines of a closed poly-
gon P ∈ R support M#, the side-lines cut P
into finitely many mutually disjoint quadran-
gles Qi ∈ Q (i = 1, . . . , n).

So we have µ(P) :=
∑n

i=1 µ(Qi). As every set R ∈ R is the union of such mutually disjoint
closed polygons Pj ∈ R (j = 1, . . . , `), we also have µ(R) :=

∑`
j=1 µ(Pi). Since µ is a measure,

and it is σ-finite in every pointed lane LC;s, it is determined uniquely by its values on R due
to the unicity part of Charatodory’s [10, Theorem 1.53].
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Boundary rigidity of projective metrics 3. Projective metrics Boundary-metric Uniqueness theorems (in space)

Boundary-rigidity of projective metrics II
Restricting the boundary metric to smaller set of points gives sharper geometric views. Let
N be a compact convex domain in the interior ofM.

We can localize the Boundary-rigidity Theorem. . .

Theorem [14]. A projective-metric d : M ×M → R+
is determined on N by its restriction on pairs (P,Q) ∈
∂M× ∂M such that PQ ∩ N , ∅.

The “peeling argument” of [25] in a way.

Theorem [14]. A projective metric d : M×M→ R+ is
determined onM\N by its restriction on pairs (P,Q) ∈
∂M× ∂M such that PQ ∩ N = ∅.

Let A be a connected open arc in ∂M.

Theorem [14]. A projective metric d : M ×M → R+
is determined on ConvA by its restriction on pairs
(P,Q) ∈ A × ∂M.
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Boundary rigidity of projective metrics 4. Discussion

A bit more generality
Theorem. Let C1 and C2 be systems of curves in the compact domain N such that

1 each curve C in C1 ∪ C2 is injectively parameterized on a closed interval [a, b], and
C(a),C(b) ∈ ∂N ;

2 there is exactly one curve C ∈ Ci (i = 1, 2) through any two given distinct points ofM;

3 the systems C1 and C2 fulfill the Desargues property.

If there are two metrics d1 and d2 on N such that C1 and C2 are their respective sets of
geodesics, and d1 ≡ d2 on ∂N2, then there is a homeomorphism χ : N → N such that
d2 ≡ d1 ◦ (χ, χ).

For, let M lay in the plane z = 0 of the space R3, and choose a homeomorphism ψ that
makesN the unit circular disc of plane z = 0. Project ψ(M) onto the upper half S2

+ of the unit
sphere S2 by the projection$ : (x, y, 0) 7→ (x, y,

√
1 − x2 − y2). Project S2

+ from the origin O =
(0, 0, 0) onto the plane z = 1 with $̂ : (x, y,

√
1 − x2 − y2) 7→ (x/

√
1 − x2 − y2, y/

√
1 − x2 − y2, 1).

On the plane z = 1 the image curves of Ci (i = 1, 2) satisfy the condition of Busemann’s
[5, (11.2) Theorem], so plane z = 1 can be metrized as a straight G-plane Gi so that the
curves in $̂($(ψ(Ci))) are the geodesics of di ◦ ($̂ ◦$ ◦ ψ, $̂ ◦$ ◦ ψ) (i = 1, 2). From this,
Busemann’s [5, (13.1) Theorem], gives that Gi can be mapped topologically on an open
convex domainMi ⊂ R

2 in such a way that each geodesics in Gi goes into the intersection
ofMi with a line in R2.
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Identifying X-ray transforms: the boundary-distance rigidity of projective metrics
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Identifying and characterizing unknown generalized Radon transforms by some knowledge about there
behavior is a classical subject (see for example only some works of E. T. Quinto, A. Hertle, D. C. Sol-
mon, F. Natterer, J. Boman, etc.). Identifying the Radon transform that integrates appropriate functions
on the geodesics of a compact, simple Riemannian manifold with boundary, is a subject researched
for a long time (see for example only some works of G. Herglotz, Ju. E. Anikonov, V. G. Romanov,
R. G. Mukhometov). It revived nowadays in some important new results, called the boundary-distance
rigidity of Riemannian manifolds, due to the works of R. Michel, C. Croke, G. Uhlmann, A. Vasy, P. Ste-
fanov, etc..
Contemplating these results the feeling comes that the properties of the system of the curves over
which the integration is performed probably play more important role than what differentiability allows
to see. This feeling motivated the investigation of the boundary-metric of projective metrics.
A projective metric is a continuous metric defined on a convex, not necessarily proper subsetM of the
Euclidean space such that the geodesics are the chords of M. The class of these metrics is really
huge (this was observed by H. Busemann), but, by Beltrami’s theorem, the only Riemannian projective
metrics are those that have constant curvature.
Theorem. (Á. K. & T. Ódor, 2018) Let M be a compact convex non-empty domain in the plane. If a
continuous bounded metric δ : ∂M× ∂M→ R+ satisfies the quadrangle inequality

δ(P,R) + δ(Q, S) − δ(P, S) − δ(Q,R) ≥ 0
for any convex non-degenerate quadrangle �(PQRS), then δ uniquely extends to a projective metric
d : M×M→ R+.
The proof basically follows Busemann’s integral geometric idea to generate all projective metrics from
measures on the Grassmannian by the Crofton formula. Then the uniqueness comes from the unique-
ness part of Carathéodory’s extension theorem.
Unicity in the theorem remains valid in any dimension due to uniqueness in every plane section.
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Structureof this talk

1 Generalized Radon transforms
Characterizations and identifications

2 X-ray transform and boundary-rigidity

3 Projective metrics
Definition and examples
Blaschke–Busemann construction
Boundary-metric

Extension theorem (in plane)
Uniqueness theorems (in space)

4 Discussion
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