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Projective-metric spaces with Ceva or Menelaus property 1. Projective-metric spaces Introduction

In todays’ language Hilbert’s IV. problem [8]
was to give all the metrics, the projective met-
rics [6], on every projective space Pn, n ∈ N,
that satisfy the strict triangle inequality, and
then investigate those geometries given by
these metrics.

Hamel [9] proved that, according to the do-
main D of the projective metric d, there are
exactly three kinds of them:

hyperbolic type (D ( Pn \ Rn convex)
parabolic type (D = Pn \ Rn) and
elliptic type (D = Pn) .

A pair (D, d) of an open convex domainD and
a projective metric d : D × D → R+ is called
projective-metric space if the geodesics (the
chords of ∂D) are isometric to a Euclidean cir-
cle (for elliptic type) or to a Euclidean straight
line (for the straight types, i.e. either the
parabolic or the hyperbolic type).

Spaces of constant curvature show that there
are important projective-metric spaces.

Kn
1

Kn
0

Kn
−1µ̃

The size function νκ : R+ → R is such that
νκ(r)Sn−1 is isometric to a metric sphere of ra-
dius r > 0 in Kn

κ . The projection function
µκ : [0, ı̊κ) → R+ gives the geodesic correspon-
dence µ̃κ : ExpO(rω) 7→ µκ(r)ω.

Kn
κ κ νκ µκ ı̊κ

Hn −1 sinh r tanh r ∞

Rn 0 r r ∞

Sn (Pn) +1 sin r tan r π/2

.

Here we identified the space TOK
n
κ with Rn by the natural way,

and used ω ∈ Sn−1 in both senses.
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Projective-metric spaces with Ceva or Menelaus property 1. Projective-metric spaces Examples and question

Blaschke [2] proved that Crofton’s for-
mula [7] gives projective metrics from
measures on the Grassmannian.

Busemann conjectured [4] that all projec-
tive metrics can be constructed in this
way. This was first proved by Pogorelov
[13] and Szabó [14].

Beltrami’s theorem [1] implies that the
only Riemannian projective metrics are
those of constant curvature.

The class of projective metrics and the
class of projective-metric spaces are
both so huge. Busemann noticed [5] that
“... the second part of [Hilbert’s] problem
... has inevitably been replaced by the in-
vestigation of special, or special classes
of, interesting geometries.”

Our general goal is to
characterize the interesting geometries

among projective-metric spaces.
This time we investigate the validity of the
theorems of Ceva and Menelaus.

Hilbert metric d : D×D → R is defined by

d(X,Y) =

0, if X = Y ,
1
2

∣∣∣ln(X,Y; DX ,DY )
∣∣∣, if X , Y ,

where D is an open, strictly convex, bounded
domain in Rn and DXDY = D∩ XY.

∂D

DX

DY

X

Y

∂IX

IX

X
IY

Y

Minkowski metric dI : Rn ×Rn → R is defined
by d(X,Y)= (Y , IY ; X) , where I, the indicatrix, is
an open, strictly convex, bounded domain in Rn

symmetric at O, IX = I+
−−→
OX, and IXIY = IX∩XY.

Elliptic metric d : Pn × Pn → R is defined by

d(X,Y)=arccos |〈
−−→
OX,
−−→
OY〉| , where the points of

Pn are the diagonal point pairs of Sn.
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Projective-metric spaces with Ceva or Menelaus property 1. Projective-metric spaces Ceva and Menelaus property

Although the theorems of Ceva and Menelaus basically belong to affine geometry, they can be formulated by the metric just as well.
Below, if the projective-metric space is of elliptic type, then it is so meant that a straight line was removed a priori.

Let A,B be different points in a projective-metric space (D, d), and let C ∈ (AB ∩D) \ {B}.
A BC A B C

Then the metric ratio and the size-ratio of the triplet (A,B; C) are

〈A,B; C〉d =

 d(A,C)
d(C,B) , if C ∈ AB,
−

d(A,C)
d(C,B) , otherwise,

and 〈A,B; C〉◦d =

 ν(d(A,C))
ν(d(C,B)) , if C ∈ AB,
−
ν(d(A,C))
ν(d(C,B)) , otherwise,

respectively,

where ν is the size function of the hyperbolic, Euclidean, or elliptic space according to the
type of (D, d). Observe that in a constant curvature space Kn a size-ratio 〈A,B; C〉◦d is the
affine ratio of the orthogonal projections of points A,B,C into the tangent space TCK

n.

By a triplet (Z,X,Y) of a non-degenerate triangle ABC4 we
mean three points Z, X and Y being respectively on the straight
lines AB, BC and CA. It is called

a Ceva triplet if lines AX, BY and CZ are concurrent, and
a Menelaus triplet if Z, X and Y are collinear.

A 3-tuple (α, β, γ) of real numbers is
of Ceva type if α · β · γ = +1, and
of Menelaus type if α · β · γ = −1.

A B

C
XY

Z

A B

C
X

Y

Z

The Ceva or Menelaus property of a projective-metric space means that any triplet (Z,X,Y)
of any non-degenerate triangle ABC4 is Menelaus or Ceva if and only if the 3-tuple
(〈A,B; Z〉◦d, 〈B,C; X〉◦d, 〈C,A; Y〉◦d) is of Menelaus or Ceva type, respectively.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces

A projective-metric space is called Cevian or Menelausian if it has the appropriate property.
Known examples are the Minkowski geometries, as the size-function is the identity, and the
constant curvature spaces, where appropriate trigonometry applies [12].

Non-Cevian and non-Menelausian spaces are the non-hyperbolic Hilbert geometries1. This
was proved in [10, Theorem 3.1] by showing that both the Ceva and the Menelaus properties
fail for some triangles if the boundary of the Hilbert geometry is not an ellipsoid.

Lemma. If five collinear points A,R,Z,Q,B
in a Cevian projective-metric space satisfies
(Z,A; R)(B,Z; Q)(A,B; Z) = 1 in order A ≺
R ≺ Z ≺ Q ≺ B, then
(2.1) 〈Z,A; R〉◦d〈B,Z; Q〉◦d〈A,B; Z〉◦d = 1.

Lemma. If five collinear points Q,Y ,X,R,Z
in a Menelausian projective-metric space
satisfies (X,R; Z)(R,Q; X)(Q,X; Y) = −1 in
order Q ≺ Y ≺ X ≺ R ≺ Z, then
(2.2) 〈X,R; Z〉◦d〈R,Q; X〉◦d〈Q,X; Y〉◦d = −1.

A B

C

XY

Z
M

R Q

m

A B

C

XY

Z
R

Q

Relabeling the points Q ≺ Y ≺ X ≺ R ≺ Z as Q 7→ B, Y 7→ Q, X 7→ Z, R 7→ R, and Z 7→ A
shows that (2.2) is equivalent2 to (2.1).

1We say that a Hilbert geometry is hyperbolic or is the hyperbolic geometry if it is a Cayley–Klein modell of the hyperbolic geometry.
2By projective duality it is not a surprise that the Ceva and the Menelaus properties boil down to the same equation.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Characterization

Theorem. (Á. K. 2019 [11]).

A projective-metric space is Cevian or Menelausian if and only if

it is a Cayley–Klein model of the hyperbolic geometry, or

it is a Minkowski geometry, or

it is the elliptic geometry.

For proving this result we use the equivalency

(2.3)
−→
ZB −

−−→
ZQ

−→
ZA −

−→
ZR

−→
RZ
−−→
ZQ

−→
AZ
−→
ZB
= 1 ⇔

ν(d(Z,B) − d(Z,Q))
ν(d(A,Z) − d(R,Z))

ν(d(R,Z))
ν(d(Z,Q))

ν(d(A,Z))
ν(d(Z,B))

= 1,

that follows from (2.1) by the additivity of the metric d. Although this equivalency is quite dif-
ferent in every type of the projective-metric spaces, each case leads to Cauchy’s functional
equation [15].

As a general setup we parameterize the five collinear points A ≺ R ≺ Z ≺ Q ≺ B by the

linear function P : R → RQ so that Z = P(0), A = P(a), R = P(r), Q = P(q), B = P(b), where

a < r < 0 < q < b.

A
a

R
r

Z
0

Q
q

B
b

P(s)
s

Further, we introduce ` : RQ→ R defined by `(s) = ν(d(P(s),Z)).
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Elliptic case

Cevian (D, d) is of elliptic type.
The geodesics of a projective-metric space of elliptic type have equal lengths, so we can
set their length to π by simply multiplying the projective metric with an appropriate positive
constant. Hence ν(·) = sin(·), and so `(s) = sin(d(P(s),Z)).

Equivalency (2.3) with the addition formulas for sine give
b − q

b
−a

r − a
−r
q
= 1 ⇔

`(b) cos(d(Z,Q)) − cos(d(Z,B))`(q)
`(a) cos(d(R,Z)) − cos(d(A,Z))`(r)

`(r)
`(q)

`(a)
`(b)

= 1.

After some easy simplifications this becomes

(2.4)
1
q
−

1
b
=

1
a
−

1
r
⇔ cot(d(Z,Q)) − cot(d(Z,B)) = cot(d(R,Z)) − cot(d(A,Z)).

Letting b → ∞ and a → −∞ implies that q → −r by the left-hand equation of (2.4). The
right-hand equation of (2.4) gives that cot(d(Z,Q)) = cot(d(R,Z)), hence d(Z,Q) = d(R,Z).
Thus, q = −r is equivalent to d(Z,Q) = d(R,Z), hence ` is an even function.

Let function f : R→ R+ be defined by f (x) := cot(d(Z,P(x))). Then (2.4) reads as

f
( abr
ar + br − ab

)
= f (b) + f (r) − f (a).

Putting r = −b (hence accepting a < −b too!), this gives

(2.5) f
( ab
2a + b

)
= 2f (b) − f (a),

because f is an even function due to the evenness of `.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Elliptic case

Define the odd function

g(x) =

 f (1/x), if x > 0,
−f (1/x), if x < 0.

Then, as 2a + b < a < 0 < b, (2.5) gives

(2.6) g
(2
b
+

1
a

)
= 2g

(1
b

)
+ g

(1
a

)
.

For the moment let b = −a/2. Then (2.6) gives g
(
−3
a

)
= 2g

(
−2
a

)
+ g

( 1
a

)
. So g(0) = 0 follows

from a → −∞ by the continuity of g. Now, a → −∞ in (2.6) gives by the continuity of g that
g(2/b) = 2g(1/b). Substituting this into (2.6) we arrive at Cauchy’s functional equation [15]
for the continuous function g, so we obtain that g(x) = cx for some c > 0 and every x. By the
definition of g and f this gives d(P(s),P(0)) = | arctan(cs)| which implies c = 1.

This proves the theorem for projective-metric spaces of elliptic type.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Parabolic case

Cevian (D, d) is of parabolic type.
We have ν(·) = ·, so `(s) = d(P(s),Z), hence (2.3) gives

b − q
b

−a
r − a

−r
q
= 1 ⇔

`(b) − `(q)
`(a) − `(r)

`(r)
`(q)

`(a)
`(b)

= 1.

After some easy simplifications this becomes

(2.7)
1
q
−

1
b
=

1
a
−

1
r
⇔

1
`(q)

−
1
`(b)

=
1
`(r)
−

1
`(a)

.

Letting a→ −∞ and b→ ∞ equation (2.7) gives

1
q
= −

1
r
⇔

1
`(q)

=
1
`(r)

,

so the affine and the d-metric midpoint of any segment coincide.

Thus, according to Busemann [3, page 94], d is a Minkowski metric, hence the theorem for
projective-metric spaces of parabolic type.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Hyperbolic case

Cevian (D, d) is of hyperbolic type.
We have ν(·) = sinh(·), so `(s) = sinh(d(P(s),Z)), and (2.3) with the addition formulas for the
hyperbolic sine give

b − q
b

−a
r − a

−r
q
= 1 ⇔

`(b) cosh(d(Z,Q)) + cosh(d(Z,B))`(q)
`(a) cosh(d(R,Z)) + cosh(d(A,Z))`(r)

`(r)
`(q)

`(a)
`(b)

= 1.

After some easy simplifications this shows

(2.8)
1
q
−

1
b
=

1
a
−

1
r
⇔ coth(d(Z,Q))+coth(d(Z,B))=cot(d(R,Z))+cot(d(A,Z)).

The intersection e := AB ∩D of line AB and the domain D can be of three types:
a whole affine line AB, a ray A∞B, or a segment A∞B∞.

A

B

A∞

A

B

A∞

B∞
A

B

e = AB.
Letting b → ∞ and a → −∞, implies that q → −r by the left-hand equation of (2.4). From
the right-hand equation of (2.4) we get that coth(d(Z,Q)) = coth(d(R,Z)), hence d(Z,Q) =
d(R,Z). Thus, q = −r is equivalent to d(Z,Q) = d(R,Z), hence ` is an even function. Thus
the map ρd;e;z : P(z − x) ↔ P(z + x) is a d-isometric point reflection of e for every P(z) ∈ e,
hence τd;e;z,t := ρd;e;t ◦ ρd;e;z : P(y)→ P(2z − y)→ P(2(t − z) + y)) is a d-isometric translation.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Hyperbolic case

So d(P(x),P(y)) = d(P(0),P(y − x)), hence
d(P(0),P(y−x))+d(P(0),P(z−y))=d(P(x),P(y))+d(P(y),P(z))=d(P(x),P(z))=d(P(0),P(z−x)).
Thus the continuous function f (x) = d(P(0),P(x)) satisfies Cauchy’s functional equation [15],
hence a constant ce > 0 exists such that d(P(x),P(y)) = ce|x − y| for every x, y ∈ R.

e = A∞B.
Let A∞ = P(a∞). Letting b→ ∞ and a→ a∞ implies that

(2.9)
1
q
=

1
a∞
−

1
r
⇔ coth(d(Z,Q)) = coth(d(R,Z))

by (2.8). Reparameterizing ray e by the linear map P̄ : R → RQ such that Ā∞ = P̄(0),
R = P̄(r), Z = P̄(z), Q = P̄(q), we can reformulate equivalency (2.9) to

1
q − z

=
1
−z
−

1
r − z

⇔ d(Z,Q) = d(R,Z),

where 0 < r < z < q. Thus, the map ρd;e;z : P(r) ↔ P(z2/r) is a d-isometric point reflection
on ray e for every P(z) ∈ e, hence τd;e;z,t := ρd;e;t ◦ ρd;e;z : P(r) → P(z2/r) → P(rt2/z2) is a
d-isometric translation.
So d(P(r), τd;e;z,t(P(r))) does not depend on r, hence it is a real function δ of t/z. As d is
additive, this implies δ(x) + δ(y) = δ(xy), so, by the solution of Cauchy’s functional equation
[15], we have a constant c̄e > 0 such that δ(x) = 2ce| ln(x)|. Thus

d(P(x),P(y)) = d(P(x), τ
d;e;1,
√

y/x
(P(x))) = δ(

√
y/x) = c̄e| ln(y/x)| for every x, y ∈ R.

This means d(P(x),P(y)) = c̄e| ln(A∞,∞; P(y),P(x))|, i.e. a Hilbert metric on ray e.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Hyperbolic case

e = A∞B∞.
Let A∞ = P(a∞) and B∞ = P(b∞). Letting b→ b∞ and a→ a∞ implies that

1
q
−

1
b∞
=

1
a∞
−

1
r
⇔ coth(d(Z,Q)) = coth(d(R,Z)).

by (2.8). Reparameterizing segment e by the linear map P̄ : R → RQ such that Ā∞ = P̄(0),
R = P̄(r), Z = P̄(z), Q = P̄(q), and B̄∞ = P̄(1) we can reformulate the equivalency in (2.9) to

1
q − z

−
1

1 − z
=

1
−z
−

1
r − z

⇔ d(Z,Q) = d(R,Z),

where 0 < r < z < q < 1. Thus, the map ρd;e;z : P(r) ↔ P
( z2(1−r)

z2−r(2z−1)

)
is a d-isometric point

reflection on segment e for every P(z) ∈ e, hence

τd;e;z,t := ρd;e;t ◦ ρd;e;z : P(r)→ P
( z2(1 − r)
z2 − r(2z − 1)

)
→ P

( 1

1 + 1−r
r

z2

(1−z)2
(1−t)2

t2

)
is a d-isometric translation. So d(P(r), τd;e;z,t(P(r))) does not depend on r, hence it is a real
function δ of z2

(1−z)2
(1−t)2

t2 . As d is additive, this implies δ(x) + δ(y) = δ(xy) so, by the solution
of Cauchy’s functional equation [15], we have a constant c̄e > 0 such that δ(x) = 2ce| ln(x)|.
Thus

d(P(x),P(y)) = d(P(x), τd;e;1, x
1−x

1−y
y

(P(x))) = δ
(√

x
1 − x

1 − y
y

)
= c̄e

∣∣∣∣ ln ( x
1 − x

1 − y
y

)∣∣∣∣.
This means d(P(x),P(y)) = c̄e| ln(A∞,B∞; P(y),P(x))|, i.e. a Hilbert metric on segment e.
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Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Hyperbolic case

Having the metric for every possible domain of a projective-metric space of hyperbolic type,
we are ready to step forward by considering the properties of the domain D.

IfD contains a whole affine line, then by [6, Exercise [17.8]] it is either a half plane or a strip
bounded by two parallel lines, because it is not the whole plane. Thus, domain D is

either P(0,∞) := {(x, y) ∈ R2 : 0 < x} or P(0,b) := {(x, y) ∈ R2 : 0 < x < b}
in suitable linear coordinates. As the perspective projectivity $ : (x, y) 7→

( x
x+1 ,

y
x+1

)
maps

P(0,∞) onto P(0,1) bijectively, it is enough to consider the case D = P(0,1).

By the above, we know that d((x, y), (x, z)) = c(x)|z − y| for a continuous c : (0, 1)→ R+, and

d((x, λ + σx), (µx, λ + µσx)) = c̄(λ, σ)
∣∣∣∣ ln (

0,
1
x

; 1, µ
)∣∣∣∣ = c̄(λ, σ)

∣∣∣∣ ln 1 − µx
µ(1 − x)

∣∣∣∣,
where c̄ : R × R+ → R+ is also a continuous function. Putting these together gives

d((x, 0), (s, y)) =

c̄
( −yx

s−x ,
y

s−x

)∣∣∣ ln x(1−s)
s(1−x)

∣∣∣, if x , s,
c(x)|y|, if x = s,

for every x, s ∈ (0, 1) and y ∈ R. Letting y = k(s − x) > 0 where k ≥ 0, we get

kc(x) = lim
s→x

d((x, 0), (x, s − x))
s − x

= c̄(−kx, k) lim
s→x

∣∣∣∣ ln x(1−s)
s(1−x)

s − x

∣∣∣∣
= c̄(−kx, k) lim

s→x

∣∣∣∣ ln (
1 − 1

s(1−x)/(s−x)

)s(1−x)/(s−x)

s(1 − x)

∣∣∣∣ = c̄(−kx, k)
x(1 − x)

.

This gives 0= limk→0 c̄(−kx, k), and by continuity c̄(0, 0) = 0, a contradiction.

Á. Kurusa (Alfréd Rényi Institute of Mathematics, HAS) 12 / 14 16. 07. 2019.



Projective-metric spaces with Ceva or Menelaus property 2. Cevian and Menelausian spaces Proofs Hyperbolic case

Thus D does not contain a whole affine line, so it is either bounded or contains some rays.
The metric on every chord ` ∩ D cut out by the straight lines ` from D is of the form c`δ,
where δ is the Hilbert metric on D. Multiplier c` depends on ` continuously because d and
δ are continuous. Given non-collinear points A,B,C ∈ D the strict triangle inequalities give
that |δ(A,C)− δ(B,C)| < δ(A,B) and |cACδ(A,C)− cBCδ(B,C)| = |d(A,C)− d(B,C)| < d(A,B) =
cABδ(A,B). These imply∣∣∣∣δ(A,C)

δ(B,C)
− 1

∣∣∣∣ < δ(A,B)
δ(B,C)

, and
∣∣∣∣cAC

δ(A,C)
δ(B,C)

− cBC

∣∣∣∣ < cAB
δ(A,B)
δ(B,C)

.

If C tends to a point ∞ on the boundary ∂D ofD, then the first inequality implies δ(A,C)
δ(B,C) → 1,

so from the second inequality cA∞ = cB∞ follows. Thus c` is the same for every line that
goes through the same point of ∂D. This clearly implies that c` does not depend on `, i.e.
constant, hence (D, d) is a Hilbert geometry.

However, [10, Theorem 3.1] proves that a Hilbert geometry which has the Ceva property is
hyperbolic, hence the theorem for projective-metric spaces of hyperbolic type.
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Projective-metric spaces with Ceva or Menelaus property 3. Discussion

To make versions of Ceva’s or Menelaus’ theorems valid in more projective-metric spaces
more freedom should be allowed for the ratios.

Let A,B be different points in a projective-metric space (M, d), and let C ∈ (AB ∩M) \ {B}.
Then the real number

(3.1) 〈A,B; C〉†d =

 λ(d(A,C))
λ(d(C,B)) , if C ∈ AB,
−
λ(d(A,C))
λ(d(C,B)) , otherwise,

is called the λ-ratio of the triplet (A,B,C), where λ is a non-negative strictly increasing
function of the positive real numbers.

The question arises if there is a projective-metric space in which Ceva’s or Menelaus’ theo-
rems are valid with a λ-ratio. The answer to this question is negative for the Hilbert geome-
tries (M, d).

For, just choose five points on ∂M, and fit an ellipse E through these points. Then E
intersects ∂M in at least six points in a circumcise order M1,M2,M3,M4,M5,M6. The chords
M1M4, M2M5, and M3M6 in general intersect each other in three points, say in A, B, and C.
Now, on the side-lines of trigon ABC4 the hyperbolic metric is given, hence Ceva’s and
Menelaus’ theorems are valid with λ(·) ≡ sinh(·). For the hyperbolic geometry only the
hyperbolic sine function can be a good choice, and we know from the results of the previous
slides that it just does not work for more general Hilbert geometries.
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Thank you for your attention!
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