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A Characterization of the Radon Transform's Range
by a System of PDEs

�Arp �ad Kurusa

Abstract. Let g be a compactly supported function of d-planes in Rn . We
prove that then g is in the range of the Radon transform if and only if g
satis�es an ultrahyperbolic system of PDEs. We parameterize the d-planes by
d + 1 points x0; x1; : : : ; xd on them and get the PDE
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!
g(x0; x1; : : : ; xd)

Vol f x i � x0gi =1 ;d
= 0 ;

where xk
i denotes the k � th coordinate of x i . At the end we analyze in detail

the case ofd = 1.

1. Introduction

In this paper we consider the range of the (d; n ) Radon transform R n
d , which

is de�ned by

R n
d f (�) =

Z

�
f ( x ) dx;

where f 2 D (Rn ), � is an element ofG ( d; n ), the set of d dimensional hyperplanes
in Rn , 1 � d � n � 2 and dx is the surface measure on�.

There are many papers about the range of the Radon transform considered on
several di�erent spaces (e:g . [2],...,[12]), some of which ([3],[4],[8],[11]) give PDEs
to characterize the range of the Radon transform.

The �rst one as far as I know in which a characterization by a system of PDEs
was given is [8]. F. John characterized the range only in the case (1,3) and used in
his proof many special properties of the 3 dimensional space and the Asgeirsson's
lemma, but it was very geometrical compared with the others.
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Lemma 2.1. If f 2 D (Rn ) then

(@i;k @j;e � @i;e @j;k )
R n

d f ( x 0; x 1; : : : ; xd)
Volf x i � x 0gi =1 ;d

= 0;

where 0 � i; j � d , 1 � k; e � n and @i;k denotes the di�erentiation with respect to
the k � th coordinate x k

i of the i � th point x i .

Now we recall a de�nition and a statement of Helgason [6].
A function f on G ( d; n ) is said to be in D H (G ( d; n )) if f is C 1 , has com-

pact support and satisties the following condition: For each k 2 N there exists a
homogeneousk th-degree polynomial Pk on Rn such that for each d -dimensional
subspace� the polynomial

P�;k ( u ) =
Z

� ?
f ( x + �)hx; u i k dx for u 2 �?;

where�? is the orthogonal complement of� in Rn and dx is the surface measure
on �? , coincides with the restriction Pk � ? .

The crucial point of this condition is the independence ofP�;k ( u ) from � if
u 2 �? , because it is obviously a homogeneousk th-degree polynomial.

Lemma 2.2. (Corollary 2.28. in [6] ). The ( d; n ) Radon transform is a bijection of
D (Rn ) onto D H (G ( d; n )) .

This statement characterize the range of our transforms and we will use it as
starting point. The following result is a slight extension of Theorem 1.2. of [8] and
can be proven by simple calculation.

Lemma 2.3. Suppose that v 2 C 1 (Rn (d+1) ) such that it depends only on thed -
planes of the d + 1 points in Rn , �( x 0; x 1; : : : ; xd) 2 G ( d; n ) and satis�es

(1) (@i;k @j;e � @i;e @j;k )
v ( x 0; x 1; : : : ; xd)
Volf x i � x 0gi =1 ;d

= 0;

where 0 � i; j � d , 1 � k; e � n . Then the function

w ( x 0; x 1; : : : ; xd) = v (Ax 0;Ax 1; : : : ; Axd)

also satis�es (1) and also depends only on�( x 0; x 1; : : : ; xd) 2 G ( d; n ) for any A 2
SO ( n ), the group of orthogonal automorphisms of determinant1 of Rn .
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step showing a sequence of thed dimensional subspaces� r such that P�;k (en ) =
P� 1 ;k (en ) = � � � = P� m ;k (en ) = P��;k (en ), where all these equations are true by (� ).

If �� i is at most for one index j not perpendicular to � j it can be substi-
tuted into the place of � j by (� ) on such a way that P�;k (en ) does not changei:e.
P�;k (en ) = P� 1 ;k (en ). Let us continue this replacements with the last obtained
� r � 1 as far as possible. This procedure can stop at the� r if and only if there are
at least two elements off � r

i gi =1 ;d , which are not perpendicular to �� i .
In this case let � r

j and � r
k be two vectors not perpendicular to �� i . Transforming

these two vectors as

� r +1
j = � r

j cos� + � r
k sin � � r +1

k = � r
j sin � � � r

k cos�;

where tan� = h�� i ; � r
k i =h�� i ; � r

j i ; and leaving � r +1
s = � r

s for other indexes s we
obtain the � r +1 = � (0; � r +1

1 ; � r +1
2 ; : : : ; � r +1

d ) subspace, which satis�es obviously
P� r +1 ;k (en ) = P� r ;k (en ) and has more vectors perpendicular to �� i . Continuing
this procedure as far as possible we will get a subspace the orthonormal spanning
system of which will become treatable by the previous method. As a result of
this line of reasoning �nally we shall obtain the desired sequence, which proves the
theorem.

4. The (1 ; n ) case

From now on we concentrate on the special case of (1; n) Radon transform,
when we integrate over the lines. We parameterize the linesG(1; n) by Pl•ucker
coordinates.

Let � = ( � 1; : : : ; � n ) and � = ( � 1; : : : ; � n ) be two di�erent points of the line g.
The Pl•ucker coordinates of g are

pi;k = det
�

� i � k

� i � k

�
and qj = det

�
� j 1
� j 1

�
;

where 1� i < k � n and 1 � j � n. As it is well known ratios of the coordinates
pi;n and qj are unchanged under replacing� and � by two di�erent points of g and
determine the line uniquely. Below for brevity we simply write pi for pi;n .

By using the Pl•ucker coordinates now we de�ne a bijection between functions
on G(1; n) and the functions on R2n � 2. To any function v on G(1; n) let us associate
a function u on R2n � 2 by the equation

(3) v(�; � ) =

 
nX

i =1

�
qi

qn

� 2
! 1=2

u
�

x1

qn
;

x2

qn
;

x3

qn
; : : : ;

x2n � 2

qn

�
;
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Corollary 4.3. The function u: R2(n � 1) ! R is a C1
c solution of the system of

ultrahyperbolic PDEs

(6)
�

@2

@xk @ye
�

@2

@yk @xe

�
u = 0(1 � e; k � n � 1);

where u = u(x; y), x = ( x1; : : : ; xn � 1) 2 Rn � 1 and y = ( y1; : : : ; yn � 1) 2 Rn � 1, if
and only if there exists aC1

c function f : Rn ! R such that

Rn
1 f (�; � )

=

 
nX

i =1

�
qi

qn

� 2
! 1=2

u
�

p1 + q1

qn
; :::;

pn � 1 + qn � 1

qn
;

p1 � q1

qn
; :::;

pn � 1 � qn � 1

qn

�
;

where pi and qi (1 � i � n � 1) are the Pl•ucker coordinates of the straightline
through � and � .

Proof. In (2) let us choose the following matrix

�
U U
U � U

�

as �, where U is the unit ( n � 1) � (n � 1) matrix. One can conclude the proof as
in the previous theorem.

The author would like to thank Z.I. Szab�o for proposing the problem of this
paper and L. Feh�er for making valuable suggestions on the form and content.
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